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Distributed File Systems 11.1 Architecture

Distributed File Systems

General goal
Try to make a file system transparently available to remote clients.
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Example: NFS Architecture

NFS
NFS is implemented using the Virtual File System abstraction, which is
now used for lots of different operating systems.
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Example: NFS Architecture

Essence
VFS provides standard file system interface, and allows to hide
difference between accessing local or remote file system.

Question
Is NFS actually a file system?
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NFS File Operations

Oper. v3 v4 Description
Create Yes No Create a regular file
Create No Yes Create a nonregular file
Link Yes Yes Create a hard link to a file
Symlink Yes No Create a symbolic link to a file
Mkdir Yes No Create a subdirectory
Mknod Yes No Create a special file
Rename Yes Yes Change the name of a file
Remove Yes Yes Remove a file from a file system
Rmdir Yes No Remove an empty subdirectory
Open No Yes Open a file
Close No Yes Close a file
Lookup Yes Yes Look up a file by means of a name
Readdir Yes Yes Read the entries in a directory
Readlink Yes Yes Read the path name in a symbolic link
Getattr Yes Yes Get the attribute values for a file
Setattr Yes Yes Set one or more file-attribute values
Read Yes Yes Read the data contained in a file
Write Yes Yes Write data to a file
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Cluster-Based File Systems

Observation
With very large data collections, following a simple client-server
approach is not going to work ⇒ for speeding up file accesses, apply
striping techniques by which files can be fetched in parallel.
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Example: Google File System

Chunk server
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The Google solution

Divide files in large 64 MB chunks, and distribute/replicate chunks across
many servers:

The master maintains only a (file name, chunk server) table in main
memory ⇒ minimal I/O
Files are replicated using a primary-backup scheme; the master is kept
out of the loop
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P2P-based File Systems
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Node where a file system is rooted

File system layer

Block-oriented storage

DHT layer

Basic idea
Store data blocks in the underlying P2P system:

Every data block with content D is stored on a node with hash h(D).
Allows for integrity check.
Public-key blocks are signed with associated private key and looked up
with public key.
A local log of file operations to keep track of 〈blockID,h(D)〉 pairs.
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File sharing semantics

Problem
When dealing with distributed file
systems, we need to take into account
the ordering of concurrent read/write
operations and expected semantics
(i.e., consistency).
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File sharing semantics

Semantics
UNIX semantics: a read operation returns the effect of the last
write operation ⇒ can only be implemented for remote access
models in which there is only a single copy of the file
Transaction semantics: the file system supports transactions on a
single file ⇒ issue is how to allow concurrent access to a
physically distributed file
Session semantics: the effects of read and write operations are
seen only by the client that has opened (a local copy) of the file ⇒
what happens when a file is closed (only one client may actually
win)
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Example: File sharing in Coda

Essence
Coda assumes transactional semantics, but without the full-fledged
capabilities of real transactions. Note: Transactional issues reappear in
the form of “this ordering could have taken place.”
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Consistency and replication

Observation
In modern distributed file systems, client-side caching is the preferred
technique for attaining performance; server-side replication is done for fault
tolerance.

Observation
Clients are allowed to keep (large parts of) a file, and will be notified when
control is withdrawn ⇒ servers are now generally stateful
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Example: Client-side caching in Coda
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Note
By making use of transactional semantics, it becomes possible to
further improve performance.
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Example: Server-side replication in Coda
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Main issue
Ensure that concurrent updates are detected:

Each client has an Accessible Volume Storage Group (AVSG): is a
subset of the actual VSG.
Version vector CVVi(f )[j] = k ⇒ Si knows that Sj has seen version k of f .
Example: A updates f ⇒ S1 = S2 = [+1,+1,+0]; B updates
f ⇒ S3 = [+0,+0,+1].
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