Distributed Systems

(4th edition, version 01)

Chapter 02: Architectures

Architectural styles

Basic idea
A style is formulated in terms of

® (replaceable) components with well-defined interfaces

* the way that components are connected to each other

* the data exchanged between components

* how these components and connectors are jointly configured into a
system.

Connector

A mechanism that mediates communication, coordination, or cooperation
among components. Example: facilities for (remote) procedure call,
messaging, or streaming.

Architectural styles Architectural styles

Layered architecture

Different layered organizations

Request/Response

downcall One-way call
— - 5
| Layer N | | Layer N | | Layer N |
| Layer N-1 | | Layer N-1 | | Layer N-1 ‘
Handle

Upcall

Layer N-2
Layer 2 }
Layer N-3

(a) (b) (©

Architectural styles Architectural styles

Example: communication protocols

Protocol, service, interface

Party A Party B
(Layer N Layer N j
Interface Service
Y
(Protocol j
A\ \/
4/46 4/46
Two—party communication
Server
1 from socket import x
2
3 s = socket (AF_INET, SOCK_STREAM)
4 (conn, addr) = s.accept() # returns new socket and addr. client
5 while True: # forever
6 data = conn.recv(1024) # receive data from client
7 if not data: break # stop if client stopped
[msg = data.decode()+"+" # process the incoming data into a response
9 conn.send(msg.encode()) # return the response
10 conn.close() # close the connection
Client
1 from socket import
2
3 s = socket (AF_INET, SOCK_STREAM)
4 s.connect ((HOST, PORT)) # connect to server (block until accepted)
5 msg = "Hello World" # compose a message
6 s.send(msg.encode()) # send the message
7 ta = s.recv(1024) # receive the response
& print(data.decode()) # print the result
9 s.close() # close the connection
5/46 5/46

Application Layering

Traditional three-layered view

* Application-interface layer contains units for interfacing to users or
external applications

® Processing layer contains the functions of an application, i.e., without
specific data

* Data layer contains the data that a client wants to manipulate through the
application components

Observation
This layering is found in many distributed information systems, using traditional
database technology and accompanying applications.

Architectural styles

Application Layering

Example: a simple search engine

User interface } level

Architectural styles

User-interface

Descriptors

Query

HTML page
containing list

HTML
generator

Ranked list level

Database queries

of houses
Ranking
algorithm

Database with
housing information

Processing

Selected houses
Data level

7146

Architectural styles

Architectural styles

Object-based style

Essence

Components are objects, connected to each other through procedure calls.
Objects may be placed on different machines; calls can thus execute across a

network.

Encapsulation

State

Interface

Method

Objects are said to encapsulate data and offer methods on that data without
revealing the internal implementation.

8/46

Architectural styles

Architectural styles

RESTful architectures

Essence

View a distributed system as a collection of resources, individually managed by
components. Resources may be added, removed, retrieved, and modified by

(remote) applications.

1. Resources are identified through a single naming scheme
. All services offer the same interface

2
3. Messages sent to
4

or from a service are fully self-described

. After executing an operation at a service, that component forgets

everything about tl

Basic operations

he caller

Operation

Description

PUT

Create a new resource

GET

Retrieve the state of a resource in some representation

DELETE

Delete a resource

POST

Modify a resource by transferring a new state

9/46

Architectural styles Architectural styles

Example: Amazon’s Simple Storage Service

Essence
Objects (i.e., files) are placed into buckets (i.e., directories). Buckets cannot be

placed into buckets. Operations on CbjectName in bucket BucketName

require the following identifier:

http://BucketName. s3.amazonaws . com/ObjectName

Typical operations
All operations are carried out by sending HTTP requests:

* Create a bucket/object: PUT, along with the URI
® Listing objects: GET on a bucket name
* Reading an object: GET on a full URI

On interfaces

Issue

10/46

Architectural styles

Many people like RESTful approaches because the interface to a service is so
simple. The catch is that much needs to be done in the parameter space.

