Distributed Systems

(4th edition, version 01)

Chapter 07: Consistency and Replication

sy i i
Replication

Why replicate
Assume a simple model in which we make a copy of a specific part of a system
(meaning code and data).

¢ Increase reliability: if one copy does not live up to specifications, switch
over to the other copy while repairing the failing one.

® Performance: simply spread requests between different replicated parts
to keep load balanced, or to ensure quick responses by taking proximity
into account.

The problem

Having multiple copies, means that when any copy changes, that change
should be made at all copies: replicas need to be kept the same, that is, be
kept consistent.

Reasons for replication 2/50

Consistency and replication Introduction

Performance and scalability

Main issue
To keep replicas consistent, we generally need to ensure that all conflicting
operations are done in the the same order everywhere

Conflicting operations: From the world of transactions

* Read—write conflict: a read operation and a write operation act
concurrently
e Write—write conflict: two concurrent write operations

Issue

Guaranteeing global ordering on conflicting operations may be a costly
operation, downgrading scalability. Solution: weaken consistency requirements
so that hopefully global synchronization can be avoided

Reasons for replication 3/50

Data-centric consistency models

Data-centric consistency models

Consistency model

A contract between a (distributed) data store and processes, in which the data
store specifies precisely what the results of read and write operations are in
the presence of concurrency.

Essential
A data store is a distributed collection of storages:

Process Process Process

Local copy

Distributed data store

4/50

Data-centric consistency models

Some notations

Read and write operations

® W(x)a: Process P; writes value ato x
® R;j(x)b: Process P; reads value b from x

¢ All data items initially have value NIL

Possible behavior
We omit the index when possible and draw according to time (x-axis):

W (x)a
P, R(x)NIL R(x)a

Y

Y

Consistency and replication

Sequential consistency

Definition

Data-centric consistency models

The result of any execution is the same as if the operations of all processes
were executed in some sequential order, and the operations of each individual
process appear in this sequence in the order specified by its program.

P, W(x)a S
by WGb it
Py R(x)b R(x)a

Py R(x)b R(x)a

P, W(x)a 5
P, W(x)b 5
Py R(x)b R(x)a -
Py R(x)a R(x)b

A data store that is not sequentially consistent

Consistent ordering of operations

Example

Three concurrent processes (initial values: 0)

Process P; Process P> Process Pj3
X < 1; y < 1; z < 1;
print (y,z); print(x,z); print(x,y);

CreisiEiy s e
Example

Three concurrent processes (initial values: 0)

Process P; Process P> Process Pj3
X < 1; y < 1; z — 1;
print (y,z); print(x,z); print(x,y);

Example execution sequences

Execution 1 Execution 2 Execution 3 Execution 4
P x 1 Pii x « 1 Py 1, Py 15
Pi: print(y,z); Py: y « 1; P3: z < 1; Pi: x < 1;
Py: y 15 Py: print(x,z); P3: print(x,y); P3: z < 1;
P> print(x,z); Pi: print(y,z); Py print(x,z); Py print(x,z);
P3: z <+ 1; P3: z + 1; Pii x «1; Pi: print(y,2z);
P3: print(x,y); P3: print(x,y); Pi: print(y,z); P3: print(x,y);
Prints: 001011 Prints: 101011 Prints: 010111 Prints: 111111

Signature: 0010 11 | Signature:101011 | Signature:110101 | Signature:111111

(a) (b) (c) (d)

Consistent ordering of operations 7150

How tricky can it get?

Seemingly okay
P, W (x)a W(y)a R(x)a _
p, — Wb Wb Ry)b

How tricky can it get?

