
Distributed Systems
Principles and Paradigms

Maarten van Steen

VU Amsterdam, Dept. Computer Science
steen@cs.vu.nl

Chapter 08: Fault Tolerance

Version: December 11, 2012

1 / 35

Fault Tolerance 8.3 Reliable Communication

Reliable communication

So far
Concentrated on process resilience (by means of process groups).
What about reliable communication channels?

Error detection
Framing of packets to allow for bit error detection
Use of frame numbering to detect packet loss

Error correction
Add so much redundancy that corrupted packets can be
automatically corrected
Request retransmission of lost, or last N packets

2 / 35

Fault Tolerance 8.3 Reliable Communication

2 / 35

Fault Tolerance 8.3 Reliable Communication

Reliable RPC

RPC communication: What can go wrong?
1: Client cannot locate server
2: Client request is lost
3: Server crashes
4: Server response is lost
5: Client crashes

RPC communication: Solutions
1: Relatively simple – just report back to client
2: Just resend message

3 / 35

Fault Tolerance 8.3 Reliable Communication

3 / 35

Fault Tolerance 8.3 Reliable Communication

Reliable RPC

RPC communication: Solutions
Server crashes

3: Server crashes are harder as you don’t what it had already done:

Receive Receive Receive
Execute Execute Crash
Reply Crash

REQ REQ REQ

REP No REP No REP

ServerServerServer

(a) (b) (c)

4 / 35

Fault Tolerance 8.3 Reliable Communication

4 / 35

Fault Tolerance 8.3 Reliable Communication

Reliable RPC

Problem
We need to decide on what we expect from the server

At-least-once-semantics: The server guarantees it will carry out
an operation at least once, no matter what.
At-most-once-semantics: The server guarantees it will carry out
an operation at most once.

5 / 35

Fault Tolerance 8.3 Reliable Communication

5 / 35

Fault Tolerance 8.3 Reliable Communication

Reliable RPC

RPC communication: Solutions
Server response is lost

4: Detecting lost replies can be hard, because it can also be that the
server had crashed. You don’t know whether the server has
carried out the operation
Solution: None, except that you can try to make your operations
idempotent: repeatable without any harm done if it happened to
be carried out before.

6 / 35

Fault Tolerance 8.3 Reliable Communication

6 / 35

Fault Tolerance 8.3 Reliable Communication

Reliable RPC

RPC communication: Solutions
Client crashes

5: Problem: The server is doing work and holding resources for
nothing (called doing an orphan computation).

Orphan is killed (or rolled back) by client when it reboots
Broadcast new epoch number when recovering⇒ servers kill
orphans
Require computations to complete in a T time units. Old ones are
simply removed.

Question
What’s the rolling back for?

7 / 35

Fault Tolerance 8.3 Reliable Communication

7 / 35

Fault Tolerance 8.4 Reliable Group Communication

Reliable multicasting

Basic model
We have a multicast channel c with two (possibly overlapping) groups:

The sender group SND(c) of processes that submit messages to
channel c
The receiver group RCV(c) of processes that can receive
messages from channel c

Simple reliability: If process P ∈ RCV(c) at the time message m was
submitted to c, and P does not leave RCV(c), m should be
delivered to P

Atomic multicast: How can we ensure that a message m submitted to
channel c is delivered to process P ∈ RCV(c) only if m is
delivered to all members of RCV(c)

8 / 35

Fault Tolerance 8.4 Reliable Group Communication

8 / 35

Fault Tolerance 8.4 Reliable Group Communication

Reliable multicasting

Observation
If we can stick to a local-area network, reliable multicasting is “easy”

Principle
Let the sender log messages submitted to channel c:

If P sends message m, m is stored in a history buffer
Each receiver acknowledges the receipt of m, or requests
retransmission at P when noticing message lost
Sender P removes m from history buffer when everyone has
acknowledged receipt

Question
Why doesn’t this scale?