Amazon S3 SOAP interface

Bucket operations

Object operations

ListAlIMyBuckets PutObjectInline
CreateBucket PutObject
DeleteBucket CopyObject
ListBucket GetObject
GetBucketAccessControlPolicy GetObjectExtended
SetBucketAccessControlPolicy DeleteObject

GetBucketlLoggingStatus
SetBucketlLoggingStatus

GetObjectAccessControlPolicy
SetObjectAccessControlPolicy

On interfaces

Simplifications
Assume an interface bucket offering an operation create, requiring an input
string such as mybucket, for creating a bucket “mybucket.”

SOAP

Iimport bucket
bucket . create ("mybucket")

RESTful
PUT "https://mybucket.s3.amazonsws.com/"

Conclusions
Are there any to draw?

11/46

Architectural styles

12/46

10/46

Architectural styles

11/46

Architectural styles

12/46

Coordination

Temporal and referential coupling

Temporally coupled | Temporally coupled
Referentially coupled Direct Mailbox
Referentially decoupled Event-based Shared data space

Event-based and Shared data space

| Component | | Component | | Component | | Component |

| Notification
: i Publish Subscribe] | Data
delivery ¥ y | delivery

Subscribe 5

Publish

Shared (persistent) data space

13/46 13/46

Architectural styles Architectural styles

Example: Linda tuple space

Three simple operations

® in(t): remove a tuple matching template t
® rd(t): obtain copy of a tuple matching template t
® out (t): add tuple t to the tuple space

More details

® Calling out (t) twice in a row, leads to storing two copies of tuple t = a
tuple space is modeled as a multiset.

* Both inand rd are blocking operations: the caller will be blocked until a
matching tuple is found, or has become available.

14/ 46 14/ 46

Architectural styles Architectural styles

Example: Linda tuple space

1 import linda
2 linda.connect ()
3
4 blog = linda.TupleSpace()
5 linda.universe._out (("MicroBlog",blog))

Bob: s
7 blog = linda.universe._rd(("MicroBlog",linda.TupleSpace)) [1]
8
9 blog._out (("bob", "distsys", "I am studying chap 2"))
10 blog._out (("bob", "distsys", "The linda example’s pretty simple"))
11 blog._out (("bob", "gtcn", "Cool book!"))
1 linda
2 linda.connect ()

. 3

Alice: 4 blog = linda.universe._rd(("MicroBlog",linda.TupleSpace)) [1]
5
6 blog._out(("alice","gtcn", "This graph theory stuff is not easy"))
7 blog._out (("alice", "distsys","I like systems more than graphs"))
1 linda
2 linda.connect ()
3
4 blog = linda.universe._rd(("MicroBlog", linda.TupleSpace)) [1]
5

. 6 t1 = blog._rd(("bob", "distsys",str))

Chuck: 7 t2 = blog._rd(("alice", "gtcn",str))
8 t3 = blog._rd(("bob", "gtcn", str))
9
10 print t1
11 print t2
12 int t3

15/46 15/46

Architectural styles Architectural styles

Publish and subscribe

Issue: how to match events?
* Assume events are described by (attribute,value) pairs
® topic-based subscription: specify a “attribute = value” series
® content-based subscription: specify a “attribute € range” series

Publisher Subscriber Subscriber

Read/Delivery
Data item @ Subscription O °
Notification

[eceetitoece]

7
Publish/subscribe middleware Match

-y

Observation
Content-based subscriptions may easily have serious scalability problems

(why?)

16/46 16/46

Middleware and distributed systems Middleware and distributed systems

Middleware: the OS of distributed systems

Same interface everywhere

Computer 1 Computer 2 Computer 3 Computer 4
1T
Appl. A Application B Appl. C
Distributed-system layer (middleware)
| Local OS 1 | | Local OS 2 | l Local OS 3 | | Local OS 4 l
|]]]
Network

What does it contain?
Commonly used components and functions that need not be implemented by

applications separately.

