

Distributed Systems
Principles and Paradigms

Maarten van Steen
Chapter 8: Fault Tolerance

Dependability

• A component provides services to clients. To provide
services, the component may require the services from
other components → a component may depend on some
other component.

• A component C depends on C* if the correctness of C's
behavior depends on the correctness of C*'s behavior.

• Note: in the context of distributed systems, components
are generally processes or channels.

Availability Readiness for usage

Reliability Continuity of service delivery

Safety Very low probability of catastrophes

Maintainability How easily can a failed system be repaired

8.1 Introduction: Basic concepts

2

Reliability versus Availability
• Reliability R(t): probability that a component has been up

and running continuously in the time interval [0,t).

• Some traditional metrics:

– Mean Time To Failure (MTTF): Average time until a component
fails.

– Mean Time To Repair (MTTR): Average time it takes to repair a
failed component.

– Mean Time Between Failures (MTBF): MTTF + MTTR

3

8.1 Introduction: Basic concepts

Reliability versus Availability
• Availability A(t): Average fraction of time that a

component has been up and running in the interval [0,t)

– (Long term) availability A: A(∞)

• Note:

– A = MTTF/MTBF = MTTF/(MTTF + MTTR)

8.1 Introduction: Basic concepts

4

Observation

Reliability and availability make sense only if we have an
accurate notion of what a failure actually is

Terminology

8.1 Introduction: Basic concepts

5

Term Description Example

Failure May occur when a
component is not living up to
its specifications

A crashed program

Error Part of a component that
may lead to a failure

A programming bug

Fault The cause of an error A sloppy programmer

Terminology

8.1 Introduction: Basic concepts6

Term Description Example

Fault
prevention

Prevent the occurrence
of a fault

Don't hire sloppy
programmers

Fault
tolerance

Build a component such
that it can mask the
occurrence of a fault

Build each component by
two independent
programmers

Fault removal Reduce the presence,
number, or seriousness
of a fault

Get rid of sloppy
programmers

Fault
forecasting

Estimate current
presence, future
incidence, and
consequences of faults

Estimate how a recruiter is
doing when it comes to
hiring sloppy programmers

Failure models

8.1 Introduction: Failure models

7

 Crash failures: Halt, but correct behavior until halting

 General omission failures: failure in sending or receiving messages

 Receiving omissions: sent messages are not received

 Send omissions: messages are not sent that should have

 Timing failures: correct output, but provided outside a specified time
interval.

 Performance failures: the component is too slow

 Response failures: incorrect output, but cannot be accounted to another
component

 Value failures: wrong output values

 State transition failures: deviation from correct flow of control (Note: this failure
may initially not even be observable)

 Arbitrary failures: any (combination of) failure may occur, perhaps even
unnoticed

Dependability versus security
 Omission failure: A component fails to take an action

that it should have taken

 Commission failure: A component takes an action that it
should not have taken

8.1 Introduction: Failure models

8

Observations

Deliberate failures, be they omission or commission
failures, stretch out to the field of security

There may actually be a thin line between
dependability and security

Halting failures

• Scenario: C no longer perceives any activity from C* ― a
halting failure? Distinguishing between a crash or
omission/timing failure may be impossible:

– Asynchronous system: no assumptions about process execution
speeds or message delivery times → cannot reliably detect
crash failures.

– Synchronous system: process execution speeds and message
delivery times are bounded → we can reliably detect omission
and timing failures.

– In practice we have partially synchronous systems: most of the
time, we can assume the system to be synchronous, yet there is
no bound on the time that a system is asynchronous → can
normally reliably detect crash failures.

8.1 Introduction: Failure models

9

Halting failures
• Assumptions we can make:

– Fail-stop: Crash failures, but reliably detectable

– Fail-noisy: Crash failures, eventually reliably detectable

– Fail-silent: Omission or crash failures: clients cannot tell what
went wrong.

– Fail-safe: Arbitrary, yet benign failures (can't do any harm).

– Fail-arbitrary: Arbitrary, with malicious failures

8.1 Introduction: Failure models

10

Process reslience
 Basic idea: protect yourself against faulty processes

through process replication:

8.2 Process resilience

11

Groups and failure masking
 k-Fault-tolerant group: When a group can mask any k

concurrent member failures (k is called degree of fault
tolerance).

 How large must a k-fault-tolerant group be:

 With halting failures (crash/omission/timing failures): we
need k+1 members: no member will produce an
incorrect result, so the result of one member is good
enough.

 With arbitrary failures: we need 2k+1 members: the
correct result can be obtained only through a majority
vote.

8.2 Process resilience

12

Groups and failure masking
 Important:

 All members are identical

 All members process commands in the same order

 Result:

 Only then do we know that all processes are programmed to do
exactly the same thing.

8.2 Process resilience

13

Observation

The processes need to have consensus on which
command to execute next

Flooding-based consensus

• Assume:

– Fail-crash semantics

– Reliable failure detection

– Unreliable communication

• Basic idea:

– Processes multicast their proposed operations

– All apply the same selection procedure → all process will execute
the same if no failures occur

• Problem:

– Suppose a process crashes before completing its multicast

8.2 Process resilience

14

Flooding-based consensus

8.2 Process resilience15

Paxos
• Assumptions (rather weak ones):

– An asynchronous system

– Communication may be unreliable (meaning that messages may
be lost, duplicated, or reordered)

– Corrupted messages are detectable (and can thus be discarded)

– All operations are deterministic

– Process may exhibit halting failures, but not arbitrary failures,
nor do they collude.

