Distributed Systems

Principles and Paradigms

Maarten van Steen
Chapter 8: Fault Tolerance

vrije Universiteit amsterdam .ﬁb

Dependability

» A component provides services to clients. To provide
services, the component may require the services from
other components — a component may depend on some
other component.

* A component C depends on C* if the correctness of C's
behavior depends on the correctness of C*'s behavior.

» Note: in the context of distributed systems, components
are generally processes or channels.

Reliability Continuity of service delivery
Safety Very low probability of catastrophes
Maintainability ~How easily can a failed system be repaired

Reliability versus Availability

* Reliability R(t): probability that a component has been up
and running continuously in the time interval [0,{).

* Some traditional metrics:

— Mean Time To Failure (MTTF): Average time until a component
fails.

— Mean Time To Repair (MTTR): Average time it takes to repair a
failed component.

— Mean Time Between Failures (MTBF): MTTF + MTTR

Reliability versus Availability

* Availability A(f): Average fraction of time that a
component has been up and running in the interval [0,t)

— (Long term) availability A: A(~)
* Note:
— A=MTTF/MTBF = MTTF/(MTTF + MTTR)

Observation

Reliability and availability make sense only if we have an
accurate notion of what a failure actually is

|
Terminology

Failure May occur when a A crashed program
component is not living up to
its specifications

Error Part of a component that A programming bug
may lead to a failure

Fault The cause of an error A sloppy programmer

Terminology

Fault Prevent the occurrence Don't hire sloppy
prevention of a fault programmers
Fault Build a component such Build each component by
tolerance that it can mask the two independent
occurrence of a fault programmers
Fault removal Reduce the presence, Get rid of sloppy
number, or seriousness programmers
of a fault
Fault Estimate current Estimate how a recruiter is
forecasting presence, future doing when it comes to
incidence, and hiring sloppy programmers

consequences of faults

Failure models

* Crash failures: Halt, but correct behavior until halting

* General omission failures: failure in sending or receiving messages
- Receiving omissions: sent messages are not received
- Send omissions: messages are not sent that should have

* Timing failures: correct output, but provided outside a specified time
interval.

- Performance failures: the component is too slow

* Response failures: incorrect output, but cannot be accounted to another
component

- Value failures: wrong output values

- State transition failures: deviation from correct flow of control (Note: this failure
may initially not even be observable)

* Arbitrary failures: any (combination of) failure may occur, perhaps even
unnoticed

Dependability versus security

* Omission failure: A component fails to take an action
that it should have taken

* Commission failure: A component takes an action that it
should not have taken

Observations

Deliberate failures, be they omission or commission
failures, stretch out to the field of security

There may actually be a thin line between
dependability and security

Halting failures

» Scenario: C no longer perceives any activity from C* — a
halting failure? Distinguishing between a crash or
omission/timing failure may be impossible:

— Asynchronous system: no assumptions about process execution
speeds or message delivery times — cannot reliably detect
crash failures.

— Synchronous system: process execution speeds and message
delivery times are bounded — we can reliably detect omission
and timing failures.

— In practice we have partially synchronous systems: most of the
time, we can assume the system to be synchronous, yet there is
no bound on the time that a system is asynchronous — can
normally reliably detect crash failures.

Halting failures

* Assumptions we can make:
— Fail-stop: Crash failures, but reliably detectable
— Fail-noisy: Crash failures, eventually reliably detectable

— Fail-silent: Omission or crash failures: clients cannot tell what
went wrong.

— Fail-safe: Arbitrary, yet benign failures (can't do any harm).

— Fail-arbitrary: Arbitrary, with malicious failures

Process reslience

* Basic idea: protect yourself against faulty processes
through process replication:

Flat group Hierarchical group

Coordinator

Worker

I
Groups and failure masking

* k-Fault-tolerant group: When a group can mask any k
concurrent member failures (k is called degree of fault
tolerance).

* How large must a k-fault-tolerant group be:

- With halting failures (crash/omission/timing failures): we
need k+7 members: no member will produce an
incorrect result, so the result of one member is good
enough.

- With arbitrary failures: we need 2k+7 members: the
correct result can be obtained only through a majority
vote.

Groups and failure masking

* Important:

- All members are identical

- All members process commands in the same order
* Result:

- Only then do we know that all processes are programmed to do
exactly the same thing.

Observation

The processes need to have consensus on which
command to execute next

Flooding-based consensus

* Assume:
— Fail-crash semantics
— Reliable failure detection
— Unreliable communication
+ Basic idea:
— Processes multicast their proposed operations

— All apply the same selection procedure — all process will execute
the same if no failures occur

* Problem:

— Suppose a process crashes before completing its multicast

I
Flooding-based consensus

P1 crashes P2 has received all proposed
commands and decides

. X /
P3 : 7 \ P3 and P4 have received all
!) proposed commands and take

same decision as P2

Paxos

* Assumptions (rather weak ones):
— An asynchronous system

— Communication may be unreliable (meaning that messages may
be lost, duplicated, or reordered)

— Corrupted messages are detectable (and can thus be discarded)
— All operations are deterministic

— Process may exhibit halting failures, but not arbitrary failures,
nor do they collude.