9 / 35

Fault Tolerance 8.4 Reliable Group Communication

9 / 35

Fault Tolerance 8.4 Reliable Group Communication

Atomic multicast

P1 joins the group P3 crashes P3 rejoins

G = {P1,P2,P3,P4} G = {P1,P2,P4} G = {P1,P2,P3,P4}

Partial multicast
from P3 is discarded

P1

P2

P3

P4

Time

Reliable multicast by multiple
point-to-point messages

Idea
Formulate reliable multicasting in the presence of process failures in
terms of process groups and changes to group membership.

10 / 35

Fault Tolerance 8.4 Reliable Group Communication

10 / 35

Fault Tolerance 8.4 Reliable Group Communication

Atomic multicast

P1 joins the group P3 crashes P3 rejoins

G = {P1,P2,P3,P4} G = {P1,P2,P4} G = {P1,P2,P3,P4}

Partial multicast
from P3 is discarded

P1

P2

P3

P4

Time

Reliable multicast by multiple
point-to-point messages

Guarantee
A message is delivered only to the nonfaulty members of the current
group. All members should agree on the current group membership⇒
Virtually synchronous multicast.

11 / 35

Fault Tolerance 8.4 Reliable Group Communication

11 / 35

Fault Tolerance 8.4 Reliable Group Communication

Atomic multicast vs. Paxos

Question
How can Paxos be used to realize atomic multicast?

12 / 35

Fault Tolerance 8.4 Reliable Group Communication

12 / 35

Fault Tolerance 8.5 Distributed Commit

Distributed commit

Two-phase commit
Three-phase commit

Essential issue
Given a computation distributed across a process group, how can we
ensure that either all processes commit to the final result, or none of
them do (atomicity)?

13 / 35

Fault Tolerance 8.5 Distributed Commit

13 / 35

Fault Tolerance 8.5 Distributed Commit

Two-phase commit

Model
The client who initiated the computation acts as coordinator;
processes required to commit are the participants

Phase 1a: Coordinator sends vote-request to participants (also
called a pre-write)
Phase 1b: When participant receives vote-request it returns either
vote-commit or vote-abort to coordinator. If it sends vote-abort, it
aborts its local computation
Phase 2a: Coordinator collects all votes; if all are vote-commit, it
sends global-commit to all participants, otherwise it sends
global-abort
Phase 2b: Each participant waits for global-commit or global-abort
and handles accordingly.

14 / 35

Fault Tolerance 8.5 Distributed Commit

14 / 35

Fault Tolerance 8.5 Distributed Commit

Two-phase commit

COMMIT

INIT

WAIT

ABORT

Commit
Vote-request

Vote-abort
Global-abort

Vote-commit
Global-commit

(a)

COMMIT

INIT

READY

ABORT

Vote-request
Vote-commit

Vote-request
Vote-abort

Global-abort
ACK

Global-commit
ACK

(b)

Coordinator Participant

15 / 35

Fault Tolerance 8.5 Distributed Commit

15 / 35

Fault Tolerance 8.5 Distributed Commit

2PC – Failing participant

Scenario
Participant crashes in state S, and recovers to S

Initial state: No problem: participant was unaware of protocol
Ready state: Participant is waiting to either commit or abort. After
recovery, participant needs to know which state transition it should make
⇒ log the coordinator’s decision
Abort state: Merely make entry into abort state idempotent, e.g.,
removing the workspace of results
Commit state: Also make entry into commit state idempotent, e.g.,
copying workspace to storage.

Observation
When distributed commit is required, having participants use temporary
workspaces to keep their results allows for simple recovery in the presence of
failures.

16 / 35

Fault Tolerance 8.5 Distributed Commit

16 / 35

Fault Tolerance 8.5 Distributed Commit

2PC – Failing participant

Alternative
When a recovery is needed to READY state, check state of other participants
⇒ no need to log coordinator’s decision.

Recovering participant P contacts another participant Q

State of Q Action by P
COMMIT Make transition to COMMIT
ABORT Make transition to ABORT
INIT Make transition to ABORT
READY Contact another participant

Result
If all participants are in the READY state, the protocol blocks. Apparently, the
coordinator is failing. Note: The protocol prescribes that we need the decision
from the coordinator.