Seemingly okay

Y

P>

Y

But not really (don’t forget that P; and P» act concurrently)

Possible ordering of operations Result

Wi(x)a; Wi(y)a; Wa(y)b; Wa(x)b | Ri(x)b | Ra(y)b
Wi (x)a; Wa(y)b; Wq(y)a; Wa(x)b Ri(x)b | Rzo(y)a
Wi(x)a; Wa(y)b; Wa(x)b; Wi(y)a | Ri(x)b | Rz(y)a
Wa(y)b; Wi(x)a; Wi(y)a; Wa(x)b | Ri(x)b | Rz(y)a
Wa(y)b; Wi(x)a; Wa(x)b; Wi(y)a | Ri(x)b | Ra(y)a
Wa(y)b; Wa(x)b; Wy(x)a; Wi(y)a | Ri(x)a | Ro(y)a

Consistent ordering of operations 8/50

Consistency and replication
How tricky can it get?
Linearizability

Each operation should appear to take effect instantaneously at some moment
between its start and completion.

Operations complete within a given time (shaded area)
W (x)a W(y)a R(x)a

Y

P1

P>

Y

With better results

Possible ordering of operations Result

Wi(x)a; Wa(y)b; Wi(y)a; Wa(x)b Ri(x)b | Rzo(y)a
Wi(x)a; Wa(y)b; Wao(x)b; Wi(y)a | Ri(x)b | Rz(y)a
Wa(y)b; Wi(x)a; Wi(y)a; Wa(x)b | Ri(x)b | Rz(y)a
Wa(y)b; Wi(x)a; Wa(x)b; Wi(y)a | Ri(x)b | Ro(y)a

Consistent ordering of operations 9/50

Causal consistency

Definition
Writes that are potentially causally related must be seen by all processes in the
same order. Concurrent writes may be seen in a different order by different

processes.
P, W(x)a >
P, R(x)a W(x)b >
R(x)b R(x)a
P3 >
Py R(x)a R(x)b 5
A violation of a causally-consistent store
P, W(x)a >
P, W(x)b >
R(x)b R(x)a
P3 >
R(x)a R(x)b
Ps >

A correct sequence of events in a causally-consistent store

Consistent ordering of operations 10/50

Consistency models, serializability, transactions

Overwhelming, but often already known

Again, from the world of transactions: can we order the execution of all
operations in a set of transactions in such a way that the final result matches a
serial execution of those transactions? The keyword is serializability.

BEGIN_TRANSACTION BEGIN_TRANSACTION BEGIN_TRANSACTION
x =0 x =0 x =0
x=x+1 X=X+ 2 X =x+3

END_TRANSACTICN END_TRANSACTICN END_TRANSACTION

Transaction Ty Transaction To Transaction T3

A number of schedules

Time —
S1 | x=0 x=x+1 x=0 x=X+2 x=0 x=X+3 | Legal
S2 | x=0 x=0 x=Xx+1 x=x+2 x=0 x=x+3 | Legal
S3 | x=0 x=0 x=x+1 x=0 Xx=x+2 x=x+3 | lllegal
S4 | x=0 x=0 x=x+3 x=0 x=x+1 x=x+2 | lllegal

Consistent ordering of operations 11/50

Data-centric consistency models

Grouping operations

Entry consistency: Definition

® Accesses to locks are sequentially consistent.

* No access to a lock is allowed to be performed until all previous writes
have completed everywhere.

* No data access is allowed to be performed until all previous accesses to
locks have been performed.

12/50

Grouping operations

Entry consistency: Definition

® Accesses to locks are sequentially consistent.

* No access to a lock is allowed to be performed until all previous writes
have completed everywhere.

* No data access is allowed to be performed until all previous accesses to
locks have been performed.

Basic idea
You don't care that reads and writes of a series of operations are immediately

known to other processes. You just want the effect of the series itself to be
known.

Consistent ordering of operations 12/50

Grouping operations

A valid event sequence for entry consistency

p, LX) W(xJa L(y) W(y)b Ul Uly) >

P, L(x) R(x)a R(y)NIL

P, Lly) Riyb
Observation
Entry consistency implies that we need to lock and unlock data (implicitly or
not).
Question

What would be a convenient way of making this consistency more or less
transparent to programmers?