Essential Paxos

* Acollection of (replicated) threads, collectively fulfilling
the following roles:

Client: a thread that requests to have an operation performed
— Learner: a thread that eventually performs an operation

— Acceptor: a thread that operates in a quorum to vote for the
execution of an operation

— Proposer: a thread that takes a client's request and attempts to
have the requested operation accepted for execution

Essential Paxos

* Safety (nothing bad will happen):
— Only proposed operations will be learned

— At most one operation will be learned (and subsequently executed before a
next operation is learned)

* Liveness (something good will eventually happen):

— If sufficient processes remain nonfaulty, then a proposed operation will
eventually be learned (and thus executed)

Essential Paxos

Clients

Single client request/response

Proposer Acceptor Learner

Server process

Other request

Paxos: Phase 1a (prepare)

* Aproposer P:
— has a unique ID, say i
— communicates only with a quorum of acceptors
— For requested operation cma:

— Selects a counter n higher than any of its previous counters, leading to a proposal
number r = (m,i).
Note: (m,i) < (nj)iff m<norm=nandi<j

— Sends prepare(r) to a majority of acceptors
* Goal:

— Proposer tries to get its proposal number anchored: any previous proposal
failed, or also proposed cmd.
Note: previous is defined wrt proposal number

Paxos: Phase 1b (promise)

* What the acceptor does:
— If ris highest from any proposer:

— Return promise(r) to p, telling the proposer that the acceptor will ignore
any future proposals with a lower proposal number.

— If ris highest, but a previous proposal (r,cmd'’) had already been
accepted:

— Additionally return (r,cmd’) to p. This will allow the proposer to decide
on the final operation that needs to be accepted.

— Otherwise: do nothing — there is a proposal with a higher
proposal number in the works

Paxos: Phase 2a (accept)

* It's the proposer's turn again:

— If it does not receive any accepted operation, it sends
accept(r,cmd) to a majority of acceptors

— If it receives one or more accepted operations, it sends
accept(r,cmd*), where

— ris the proposer's selected proposal number

— cmd*is the operation whose proposal number is highest among all
accepted operations received from acceptors.

Paxos: Phase 2b (learn)

* An acceptor receives an accepf(r,cmd) message:

— If it did not send a promise(r') with r' > r, it must accept cmd, and
says so to the learners: learn(cmd).

* Alearner receiving learn(cmd) from a majority of
acceptors, will execute the operation cmd.

Observation

The essence of Paxos is that the proposers drive a majority
of the acceptors to the accepted operation with the highest
anchored proposal number

Associate professor @ University Stavanger

Essential Paxos: Normal case

d ld [o
ERENE

Essential Paxos: Normal case

prepare(1)

prepare(1

ﬂ

Essential Paxos: Normal case

prepare(1)

prepare(1

1,-,'
o

Essential Paxos: Normal case

1 -
1

prom(1,-,-)
B Lo
® (@)

Essential Paxos: Normal case

accept(1,x)

Ier
B

Essential Paxos: Normal case

2 E E
x® | & | O
I
® | O
2 E B
& | O

Essential Paxos: Normal case

learn(x)

2 E R
OF—> O

Essential Paxos: Problematic case

prepare(1)

Essential Paxos: Problematic case

prepare(1)

Essential Paxos: Problematic case

prom(1.-,-)

1 -
o
o

Essential Paxos: Problematic case

prepare

Essential Paxos: Problematic case

prepare(2)

Essential Paxos: Problematic case

Essential Paxos: Problematic case

Essential Paxos: Problematic case

Essential Paxos: Problematic case

accept(2,z)

Essential Paxos: Problematic case

Essential Paxos: Problematic case
P
x ® ® O

prepare(3)

-
y ® ® ©
3)

prepare

Essential Paxos: Problematic case
B
x ® ® o)
)
o
y ® ® ©

prepare(3

prepare(3)

Essential Paxos: Problematic case
®
)

promise(3,1,X

I
y ®x | ® | O
)

promise(3,-,-

Essential Paxos: Problematic case

accept(3,x)

Essential Paxos: Problematic case

accept(3,x)

Essential Paxos: Problematic case

Failure detection

Issue

How can we reliably detect that a process has
actually crashed?

* General model:

— Each process is equipped with a failure detection module

— Aprocess p probes another process g for a reaction

— greacts — qis alive

— q does not react within t time units — q is suspected to have crashed
* Note: in a synchronous system:

— a suspected crash is a known crash

— Referred to as a perfect failure detector

Failure detection

+ Practice: the eventually perfect failure detector
* Has two important properties:

— Strong completeness: every crashed process is eventually suspected to
have crashed by every correct process.

— Eventual strong accuracy : eventually, no correct process is suspected by
any other correct process to have crashed.

* Implementation:
— If p did not receive heartbeat from g within time ¢t — p suspects gq.
— If g later sends a message (received by p):
— p stops suspecting q
— pincreases timeout value t

— Note: if g does crash, p will keep suspecting q.