1746

Middleware and distributed systems Middleware and distributed systems

Using legacy to build middleware

Problem
The interfaces offered by a legacy component are most likely not suitable for all

applications.

Solution
A wrapper or adapter offers an interface acceptable to a client application. Its
functions are transformed into those available at the component.

18/46 18/46

Middleware and distributed systems

Middleware and distributed systems

Organizing wrappers

Two solutions: 1-on-1 or through a broker

Wrapper

Broker

Application

Complexity with N applications
e 1-on-1: requires N x (N —1) = ¢(N?) wrappers
e broker: requires 2N = &(N) wrappers

19/46

19/46

Middleware and distributed systems Middleware and distributed systems

Developing adaptable middleware

Problem
Middleware contains solutions that are good for most applications = you may

want to adapt its behavior for specific applications.

20/46

20/46

Middleware and distributed systems

Middleware and distributed systems

Intercept the usual flow of control

Client application

ll

Application stub :

Intercepted call

— Nonintercepted call

*
J invoke (B, &doit, val))—l_‘

Object middleware l

Message-level interceptor
J send (B, “doit”, val)
Local OS

Request-level interceptor

-~

Y To object B
21/46

21/46

Layered-system architectures Layered-system architectures

Centralized system architectures

Basic Client—Server Model
Characteristics:

There are processes offering services (servers)

There are processes that use services (clients)

Clients and servers can be on different machines

Clients follow request/reply model regarding using services

operation response

C _X: ------- wait for reply - - - - - - - 7—7
S

22/46 22/46

Layered-system architectures Layered-system architectures

Multi-tiered centralized system architectures

Some traditional organizations

® Single-tiered: dumb terminal/mainframe configuration
* Two-tiered: client/single server configuration
® Three-tiered: each layer on separate machine

Traditional two-tiered configurations

Client machine

User inlerfaggj | User interface| User interface User i User i

Database

Being client and server at the same time

Three-tiered architecture

operation

data ___ wait for reply - - -

AS

DS

24/46 24/46

Layered-system architectures

Example: The Network File System

Foundations

Each NFS server provides a standardized view of its local file system: each

server supports the same model, regardless the implementation of the file

system.
The NFS remote access

Client

model

1. File moved to client

Layered-system architectures

Server Client Server
I;l I7—_lt
Requests from Fil o A 7 \T
client to access ile stays . Accesses are L
remote file on server done on client 3 neh iesnr::':m; ?g ne:
server
Remote access Upload/download
Note
FTP is a typical upload/download model. The same can be said for systems
like Dropbox.
25/46 25/ 46
Layered-system architectures Layered-system architectures
NFS architecture

Client

System call layer

Virtual file system
(VFS) layer

Local file
system interface

‘ NFS client ‘

RPC client
stub

Server

System call layer

Virtual file system
(VFS) layer

Local file

‘ NFS server ‘ system interface

RPC server
stub

Network

Example: Simple Web servers

Back in the old days...

Client machine

Browser

0s

26/46

Layered-system architectures

2. Server fetches

Server machine document from

local file

Web server / S

| 3. Response

1. Get document request (HTTP)

.life was simple:

* A website consisted as a collection of HTML files

* HTML files could be referred to each other by a hyperlink

* A Web server essentially needed only a hyperlink to fetch a file
* A browser took care of properly rendering the content of a file

27/46

26/46

Layered-system architectures

Layered-system architectures Layered-system architectures

Example (cnt'd): Less simple Web servers

Still back in the old days...

2. Start process to fetch document

1. Getrequest HTTP cal 3. Database interaction
request program
5. Return result | | handler \
4. HTML document
crealted
Web server CGl process Database server

...life became a bit more complicated:

* A website was built around a database with content

* A Webpage could still be referred to by a hyperlink

* A Web server essentially needed only a hyperlink to fetch a file

* A separate program (Common Gateway Interface) composed a page
* A browser took care of properly rendering the content of a file

28/46 28/46
Symmetrically distributed system architectures Symmetrically distributed system architectures

Alternative organizations

Vertical distribution
Comes from dividing distributed applications into three logical layers, and
running the components from each layer on a different server (machine).