Consistency and replication Data-centric consistency models

Eventual consistency

Definition

Consider a collection of data stores and (concurrent) write operations. The
strores are eventually consistent when in lack of updates from a certain
moment, all updates to that point are propagated in such a way that replicas
will have the same data stored (until updates are accepted again).

Srong eventual consistency

Basic idea: if there are conflicting updates, have a globally determined
resolution mechanism (for example, using NTP, simply let the “most recent”
update win).

Program consistency

P is a monotonic problem if for any input sets Sand T, P(S) C P(T).
Observation: A program solving a monotonic problem can start with
incomplete information, but is guaranteed not to have to roll back when
missing information becomes available. Example: filling a shopping cart.

Eventual consistency 14/50

Consistency and replication Data-centric consistency models

Eventual consistency

Definition

Consider a collection of data stores and (concurrent) write operations. The
strores are eventually consistent when in lack of updates from a certain
moment, all updates to that point are propagated in such a way that replicas
will have the same data stored (until updates are accepted again).

Srong eventual consistency

Basic idea: if there are conflicting updates, have a globally determined
resolution mechanism (for example, using NTP, simply let the “most recent”
update win).

Program consistency

P is a monotonic problem if for any input sets Sand T, P(S) C P(T).
Observation: A program solving a monotonic problem can start with
incomplete information, but is guaranteed not to have to roll back when
missing information becomes available. Example: filling a shopping cart.

Important observation
In all cases, we are avoiding global synchronization.

Eventual consistency 14/50

Continuous Consistency

We can actually talk about a degree of consistency

¢ replicas may differ in their numerical value

¢ replicas may differ in their relative staleness

® there may be differences regarding (number and order) of performed
update operations

Conit

Consistency unit = specifies the data unit over which consistency is to be
measured.

Example: Conit

Replica A Replica B
i d=558 //distance ! ! d=412 J/distance |
Conit: g= 95 //gas ' Conit} g= 45 //gas '
\ p= 78 |/l price ! i p= 70 [/ price !
Operation Result Operation Result
lg= 45) [<sefocarss | 19= 451
(9= 51 tp= 701
(o= 781 (4= 4121
(4= 5501
Vector clock A =(11,5) Vector clock B =(0, 8)
Order deviation =3 Order deviation =1
Numerical deviation = (2, 482) Numerical deviation = (3, 686)

Conit (contains the variables g, p, and d)

® Each replica has a vector clock: ([known] time @ A, [known] time @ B)
® Bsends A operation [(5,B) : g + d+ 45]; A has made this operation
permanent (cannot be rolled back)

Data-centric consistency models

Example: Conit

Replica A

v d =558 / distance
Conit; g= 95 //gas
p= 78 [/ price

'
'
b e s

Operation Result

Vector clock A =(11,5)
Order deviation =3
Numerical deviation = (2, 482)

Replica B

! d=412 / distance !

Conit; g= 45 //gas '
i p= 70 [/ price !
L

Operation Result
[<5B>[gcg+45 | [g= 45]
[<68[pcp+70 | [p= 70]
(o- #12

Vector clock B =(0,8)
Order deviation =1
Numerical deviation = (3, 686)

Conit (contains the variables g, p, and d)

® A has three pending operations =- order deviation = 3
* A missed two operations from B; max diff is 70 + 412 units = (2,482)

17/50

Consistency for mobile users

Example

Consider a distributed database to which you have access through your
notebook. Assume your notebook acts as a front end to the database.

® At location A you access the database doing reads and updates.

® At location B you continue your work, but unless you access the same
server as the one at location A, you may detect inconsistencies:

® your updates at A may not have yet been propagated to B
® you may be reading newer entries than the ones available at A
® your updates at B may eventually conflict with those at A

18/50

Consistency and replication Client-centric consistency models

Consistency for mobile users

Example

Consider a distributed database to which you have access through your

notebook. Assume your notebook acts as a front end to the database.
® At location A you access the database doing reads and updates.

