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Dependability

• A component provides services to clients. To provide 
services, the component may require the services from 
other components → a component may depend on some 
other component.

• A component C depends on C* if the correctness of C's 
behavior depends on the correctness of C*'s behavior. 

• Note: in the context of distributed systems, components 
are generally processes or channels.

Availability Readiness for usage

Reliability Continuity of service delivery

Safety Very low probability of catastrophes

Maintainability How easily can a failed system be repaired
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Reliability versus Availability
• Reliability R(t): probability that a component has been up 

and running continuously in the time interval [0,t).

• Some traditional metrics:

– Mean Time To Failure (MTTF): Average time until a component 
fails.

– Mean Time To Repair (MTTR): Average time it takes to repair a 
failed component.

– Mean Time Between Failures (MTBF): MTTF + MTTR
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Reliability versus Availability
• Availability A(t): Average fraction of time that a 

component has been up and running in the interval [0,t)

– (Long term) availability A: A(∞)

• Note:

– A = MTTF/MTBF = MTTF/(MTTF + MTTR)
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Observation

Reliability and availability make sense only if we have an 
accurate notion of what a failure actually is

Terminology
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Term Description Example

Failure May occur when a 
component is not living up to 
its specifications

A crashed program

Error Part of a component that 
may lead to a failure

A programming bug

Fault The cause of an error A sloppy programmer

Terminology
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Term Description Example

Fault 
prevention

Prevent the occurrence 
of a fault

Don't hire sloppy 
programmers

Fault 
tolerance

Build a component such 
that it can mask the 
occurrence of a fault

Build each component by 
two independent 
programmers

Fault removal Reduce the presence, 
number, or seriousness 
of a fault

Get rid of sloppy 
programmers

Fault 
forecasting

Estimate current 
presence, future 
incidence, and 
consequences of faults

Estimate how a recruiter is 
doing when it comes to 
hiring sloppy programmers



  

 

Failure models
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 Crash failures: Halt, but correct behavior until halting

 General omission failures: failure in sending or receiving messages

 Receiving omissions: sent messages are not received 

 Send omissions: messages are not sent that should have

 Timing failures: correct output, but provided outside a specified time 
interval. 

 Performance failures: the component is too slow

 Response failures: incorrect output, but cannot be accounted to another 
component

 Value failures: wrong output values

 State transition failures: deviation from correct flow of control (Note: this failure 
may initially not even be observable)

 Arbitrary failures: any (combination of) failure may occur, perhaps even 
unnoticed

Dependability versus security
 Omission failure: A component fails to take an action 

that it should have taken

 Commission failure: A component takes an action that it 
should not have taken

8.1 Introduction: Failure models
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Observations

Deliberate failures, be they omission or commission
failures, stretch out to the field of security

There may actually be a thin line between
dependability and security 

Halting failures

• Scenario: C no longer perceives any activity from C* ― a 
halting failure? Distinguishing between a crash or 
omission/timing failure may be impossible:

– Asynchronous system: no assumptions about process execution 
speeds or message delivery times → cannot reliably detect 
crash failures.

– Synchronous system: process execution speeds and message 
delivery times are bounded → we can reliably detect omission 
and timing failures.

– In practice we have partially synchronous systems: most of the 
time, we can assume the system to be synchronous, yet there is 
no bound on the time that a system is asynchronous → can 
normally reliably detect crash failures.

8.1 Introduction: Failure models
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Halting failures
• Assumptions we can make:

– Fail-stop: Crash failures, but reliably detectable

– Fail-noisy: Crash failures, eventually reliably detectable

– Fail-silent: Omission or crash failures: clients cannot tell what 
went wrong.

– Fail-safe: Arbitrary, yet benign failures (can't do any harm).

– Fail-arbitrary: Arbitrary, with malicious failures

8.1 Introduction: Failure models
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Process reslience
 Basic idea: protect yourself against faulty processes 

through process replication:

8.2 Process resilience
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Groups and failure masking
 k-Fault-tolerant group: When a group can mask any k 

concurrent member failures (k is called degree of fault 
tolerance).

 How large must a k-fault-tolerant group be:

 With halting failures (crash/omission/timing failures): we 
need k+1 members: no member will produce an 
incorrect result, so the result of one member is good 
enough.

 With arbitrary failures: we need 2k+1 members: the 
correct result can be obtained only through a majority 
vote.

8.2 Process resilience
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Groups and failure masking
 Important:

 All members are identical

 All members process commands in the same order

 Result: 

 Only then do we know that all processes are programmed to do 
exactly the same thing.

