
Distributed Systems
Principles and Paradigms

Maarten van Steen

VU Amsterdam, Dept. Computer Science
steen@cs.vu.nl

Chapter 11: Distributed File Systems

Version: December 10, 2012

1 / 14

Distributed File Systems 11.1 Architecture

Distributed File Systems

General goal
Try to make a file system transparently available to remote clients.

Client

File stays
on server

Server

Requests from
client to access

remote file

Client Server

1. File moved to client

3. When client is done,

file is returned to

2. Accesses are

done on client

Old file

New file

Remote access model Upload/download model

2 / 14

Distributed File Systems 11.1 Architecture

2 / 14

Distributed File Systems 11.1 Architecture

Example: NFS Architecture

NFS
NFS is implemented using the Virtual File System abstraction, which is
now used for lots of different operating systems.

Virtual file system
(VFS) layer

Virtual file system
(VFS) layer

System call layer System call layer

NFS client

RPC client
stub

RPC server
stub

NFS server
Local file

system interface
Local file

system interface

Network

Client Server

3 / 14

Distributed File Systems 11.1 Architecture

3 / 14



Distributed File Systems 11.1 Architecture

Example: NFS Architecture

Essence
VFS provides standard file system interface, and allows to hide
difference between accessing local or remote file system.

Question
Is NFS actually a file system?

4 / 14

Distributed File Systems 11.1 Architecture

4 / 14

Distributed File Systems 11.1 Architecture

NFS File Operations

Oper. v3 v4 Description
Create Yes No Create a regular file
Create No Yes Create a nonregular file
Link Yes Yes Create a hard link to a file
Symlink Yes No Create a symbolic link to a file
Mkdir Yes No Create a subdirectory
Mknod Yes No Create a special file
Rename Yes Yes Change the name of a file
Remove Yes Yes Remove a file from a file system
Rmdir Yes No Remove an empty subdirectory
Open No Yes Open a file
Close No Yes Close a file
Lookup Yes Yes Look up a file by means of a name
Readdir Yes Yes Read the entries in a directory
Readlink Yes Yes Read the path name in a symbolic link
Getattr Yes Yes Get the attribute values for a file
Setattr Yes Yes Set one or more file-attribute values
Read Yes Yes Read the data contained in a file
Write Yes Yes Write data to a file

5 / 14

Distributed File Systems 11.1 Architecture

5 / 14

Distributed File Systems 11.1 Architecture

Cluster-Based File Systems

Observation
With very large data collections, following a simple client-server
approach is not going to work ⇒ for speeding up file accesses, apply
striping techniques by which files can be fetched in parallel.

File block of file a File block of file e

a

a

a b

b

b c

c

c d

d

d e

e

e

a

c

d

e

b a

c

e

d

b a b

e

c d

File-striped system

Whole-file distribution

6 / 14

Distributed File Systems 11.1 Architecture

6 / 14



Distributed File Systems 11.1 Architecture

Example: Google File System

Chunk server

Linux file
system

Chunk server

Linux file
system

Chunk server

Linux file
system

MasterGFS client
file name, chunk index

contact address

Chunk-server stateInstructions

Chunk ID, range

Chunk data

The Google solution

Divide files in large 64 MB chunks, and distribute/replicate chunks across
many servers:

The master maintains only a (file name, chunk server) table in main
memory ⇒ minimal I/O
Files are replicated using a primary-backup scheme; the master is kept
out of the loop

7 / 14

Distributed File Systems 11.1 Architecture

7 / 14

Distributed File Systems 11.1 Architecture

P2P-based File Systems

Chord

DHash

Ivy

Chord

DHash

Ivy

Chord

DHash

Ivy

Network



Node where a file system is rooted

File system layer

Block-oriented storage

DHT layer

Basic idea
Store data blocks in the underlying P2P system:

Every data block with content D is stored on a node with hash h(D).
Allows for integrity check.
Public-key blocks are signed with associated private key and looked up
with public key.
A local log of file operations to keep track of 〈blockID,h(D)〉 pairs.

8 / 14

Distributed File Systems 11.1 Architecture

8 / 14

Distributed File Systems 11.5 Synchronization

File sharing semantics

Problem
When dealing with distributed file
systems, we need to take into account
the ordering of concurrent read/write
operations and expected semantics
(i.e., consistency).

Single machine

1. Write "c"

Original file

a

a

a

a

a

a

b

b

b

b

b

b

c

c

Process
A

Process
A

Process
B

Process
B

2. Read gets "abc"

1. Read "ab"2. Write "c"

3. Read gets "ab"

Client machine #1

File server

Client machine #2

(a) (b)

9 / 14

Distributed File Systems 11.5 Synchronization

9 / 14



Distributed File Systems 11.5 Synchronization

File sharing semantics

Semantics
UNIX semantics: a read operation returns the effect of the last
write operation ⇒ can only be implemented for remote access
models in which there is only a single copy of the file
Transaction semantics: the file system supports transactions on a
single file ⇒ issue is how to allow concurrent access to a
physically distributed file
Session semantics: the effects of read and write operations are
seen only by the client that has opened (a local copy) of the file ⇒
what happens when a file is closed (only one client may actually
win)

10 / 14

Distributed File Systems 11.5 Synchronization

10 / 14

Distributed File Systems 11.5 Synchronization

Example: File sharing in Coda

Essence
Coda assumes transactional semantics, but without the full-fledged
capabilities of real transactions. Note: Transactional issues reappear in
the form of “this ordering could have taken place.”

Time

Server

Client

Client

Open(RD)

Open(WR)

File f

File f
Close

Close
Invalidate

Session S

Session S

A

B

11 / 14

Distributed File Systems 11.5 Synchronization

11 / 14

Distributed File Systems 11.6 Consistency and Replication

Consistency and replication

Observation
In modern distributed file systems, client-side caching is the preferred
technique for attaining performance; server-side replication is done for fault
tolerance.

Observation
Clients are allowed to keep (large parts of) a file, and will be notified when
control is withdrawn ⇒ servers are now generally stateful

Client Server

Old file

Updated file

Local copy

2. Server delegates file

3. Server recalls delegation

4. Client sends returns file

1. Client asks for file

12 / 14

Distributed File Systems 11.6 Consistency and Replication

12 / 14



Distributed File Systems 11.6 Consistency and Replication

Example: Client-side caching in Coda

Time

Server

Client A

Client B

Open(RD)
Open(RD)

Open(WR)
Open(WR)

File f File f

File f

Close Close

CloseClose

Invalidate
(callback break)

OK (no file transfer)

Session S

Session S Session S

Session SA A

BB

Note
By making use of transactional semantics, it becomes possible to
further improve performance.

13 / 14

Distributed File Systems 11.6 Consistency and Replication

13 / 14

Distributed File Systems 11.6 Consistency and Replication

Example: Server-side replication in Coda

Server
S1

Server
S2

Server
S3

Client
A

Client
B

Broken
network

Main issue
Ensure that concurrent updates are detected:

Each client has an Accessible Volume Storage Group (AVSG): is a
subset of the actual VSG.
Version vector CVVi(f )[j] = k ⇒ Si knows that Sj has seen version k of f .
Example: A updates f ⇒ S1 = S2 = [+1,+1,+0]; B updates
f ⇒ S3 = [+0,+0,+1].

14 / 14

Distributed File Systems 11.6 Consistency and Replication

14 / 14