® At location B you continue your work, but unless you access the same
server as the one at location A, you may detect inconsistencies:

® your updates at A may not have yet been propagated to B
® you may be reading newer entries than the ones available at A
® your updates at B may eventually conflict with those at A

Note
The only thing you really want is that the entries you updated and/or read at A,

are in B the way you left them in A. In that case, the database will appear to be
consistent to you.

18/50

Client-centric consistency models

Basic architecture

The principle of a mobile user accessing different replicas of a
distributed database

Client moves to other location
and (transparently) connects to
other replica

Replicas need to maintain
client-centric consistency

\ Distributed and replicated database
Mobile computer Read and write operations

19/50

Client-centric consistency: notation

Notations
* W,(x2) is the write operation by process Py that leads to version x, of x

* W;j(x;; x;) indicates P; produces version x; based on a previous version
Xj.

® Wij(x;|x;) indicates Py produces version x; concurrently to version x;.

20/50

Consistency and replication Client-centric consistency models

Monotonic reads

Example

Automatically reading your personal calendar updates from different servers.
Monotonic reads guarantees that the user sees all updates, no matter from
which server the automatic reading takes place.

Example

Reading (not modifying) incoming mail while you are on the move. Each time
you connect to a different e-mail server, that server fetches (at least) all the
updates from the server you previously visited.

Monotonic reads 21/50

Monotonic reads

Definition
If a process reads the value of a data item x, any successive read operation on
x by that process will always return that same or a more recent value.

. Wi (x1) Ri(x1) >
Wo (x1;x2) Ri(x2)

L
L2
A monotonic-read consistent data store

3>
>

L W1 (X1) R1 (Xl) >
1
Wo (x1]x2) Ri(x2)

Lo
A data store that does not provide monotonic reads

22/50

Client-centric consistency models

Monotonic writes

Example
Updating a program at server So, and ensuring that all components on which
compilation and linking depends, are also placed at So.

Example

Maintaining versions of replicated files in the correct order everywhere
(propagate the previous version to the server where the newest version is
installed).

Client-centric consistency models

Monotonic writes

Definition

A write operation by a process on a data item x is completed before any
successive write operation on x by the same process.

L Wi (x1)

L Wo(x1;x2) Wi(x2;x3)
OK

L W1(X1) >

L Wa(xi|x2) Wi(x2;x3)

Not OK

L1 Wl (Xl) >

Ly Wo(xalx2) — Wi(xalxs)
Not OK

L1 Wl (Xl) >

L, Wo(xi|x2) Wi(x1;x3)

OK

24 /50

Read your writes

Definition
The effect of a write operation by a process on a data item x, will always be
seen by a successive read operation on x by the same process.

L, W1 (x1) o
L Wa (x1;%2) Ri(xe)
2 >
OK
L, W1 (x1) o
L W (x1]x2) Rilxe)
2

Not OK

Read your writes

Definition
The effect of a write operation by a process on a data item x, will always be
seen by a successive read operation on x by the same process.

L, W1 (x1) o
L Wi (x1;%2) Ri(x2)
OK
L, W1 (x1) o
L Wa(x1]x2) Rilxe)

Not OK

Example

Updating your Web page and guaranteeing that your Web browser shows the
newest version instead of its cached copy.

Client-centric consistency models

Writes follow reads

Definition

A write operation by a process on a data item x following a previous read
operation on x by the same process, is guaranteed to take place on the same
or a more recent value of x that was read.

) Wi (x1) Ra(x1)
Wi(x1;x2) Wa(xo;x3)

Y

L
L2

OK

) Wi (x1) R2(x1)
Wis(xa[xe) — Wa(xa|x3)

Y

L
L2

Not OK

Writes follow reads

Definition
A write operation by a process on a data item x following a previous read
operation on x by the same process, is guaranteed to take place on the same

or a more recent value of x that was read.