Horizontal distribution
A client or server may be physically split up into logically equivalent parts, but
each part is operating on its own share of the complete data set.

Peer-to-peer architectures
Processes are all equal: the functions that need to be carried out are

represented by every process = each process will act as a client and a server
at the same time (i.e., acting as a servant).

29/46 29/46

Symmetrically distributed system architectures Symmetrically distributed system architectures

Structured P2P

Essence
Make use of a semantic-free index: each data item is uniquely associated with
a key, in turn used as an index. Common practice: use a hash function

key(data item) = hash(data item’s value).
P2P system now responsible for storing (key, value) pairs.

Simple example: hypercube

Looking up d with key k € {0,1,2,...,2% — 1} means routing request to node
with identifier k.

30/46 30/46

Example: Chord

Principle

* Nodes are logically organized in a ring. Each node has an m-bit identifier.

* Each data item is hashed to an m-bit key.

* Data item with key k is stored at node with smallest identifier id > k,
called the successor of key k.

® The ring is extended with various shortcut links to other nodes.

31/46 31/46

Symmetrically distributed system architectures Symmetrically distributed system architectures

Example: Chord

Actual node

Nonexisting
node

lookup(3)@9:28 1 — 4

32/ 46 32/46

Symmetrically distributed system architectures

Symmetrically distributed system architectures

Unstructured P2P

Essence

Each node maintains an ad hoc list of neighbors. The resulting overlay
resembles a random graph: an edge (u, v) exists only with a certain probability
Plu, v)].

Searching

® Flooding: issuing node u passes request for d to all neighbors. Request
is ignored when receiving node had seen it before. Otherwise, v
searches locally for d (recursively). May be limited by a Time-To-Live: a
maximum number of hops.

* Random walk: issuing node u passes request for d to randomly chosen
neighbor, v. If v does not have d, it forwards request to one of its
randomly chosen neighbors, and so on.

33/46 33/46

Flooding versus random walk

Model
Assume N nodes and that each data item is replicated across r randomly
chosen nodes.

Random walk
P[k] probability that item is found after k attempts:

Pk = (1 —)"

S (“search size”) is expected number of nodes that need to be probed:

N N
r r
S=Y kPkl=Y k-(1—) " =N/rfor1<r<N.
K= 1k k§1 N(N) / B

34/46 34/46

Flooding versus random walk

Flooding

* Flood to d randomly chosen neighbors

o After k steps, some R(k) = d-(d —1)*~! will have been reached
(assuming k is small).

* With fraction r/N nodes having data, if ﬁ -R(k) > 1, we will have found
the data item.

Comparison
e If r/N=0.001, then S~ 1000
* With flooding and d = 10, k = 4, we contact 7290 nodes.

* Random walks are more communication efficient, but might take longer
before they find the result.

35/46 35/46

Symmetrically distributed system architectures Symmetrically distributed system architectures

Super-peer networks

Essence
It is sometimes sensible to break the symmetry in pure peer-to-peer networks:

* When searching in unstructured P2P systems, having index servers
improves performance

* Deciding where to store data can often be done more efficiently through
brokers.

Super peer
Overlay network of super peers ,\'
e ‘ 5

36/46 36/46

Symmetrically distributed system architectures

Symmetrically distributed system architectures

Collaboration: The BitTorrent case

Principle: search for a file F

* Lookup file at a global directory = returns a torrent file

* Torrent file contains reference to tracker: a server keeping an accurate
account of active nodes that have (chunks of) F.

® P can join swarm, get a chunk for free, and then trade a copy of that
chunk for another one with a peer Q also in the swarm.