8.2 Process resilience
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Observation

The processes need to have consensus on which
command to execute next

Flooding-based consensus

• Assume:

– Fail-crash semantics

– Reliable failure detection

– Unreliable communication

• Basic idea:

– Processes multicast their proposed operations

– All apply the same selection procedure → all process will execute 
the same if no failures occur

• Problem:

– Suppose a process crashes before completing its multicast

8.2 Process resilience
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Flooding-based consensus

8.2 Process resilience15



  

 

Paxos
• Assumptions (rather weak ones):

– An asynchronous system

– Communication may be unreliable (meaning that messages may 
be lost, duplicated, or reordered)

– Corrupted messages are detectable (and can thus be discarded)

– All operations are deterministic

– Process may exhibit halting failures, but not arbitrary failures, 
nor do they collude.

8.2 Process resilience: Paxos
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Essential Paxos
• A collection of (replicated) threads, collectively fulfilling 

the following roles:

– Client: a thread that requests to have an operation performed

– Learner: a thread that eventually performs an operation

– Acceptor: a thread that operates in a quorum to vote for the 
execution of an operation

– Proposer: a thread that takes a client's request and attempts to 
have the requested operation accepted for execution

8.2 Process resilience: Paxos
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Essential Paxos
• Safety (nothing bad will happen):

– Only proposed operations will be learned

– At most one operation will be learned (and subsequently executed before a 
next operation is learned)

• Liveness (something good will eventually happen):

– If sufficient processes remain nonfaulty, then a proposed operation will 
eventually be learned (and thus executed)

8.2 Process resilience: Paxos
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Essential Paxos
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Paxos: Phase 1a (prepare)
• A proposer P:

– has a unique ID, say i

– communicates only with a quorum of acceptors

– For requested operation cmd:

– Selects a counter n higher than any of its previous counters, leading to a proposal 
number r = (m,i). 
Note: (m,i) < (n,j) iff m < n or m = n and i < j

– Sends prepare(r) to a majority of acceptors

• Goal:

– Proposer tries to get its proposal number anchored: any previous proposal 
failed, or also proposed cmd. 
Note: previous is defined wrt proposal number

8.2 Process resilience: Paxos
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Paxos: Phase 1b (promise)
• What the acceptor does:

– If r is highest from any proposer:

– Return promise(r) to p, telling the proposer that the acceptor will ignore 
any future proposals with a lower proposal number.

– If r is highest, but a previous proposal (r',cmd') had already been 
accepted:

– Additionally return (r',cmd') to p. This will allow the proposer to decide 
on the final operation that needs to be accepted.

– Otherwise: do nothing – there is a proposal with a higher 
proposal number in the works

8.2 Process resilience: Paxos
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Paxos: Phase 2a (accept)
• It's the proposer's turn again:

– If it does not receive any accepted operation, it sends 
accept(r,cmd) to a majority of acceptors

– If it receives one or more accepted operations, it sends 
accept(r,cmd*), where 

– r is the proposer's selected proposal number

– cmd* is the operation whose proposal number is highest among all 
accepted operations received from acceptors.

8.2 Process resilience: Paxos
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Paxos: Phase 2b (learn)
• An acceptor receives an accept(r,cmd) message:

– If it did not send a promise(r') with r' > r, it must accept cmd, and 
says so to the learners: learn(cmd).

• A learner receiving learn(cmd) from a majority of 
acceptors, will execute the operation cmd.

8.2 Process resilience: Paxos
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Observation

The essence of Paxos is that the proposers drive a majority 
of the acceptors to the accepted operation with the highest 

anchored proposal number

Essential Paxos: Hein Meling

8.2. Process Reslience: Paxos24
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Essential Paxos: Normal case
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Essential Paxos: Normal case
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Essential Paxos: Problematic case
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Essential Paxos: Problematic case
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Essential Paxos: Problematic case
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Essential Paxos: Problematic case
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Essential Paxos: Problematic case
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Essential Paxos: Problematic case
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Failure detection

• General model:

– Each process is equipped with a failure detection module

– A process p probes another process q for a reaction

– q reacts → q is alive

– q does not react within t time units → q is suspected to have crashed

• Note: in a synchronous system: 

– a suspected crash is a known crash

– Referred to as a perfect failure detector

8.2 Process resilience: detection
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Issue

How can we reliably detect that a process has 
actually crashed?

Failure detection
• Practice: the eventually perfect failure detector

• Has two important properties:

– Strong completeness: every crashed process is eventually suspected to 
have crashed by every correct process.

– Eventual strong accuracy : eventually, no correct process is suspected by 
any other correct process to have crashed.

• Implementation:

– If p did not receive heartbeat from q within time t → p suspects q.

– If q later sends a message (received by p):

– p stops suspecting q

– p increases timeout value t

– Note: if q does crash, p will keep suspecting q.

8.2 Process resilience: detection
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