. Wi (x1) R2(x1) >
W3 (x1;x2) Wa(xo;x3)

L
L2

OK

. Wi (x1) R2(x1)
Wis(xa[xe) — Wa(xa|x3)

Y

L
Lo

Not OK

Example
See reactions to posted articles only if you have the original posting (a read
“pulls in” the corresponding write operation).

Writes follow reads 26 /50

Client-centric consistency models

Example: ZooKeeper consistency

Yet another model?

ZooKeeper's consistency model mixes elements of data-centric and
client-centric models

Take a naive example

P1

Wob| |ROONIL

R(x)a
W(x)a R(x)c

Primary server

W(x)c

Data store

W(x)a; W(x)b

W(x)c

_/\/1

W(x)a;W(x)c;W(x)b

W(x)a;W(x)c;W(x)b

27/50

Replica placement

Essence
Figure out what the best K places are out of N possible locations.

28/50

Replica placement

Essence
Figure out what the best K places are out of N possible locations.

® Select best location out of N — K for which the average distance to clients
is minimal. Then choose the next best server. (Note: The first chosen
location minimizes the average distance to all clients.) Computationally
expensive.

Replica placement

Essence
Figure out what the best K places are out of N possible locations.

® Select best location out of N — K for which the average distance to clients
is minimal. Then choose the next best server. (Note: The first chosen
location minimizes the average distance to all clients.) Computationally
expensive.

® Select the K-th largest autonomous system and place a server at the
best-connected host. Computationally expensive.

Replica placement

Essence
Figure out what the best K places are out of N possible locations.

® Select best location out of N — K for which the average distance to clients
is minimal. Then choose the next best server. (Note: The first chosen
location minimizes the average distance to all clients.) Computationally
expensive.

® Select the K-th largest autonomous system and place a server at the
best-connected host. Computationally expensive.

® Position nodes in a d-dimensional geometric space, where distance
reflects latency. Identify the K regions with highest density and place a
server in every one. Computationally cheap.

Finding the best server location 28 /50

Content replication

Distinguish different processes
A process is capable of hosting a replica of an object or data:

® Permanent replicas: Process/machine always having a replica

e Server-initiated replica: Process that can dynamically host a replica on
request of another server in the data store

¢ Client-initiated replica: Process that can dynamically host a replica on
request of a client (client cache)

Replica management

Content replication

The logical organization of different kinds of copies of a data store into
three concentric rings

—>» Server-initiated replication
--%» Client-initiated replication

Replica management

Server-initiated replicas

Counting access requests from different clients

Server without
copy of file F

P -
Client ,\“‘\\ Server with
b - Sl copy of F
Ca(< '@ File F

Server Q counts access from C; and
C, as if they would come from P

® Keep track of access counts per file, aggregated by considering server
closest to requesting clients

Number of accesses drops below threshold D = drop file

Number of accesses exceeds threshold R = replicate file

Number of access between D and R = migrate file

31/50

Content distribution

Consider only a client-server combination

* Propagate only notification/invalidation of update (often used for caches)

* Transfer data from one copy to another (distributed databases): passive
replication

® Propagate the update operation to other copies: active replication
Note

No single approach is the best, but depends highly on available bandwidth and
read-to-write ratio at replicas.

Content distribution: client/server system

A comparison between push-based and pull-based protocols in the
case of multiple-client, single-server systems

® Pushing updates: server-initiated approach, in which update is
propagated regardless whether target asked for it.

® Pulling updates: client-initiated approach, in which client requests to be

updated.
Issue | Push-based Pull-based
1: List of client caches None
2: Update (and possibly fetch update) | Poll and update
3: Immediate (or fetch-update time) Fetch-update time

1: State at server
2: Messages to be exchanged
3: Response time at the client

33/50

Replica management

Content distribution

Observation

We can dynamically switch between pulling and pushing using leases: A
contract in which the server promises to push updates to the client until the
lease expires.

Make lease expiration time adaptive

Replica management

Content distribution

Observation

We can dynamically switch between pulling and pushing using leases: A
contract in which the server promises to push updates to the client until the
lease expires.