Client node
_ K out of N nodes
Lookup(F) Node 1
ABitTorrent List of nodes 1 Node 2
Web page or u;;_e'f:g;lf »{ with (chunks of) N
search engine ! file F .
Web server File server Tracker

Node N

37/46 37/46

Hybrid system architectures Hybrid system architectures

Cloud computing

Google docs
Gmail
YouTube, Flickr

Web services, multimedia, business apps

Software
aa Svc

I Application
MS Azure
Software framework (Java/Python/.Net) Google App engine

I Storage (databases)

é @ | Platforms

g s Amazon S3
Computation (VM), storage (block, file) Amazon EC2

Infrastructure
Datacenters

aa Svc

Infrastructure

38/46 38/46

Hybrid system architectures Hybrid system architectures

Cloud computing

Make a distinction between four layers

* Hardware: Processors, routers, power and cooling systems. Customers
normally never get to see these.

® Infrastructure: Deploys virtualization techniques. Evolves around
allocating and managing virtual storage devices and virtual servers.

* Platform: Provides higher-level abstractions for storage and such.
Example: Amazon S3 storage system offers an API for (locally created)
files to be organized and stored in so-called buckets.

* Application: Actual applications, such as office suites (text processors,
spreadsheet applications, presentation applications). Comparable to the
suite of apps shipped with OSes.

39/46 39/46

Architectures Hybrid system architectures | A = 15

Edge-server architecture

Essence
Systems deployed on the Internet where servers are placed at the edge of the
network: the boundary between enterprise networks and the actual Internet.

r— -

Architectures Hybrid system architectures | 115

Reasons for having an edge infrastructure

Commonly (and often misconceived) arguments

® Latency and bandwidth: Especially important for certain real-time
applications, such as augmented/virtual reality applications. Many people
underestimate the latency and bandwidth to the cloud.

Reliability: The connection to the cloud is often assumed to be unreliable,
which is often a false assumption. There may be critical situations in
which extremely high connectivity guarantees are needed.

Security and privacy: The implicit assumption is often that when assets
are nearby, they can be made better protected. Practice shows that this
assumption is generally false. However, securely handling data
operations in the cloud may be trickier than within your own organization.

e aigclows sacns T i cows scocns

Architectures Hybrid system architectures =1 11 E T8

Edge orchestration

Managing resources at the edge may be trickier than in the cloud

* Resource allocation: we need to guarantee the availability of the
resources required to perform a service.

® Service placement: we need to decide when and where to place a
service. This is notably relevant for mobile applications.

* Edge selection: we need to decide which edge infrastructure should be
used when a service needs to be offered. The closest one may not be the
best one.

Observation
There is still a lot of buzz about edge infrastructures and computing, yet
whether all that buzz makes any sense remains to be seen.

The edge-cloud architecture 42/ 46 The edge-cloud architecture

Hybrid system architectures

40/46

Hybrid system architectures

41/46

Hybrid system architectures

42/46

Hybrid system architectures

Hybrid system architectures

Blockchains

Principle working of a blockchain system

A node broadcasts A validator collects
a transaction request transactions into a block

A single validated block is
broadcast to all the nodes

Observations

* Blocks are organized into an unforgeable append-only chain

® Each block in the blockchain is immutable = massive replication

Hybrid system architectures

Hybrid system architectures

Appending a block: distributed consensus

Centralized solution

Observation

A single entity decides on which validator can go ahead and append a block.
Does not fit the design goals of blockchains.

4446 44146

Hybrid system architectures

Hybrid system architectures

Appending a block: distributed consensus

Distributed solution (permissioned)

Observation

* A selected, relatively small group of servers jointly reach consensus on
which validator can go ahead.

* None of these servers needs to be trusted, as long as roughly two-thirds
behave according to their specifications.

® In practice, only a few tens of servers can be accommodated.

45/ 46 45/ 46

Appending a block: distributed consensus

Decentralized solution (permisionless)

Observation

® Participants collectively engage in a leader election. Only the elected
leader is allowed to append a block of validated transactions.

® Large-scale, decentralized leader election that is fair, robust, secure, and
so on, is far from trivial.

46/ 46 46/ 46