17 / 35

Fault Tolerance 8.5 Distributed Commit

17 / 35

Fault Tolerance 8.5 Distributed Commit

2PC – Failing coordinator

Observation
The real problem lies in the fact that the coordinator’s final decision
may not be available for some time (or actually lost).

Alternative
Let a participant P in the READY state timeout when it hasn’t received
the coordinator’s decision; P tries to find out what other participants
know (as discussed).

Observation
Essence of the problem is that a recovering participant cannot make a
local decision: it is dependent on other (possibly failed) processes

18 / 35

Fault Tolerance 8.5 Distributed Commit

18 / 35

Fault Tolerance 8.6 Recovery

Recovery

Introduction
Checkpointing
Message Logging

19 / 35

Fault Tolerance 8.6 Recovery

19 / 35

Fault Tolerance 8.6 Recovery

Recovery: Background

Essence
When a failure occurs, we need to bring the system into an error-free state:

Forward error recovery: Find a new state from which the system can
continue operation
Backward error recovery: Bring the system back into a previous
error-free state

Practice
Use backward error recovery, requiring that we establish recovery points

Observation
Recovery in distributed systems is complicated by the fact that processes
need to cooperate in identifying a consistent state from where to recover

20 / 35

Fault Tolerance 8.6 Recovery

20 / 35

Fault Tolerance 8.6 Recovery

Consistent recovery state

Requirement
Every message that has been received is also shown to have been
sent in the state of the sender.

Recovery line
Assuming processes regularly checkpoint their state, the most recent
consistent global checkpoint.

P1

P2

Initial state

Failure

Checkpoint

Time

Recovery line

Inconsistent collection
of checkpoints

Message sent
from P2 to P1

21 / 35

Fault Tolerance 8.6 Recovery

21 / 35

Fault Tolerance 8.6 Recovery

Consistent recovery state

P1

P2

Initial state

Failure

Checkpoint

Time

Recovery line

Inconsistent collection
of checkpoints

Message sent
from P2 to P1

Observation
If and only if the system provides reliable communication, should sent
messages also be received in a consistent state.

22 / 35

Fault Tolerance 8.6 Recovery

22 / 35

Fault Tolerance 8.6 Recovery

Cascaded rollback

Observation
If checkpointing is done at the “wrong” instants, the recovery line may
lie at system startup time⇒ cascaded rollback

P1

P2

Initial state

Failure

Checkpoint

Time

mm

23 / 35

Fault Tolerance 8.6 Recovery

23 / 35

Fault Tolerance 8.6 Recovery

Independent checkpointing

Essence
Each process independently takes checkpoints, with the risk of a cascaded
rollback to system startup.

Let CP[i](m) denote mth checkpoint of process Pi and INT[i](m) the
interval between CP[i](m−1) and CP[i](m)

When process Pi sends a message in interval
INT[i](m), it piggybacks (i ,m)

When process Pj receives a message in interval INT[j](n), it records the
dependency
INT[i](m)→ INT[j](n)
The dependency INT[i](m)→ INT[j](n) is saved to stable storage when
taking checkpoint CP[j](n)

24 / 35

Fault Tolerance 8.6 Recovery

24 / 35

Fault Tolerance 8.6 Recovery

Independent checkpointing

Observation
If process Pi rolls back to CP[i](m−1), Pj must roll back to
CP[j](n−1).

Question
How can Pj find out where to roll back to?

25 / 35

Fault Tolerance 8.6 Recovery

25 / 35

Fault Tolerance 8.6 Recovery

Coordinated checkpointing

Essence
Each process takes a checkpoint after a globally coordinated action.

Question
What advantages are there to coordinated checkpointing?