Make lease expiration time adaptive

® Age-based leases: An object that hasn’t changed for a long time, will not
change in the near future, so provide a long-lasting lease

Replica management

Content distribution

Observation

We can dynamically switch between pulling and pushing using leases: A
contract in which the server promises to push updates to the client until the
lease expires.

Make lease expiration time adaptive

* Renewal-frequency based leases: The more often a client requests a
specific object, the longer the expiration time for that client (for that object)
will be

Replica management

Content distribution

Observation

We can dynamically switch between pulling and pushing using leases: A
contract in which the server promises to push updates to the client until the
lease expires.

Make lease expiration time adaptive

e State-based leases: The more loaded a server is, the shorter the
expiration times become

Consistency and replication Replica management

Content distribution

Observation

We can dynamically switch between pulling and pushing using leases: A
contract in which the server promises to push updates to the client until the
lease expires.

Make lease expiration time adaptive

® Age-based leases: An object that hasn’t changed for a long time, will not
change in the near future, so provide a long-lasting lease

* Renewal-frequency based leases: The more often a client requests a
specific object, the longer the expiration time for that client (for that object)
will be

e State-based leases: The more loaded a server is, the shorter the
expiration times become

Question
Why are we doing all this?

Content distribution 34/50

Managing replicated objects

® Prevent concurrent execution of multiple invocations on the same object:
access to the internal data of an object has to be serialized. Using local
locking mechanisms are sufficient.

* Ensure that all changes to the replicated state of the object are the same:
no two independent method invocations take place on different replicas at
the same time: we need deterministic thread scheduling.

Computer 1 Computer 2

1

Deterministic
thread scheduling

Thread

scheduler Totally ordered

] requests u
Middleware \—DIE— Middleware l—[]]I<—
Local OS Local OS
I Unordered requests Unorder;d requests
1

Managing replicated objects 35/50

Replicated-object invocations

Problem when invocating a replicated object

Client replicates {
invocation request E

\ Object receives
the same invocation
B1 three times

S

All replicas see
the same invocation

Replicated object

Replica management

36/50

Replica management

Replicated-object invocations

Coordinator
of object C

Coordinator
of object B

Client replicates

invocation request

Returning the reply

uest

Forwarding a req

37/50

Consistency protocols

Primary-based protocols

Primary-backup protocol

Client Client
Primary server
for item x Backup server

W1| |W5 \ R1| |R2 \

W4 W4

W3 W3

Data store

W1. Write request R1. Read request
W2. Forward request to primary R2. Response to read

Wa3. Tell backups to update
W4. Acknowledge update
WS5. Acknowledge write completed

38/50

Primary-based protocols

Primary-backup protocol

Client Client

Primary server
for |tem X Backup server

éﬁéﬁ%éﬁ

N

W5
Data store
W1. Write request R1. Read request
W2. Forward request to primary R2. Response to read

Wa3. Tell backups to update
W4. Acknowledge update
WS5. Acknowledge write completed

Example primary-backup protocol

Traditionally applied in distributed databases and file systems that require a
high degree of fault tolerance. Replicas are often placed on the same LAN.

Sequential consistency: Primary-based protocols 38/50

Primary-based protocols

Primary-backup protocol with local writes

Client Client
Old primary New primary
for item x for item x Backup server
R1| |R2

W

W Data store
W1. Write request R1. Read request
W2. Move item x to new primary R2. Response to read

W3. Acknowledge write completed
W4. Tell backups to update
W5. Acknowledge update

Consistency protocols

39/50

Consistency protocols

Primary-based protocols

Primary-backup protocol with local writes

Client Client
Old primary New primary
for item x for item x Backup server
R1| |R2 Wi1| (W3
W4 W4 \
D SEm—— —>
———> <«
W5 W5
WM
w4
W Data store
W1. Write request R1. Read request
W2. Move item x to new primary R2. Response to read

W3. Acknowledge write completed
W4. Tell backups to update
WS5. Acknowledge update

Example primary-backup protocol with local writes

Mobile computing in disconnected mode (ship all relevant files to user before
disconnecting, and update later on).