8.2 Process resilience: Paxos

16

Essential Paxos
• A collection of (replicated) threads, collectively fulfilling

the following roles:

– Client: a thread that requests to have an operation performed

– Learner: a thread that eventually performs an operation

– Acceptor: a thread that operates in a quorum to vote for the
execution of an operation

– Proposer: a thread that takes a client's request and attempts to
have the requested operation accepted for execution

8.2 Process resilience: Paxos

17

Essential Paxos
• Safety (nothing bad will happen):

– Only proposed operations will be learned

– At most one operation will be learned (and subsequently executed before a
next operation is learned)

• Liveness (something good will eventually happen):

– If sufficient processes remain nonfaulty, then a proposed operation will
eventually be learned (and thus executed)

8.2 Process resilience: Paxos

18

Essential Paxos

8.2 Process resilience: Paxos19

Paxos: Phase 1a (prepare)
• A proposer P:

– has a unique ID, say i

– communicates only with a quorum of acceptors

– For requested operation cmd:

– Selects a counter n higher than any of its previous counters, leading to a proposal
number r = (m,i).
Note: (m,i) < (n,j) iff m < n or m = n and i < j

– Sends prepare(r) to a majority of acceptors

• Goal:

– Proposer tries to get its proposal number anchored: any previous proposal
failed, or also proposed cmd.
Note: previous is defined wrt proposal number

8.2 Process resilience: Paxos

20

Paxos: Phase 1b (promise)
• What the acceptor does:

– If r is highest from any proposer:

– Return promise(r) to p, telling the proposer that the acceptor will ignore
any future proposals with a lower proposal number.

– If r is highest, but a previous proposal (r',cmd') had already been
accepted:

– Additionally return (r',cmd') to p. This will allow the proposer to decide
on the final operation that needs to be accepted.

– Otherwise: do nothing – there is a proposal with a higher
proposal number in the works

8.2 Process resilience: Paxos

21

Paxos: Phase 2a (accept)
• It's the proposer's turn again:

– If it does not receive any accepted operation, it sends
accept(r,cmd) to a majority of acceptors

– If it receives one or more accepted operations, it sends
accept(r,cmd*), where

– r is the proposer's selected proposal number

– cmd* is the operation whose proposal number is highest among all
accepted operations received from acceptors.

8.2 Process resilience: Paxos

22

Paxos: Phase 2b (learn)
• An acceptor receives an accept(r,cmd) message:

– If it did not send a promise(r') with r' > r, it must accept cmd, and
says so to the learners: learn(cmd).

• A learner receiving learn(cmd) from a majority of
acceptors, will execute the operation cmd.

8.2 Process resilience: Paxos

23

Observation

The essence of Paxos is that the proposers drive a majority
of the acceptors to the accepted operation with the highest

anchored proposal number

Essential Paxos: Hein Meling

8.2. Process Reslience: Paxos24

Associate professor @ University Stavanger

Essential Paxos: Normal case

8.2. Process Reslience: Paxos25

Essential Paxos: Normal case

8.2. Process Reslience: Paxos26

Essential Paxos: Normal case

8.2. Process Reslience: Paxos27

Essential Paxos: Normal case

8.2. Process Reslience: Paxos28

Essential Paxos: Normal case

8.2. Process Reslience: Paxos29

Essential Paxos: Normal case

8.2. Process Reslience: Paxos30

Essential Paxos: Normal case

8.2. Process Reslience: Paxos31

Essential Paxos: Problematic case

8.2. Process Reslience: Paxos32

Essential Paxos: Problematic case

8.2. Process Reslience: Paxos33

Essential Paxos: Problematic case

8.2. Process Reslience: Paxos34

Essential Paxos: Problematic case

8.2. Process Reslience: Paxos35

Essential Paxos: Problematic case

8.2. Process Reslience: Paxos36

Essential Paxos: Problematic case

8.2. Process Reslience: Paxos37

Essential Paxos: Problematic case

8.2. Process Reslience: Paxos38

Essential Paxos: Problematic case

8.2. Process Reslience: Paxos39

Essential Paxos: Problematic case

8.2. Process Reslience: Paxos40

Essential Paxos: Problematic case

8.2. Process Reslience: Paxos41

Essential Paxos: Problematic case

8.2. Process Reslience: Paxos42

Essential Paxos: Problematic case

8.2. Process Reslience: Paxos43

Essential Paxos: Problematic case

8.2. Process Reslience: Paxos44

Essential Paxos: Problematic case

8.2. Process Reslience: Paxos45

Essential Paxos: Problematic case

8.2. Process Reslience: Paxos46

Essential Paxos: Problematic case

8.2. Process Reslience: Paxos47

Essential Paxos: Problematic case

8.2. Process Reslience: Paxos48

Failure detection

• General model:

– Each process is equipped with a failure detection module

– A process p probes another process q for a reaction

– q reacts → q is alive

– q does not react within t time units → q is suspected to have crashed

• Note: in a synchronous system:

– a suspected crash is a known crash

– Referred to as a perfect failure detector

8.2 Process resilience: detection

49

Issue

How can we reliably detect that a process has
actually crashed?

Failure detection
• Practice: the eventually perfect failure detector

• Has two important properties:

– Strong completeness: every crashed process is eventually suspected to
have crashed by every correct process.

– Eventual strong accuracy : eventually, no correct process is suspected by
any other correct process to have crashed.

• Implementation:

– If p did not receive heartbeat from q within time t → p suspects q.

– If q later sends a message (received by p):

– p stops suspecting q

– p increases timeout value t

– Note: if q does crash, p will keep suspecting q.

8.2 Process resilience: detection

50