26 / 35

Fault Tolerance 8.6 Recovery

26 / 35

Fault Tolerance 8.6 Recovery

Coordinated checkpointing

Simple solution
Use a two-phase blocking protocol:

A coordinator multicasts a checkpoint request message
When a participant receives such a message, it takes a
checkpoint, stops sending (application) messages, and reports
back that it has taken a checkpoint
When all checkpoints have been confirmed at the coordinator, the
latter broadcasts a checkpoint done message to allow all
processes to continue

Observation
It is possible to consider only those processes that depend on the
recovery of the coordinator, and ignore the rest

27 / 35

Fault Tolerance 8.6 Recovery

27 / 35

Fault Tolerance 8.6 Recovery

Message logging

Alternative
Instead of taking an (expensive) checkpoint, try to replay your
(communication) behavior from the most recent checkpoint⇒ store
messages in a log.

Assumption
We assume a piecewise deterministic execution model:

The execution of each process can be considered as a sequence
of state intervals
Each state interval starts with a nondeterministic event (e.g.,
message receipt)
Execution in a state interval is deterministic

28 / 35

Fault Tolerance 8.6 Recovery

28 / 35

Fault Tolerance 8.6 Recovery

Message logging

Conclusion
If we record nondeterministic events (to replay them later), we obtain a
deterministic execution model that will allow us to do a complete replay.

Question
Why is logging only messages not enough?

Question
Is logging only nondeterministic events enough?

29 / 35

Fault Tolerance 8.6 Recovery

29 / 35

Fault Tolerance 8.6 Recovery

Message logging and consistency

When should we actually log messages?

Issue: Avoid orphans:

Process Q has just received and subsequently delivered messages m1
and m2

Assume that m2 is never logged.
After delivering m1 and m2, Q sends message m3 to process R
Process R receives and subsequently delivers m3 (and becomes an
orphan when Q recovers).

P

Q

R

Q crashes and recovers

Unlogged message
Logged message

m1

m2 m2 m3m3

m1 m2 is never replayed,
so neither will m3

Time

30 / 35

Fault Tolerance 8.6 Recovery

30 / 35

Fault Tolerance 8.6 Recovery

Message-logging schemes

Notations
HDR[m]: The header of message m containing its source, destination,

sequence number, and delivery number.
The header contains all information for resending a message and
delivering it in the correct order (assume data is reproduced by the
application).
A message m is stable if HDR[m] cannot be lost (e.g., because it
has been safely written to storage) .

DEP[m]: The set of processes to which message m, as well as any
message that causally depends on delivery of m, has been
delivered.

COPY[m]: The set of processes that have a copy of HDR[m] in their
volatile memory.

31 / 35

Fault Tolerance 8.6 Recovery

31 / 35

Fault Tolerance 8.6 Recovery

Message-logging schemes

Characterization
If C is a collection of crashed processes, then Q 6∈ C is an orphan if
there is a message m such that Q ∈ DEP[m] and COPY[m]⊆ C

32 / 35

Fault Tolerance 8.6 Recovery

32 / 35

Fault Tolerance 8.6 Recovery

Message-logging schemes

Note
We want ∀m∀C :: COPY[m]⊆ C⇒ DEP[m]⊆ C. This is the same as
saying that ∀m :: DEP[m]⊆ COPY[m].

Goal
No orphans means that for each message m,

DEP[m]⊆ COPY[m]

33 / 35

Fault Tolerance 8.6 Recovery

33 / 35

Fault Tolerance 8.6 Recovery

Message-logging schemes

Pessimistic protocol
For each nonstable message m, there is at most one process
dependent on m, that is |DEP[m]| ≤ 1.

Consequence
An unstable message in a pessimistic protocol must be made stable
before sending a next message.

Observation
The single recipient of m can safely crash without this leading to
orphans: ∀m :: DEP[m]⊆ COPY[m].

34 / 35

Fault Tolerance 8.6 Recovery

34 / 35

Fault Tolerance 8.6 Recovery

Message-logging schemes

Optimistic protocol
For each unstable message m, we ensure that if COPY[m]⊆ C, then
eventually also DEP[m]⊆ C, where C denotes a set of processes that
have been marked as faulty.

Consequence
To guarantee that DEP[m]⊆ C, we generally rollback each orphan
process Q until Q 6∈ DEP[m].

35 / 35

Fault Tolerance 8.6 Recovery

35 / 35