39/50

Consistency and replication Consistency protocols

Replicated-write protocols

Quorum-based protocols

Assume N replicas. Ensure that each operation is carried out in such a way
that a majority vote is established: distinguish read quorum Ng and write
quorum Ny. Ensure:

1. Ng+ Ny > N (prevent read-write conflicts)
2. Ny > N/2 (prevent write-write conflicts)

‘: !' ‘:

{(E F & H E B G H
| J K L | J K L
Ne=3Ng=10 Np=3.Ng=10 Ne=1 Nw=12
Correct Write-write conflict Correct (ROWA)

Sequential istency: Repli ite p 40/50

Continuous consistency: Numerical errors

Principal operation

e Every server S; has a log, denoted as L;.

® Consider a data item x and let val(W) denote the numerical change in its
value after a write operation W. Assume that

VW :val(W)>0

e W is initially forwarded to one of the N replicas, denoted as origin(W).
TWIi,j] are the writes executed by server S; that originated from S;:

TWIi, jl = Y {val(W)|origin(W) = S; & W € L;}

41/50

Consistency protocols

Continuous consistency: Numerical errors

Note
Actual value v(t) of x:

N
v(t) = Vinit + Y, TWIk,K]
k=1

value v; of x at server S;:
N
Vi = Vinit+ Y, TWIi. K]
k=1

42/50

Consistency protocols

Continuous consistency: Numerical errors

Problem
We need to ensure that v(t) — v; < §; for every server S;.

43/50

Continuous consistency: Numerical errors

Problem
We need to ensure that v(t) — v; < §; for every server S;.

Approach
Let every server Sy maintain a view TW][i,] of what it believes is the value of
TWIi.j]. This information can be gossiped when an update is propagated.

Consistency protocols

Continuous consistency: Numerical errors

Problem
We need to ensure that v(t) — v; < §; for every server S;.

Approach
Let every server S, maintain a view TW][i,j] of what it believes is the value of
TWIi.j]. This information can be gossiped when an update is propagated.

Note

0 < TWlijl< TWIi jl < TW[j.j]

Consistency protocols

Continuous consistency: Numerical errors

Solution
Sk sends operations from its log to S; when it sees that TW([/, k] is getting too
far from TWI[k, k], in particular, when

TWIk, K] — TWli, k] > 6;/(N—1)

44/50

Consistency protocols

Continuous consistency: Numerical errors

Solution
Sk sends operations from its log to S; when it sees that TW([/, k] is getting too
far from TWI[k, k], in particular, when

TWIk, K] — TWli, k] > 6;/(N—1)

Question
To what extent are we being pessimistic here: where does 6;/(N —1) come
from?

44750

Consistency protocols

Continuous consistency: Numerical errors

Solution
Sk sends operations from its log to S; when it sees that TW([/, k] is getting too
far from TWI[k, k], in particular, when

TWIk, K] — TWli, k] > 6;/(N—1)

Question
To what extent are we being pessimistic here: where does §;/(N — 1) come
from?

Note
Staleness can be done analogously, by essentially keeping track of what has
been seen last from S; (see book).

44 /50

Consistency protocols

Implementing client-centric consistency

Keeping it simple
Each write operation W is assigned a globally unique identifier by its origin
server. For each client, we keep track of two sets of writes:

® Read set: the (identifiers of the) writes relevant for that client’s read
operations

* Write set: the (identifiers of the) client’s write operations.

Consistency and replication Consistency protocols

Implementing client-centric consistency

Keeping it simple
Each write operation W is assigned a globally unique identifier by its origin
server. For each client, we keep track of two sets of writes:
® Read set: the (identifiers of the) writes relevant for that client’s read
operations

* Write set: the (identifiers of the) client’s write operations.

Monotonic-read consistency

When client C wants to read at server S, C passes its read set. S can pull in
any updates before executing the read operation, after which the read set is
updated.

ing client-centric istency 45 /50

Implementing client-centric consistency

Keeping it simple
Each write operation W is assigned a globally unique identifier by its origin
server. For each client, we keep track of two sets of writes:

® Read set: the (identifiers of the) writes relevant for that client’s read
operations

* Write set: the (identifiers of the) client’s write operations.

Monotonic-read consistency

When client C wants to read at server S, C passes its read set. S can pull in
any updates before executing the read operation, after which the read set is
updated.

Monotonic-write consistency

When client C wants to write at server S, C passes its write set. S can pull in
any updates, executes them in the correct order, and then executes the write
operation, after which the write set is updated.

Implementing client-centric consistency 45/50

Consistency protocols

Implementing client-centric consistency

Read-your-writes consistency
When client C wants to read at server S, C passes its write set. S can pull in
any updates before executing the read operation, after which the read set is

updated.

46 /50

Consistency and replication Consistency protocols

Implementing client-centric consistency

Read-your-writes consistency

When client C wants to read at server S, C passes its write set. S can pull in

any updates before executing the read operation, after which the read set is
updated.

Writes-follows-reads consistency

When client C wants to write at server S, C passes its read set. S can pull in
any updates, executes them in the correct order, and then executes the write
operation, after which the write set is updated.

ing client-centric istency 46 /50

Example: Caching and replication in the Web

Example: replication in the Web

Client-side caches
® In the browser
¢ At a client’s site, notably through a Web proxy

Caches at ISPs
Internet Service Providers also place caches to (1) reduce cross-ISP traffic

and (2) improve client-side performance. May get nasty when a request needs
to pass many ISPs.

47/50

Example: Caching and replication in the Web

Cooperative caching

Web
server
3. Forward request
to Web server
1. Look in
local cache
Web 2. Ask neighboring proxy caches Web
< > <
proxy [€ > proxy
Client] Client Client] [Client] [Client
Web
<
HTTP Get request proxy

Client Client

48/50

Consistency and replication Example: Caching and replication in the Web

Web-cache consistency

How to guarantee freshness?
To prevent that stale information is returned to a client:

e Option 1: let the cache contact the original server to see if content is still
up to date.

* Option 2: Assign an expiration time Teypre that depends on how long ago
the document was last modified when it is cached. If Tjagt modified 1S the
last modification time of a document (as recorded by its owner), and
Tcached 1S the time it was cached, then

Texpire = a(Tcached - T/ast_modiﬁed) + 7—cach(-:-d

with a = 0.2. Until Tgypire, the document is considered valid.

49/50

Alternatives for caching and replication

Edge-server side Origin-server side

full schema replication/
query templates

Client : |
Server : query : Server
<> ' : g

response i

Content-blind Database | i
cache copy :

1 full/partial data replication :

Content-aware “ ; /" Authoritative

cache ﬁ‘ @ database

e Database copy: the edge has the same as the origin server

® Content-aware cache: check if a (normal query) can be answered with
cached data. Requires that the server knows about which data is cached
at the edge.

¢ Content-blind cache: store a query, and its result. When the exact same
query is issued again, return the result from the cache.

50/50

	Consistency and replication
	Introduction
	Reasons for replication
	Replication as scaling technique

	Data-centric consistency models
	Consistent ordering of operations
	Eventual consistency
	Continuous consistency

	Client-centric consistency models
	Monotonic reads
	Monotonic writes
	Read your writes
	Writes follow reads
	Example: client-centric consistency in ZooKeeper

	Replica management
	Finding the best server location
	Content replication and placement
	Content distribution
	Managing replicated objects

	Consistency protocols
	Sequential consistency: Primary-based protocols
	Sequential consistency: Replicated-write protocols
	Cache-coherence protocols
	Implementing continuous consistency
	Implementing client-centric consistency

	Example: Caching and replication in the Web

