Distributed Systems

(4th edition, version 01)

Chapter 01: Introduction



From networked systems to distributed systems

Distributed versus Decentralized

What many people state

i

Centralized Decentralized Distributed

2/53



From networked systems to distributed systems

Distributed versus Decentralized

What many people state

i

Centralized Decentralized Distributed

When does a decentralized system become distributed?

2/53



From networked systems to distributed systems

Distributed versus Decentralized

What many people state

i

Centralized Decentralized Distributed

When does a decentralized system become distributed?

® Adding 1 link between two nodes in a decentralized system?

2/53



From networked systems to distributed systems

Distributed versus Decentralized

What many people state

i

Centralized Decentralized Distributed
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From networked systems to distributed systems

Distributed versus Decentralized

What many people state

i

Centralized Decentralized Distributed

When does a decentralized system become distributed?

® Adding 1 link between two nodes in a decentralized system?
® Adding 2 links between two other nodes?
® In general: adding k > 0 links....?
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Alternative approach

Two views on realizing distributed systems

¢ |ntegrative view: connecting existing networked computer systems into a
larger a system.

® Expansive view: an existing networked computer systems is extended
with additional computers

Two definitions

® A decentralized system is a networked computer system in which
processes and resources are necessarily spread across multiple
computers.

e A distributed system is a networked computer system in which processes
and resources are sufficiently spread across multiple computers.
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Some common misconceptions

Centralized solutions do not scale
Make distinction between logically and physically centralized. The root of the

Domain Name System:
* |ogically centralized

¢ physically (massively) distributed
® decentralized across several organizations
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Introduction From networked systems to distributed systems

Some common misconceptions

Centralized solutions do not scale
Make distinction between logically and physically centralized. The root of the

Domain Name System:
* |ogically centralized

® physically (massively) distributed
® decentralized across several organizations

Centralized solutions have a single point of failure

Generally not true (e.g., the root of DNS). A single point of failure is often:
® easier to manage

® easier to make more robust

Important

There are many, poorly founded, misconceptions regarding scalability, fault
tolerance, security, etc. We need to develop skills by which distributed systems
can be readily understood so as to judge such misconceptions.
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Perspectives on distributed systems

Distributed systems are complex: take persepctives

® Architecture: common organizations

® Process: what kind of processes, and their relationships
e Communication: facilities for exchanging data

¢ Coordination: application-independent algorithms

* Naming: how do you identify resources?

¢ Consistency and replication: performance requires of data, which need to
be the same

e Fault tolerance: keep running in the presence of partial failures
e Security: ensure authorized access to resources



What do we want to achieve?

Overall design goals
e Support sharing of resources
¢ Distribution transparency
® Openness

Scalability



Sharing resources

Canonical examples

Cloud-based shared storage and files
® Peer-to-peer assisted multimedia streaming

Shared mail services (think of outsourced mail systems)

Shared Web hosting (think of content distribution networks)

Observation
“The network is the computer”

(quote from John Gage, then at Sun Microsystems)
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Design goals
Distribution transparency
Same interface everywhere

Computer 1 Computer 2 Computer 3 Computer 4

Distributed-system layer (middleware)

|Loca| 0s 1 ‘ ‘ Local OS 2 | | Local OS 3 ‘ ‘ Local OS 4 |

Network

What is transparency?

The phenomenon by which a distributed system attempts to hide the fact that
its processes and resources are physically distributed across multiple
computers, possibly separated by large distances.



Distribution transparency
Same interface everywhere

Computer 1 Computer 2 Computer 3 Computer 4
=T = =

Distributed-system layer (middleware)

| Local OS 1 ‘ ‘ Local OS 2 | | Local OS 3 ‘ ‘ Local OS 4 |

Network

What is transparency?

The phenomenon by which a distributed system attempts to hide the fact that
its processes and resources are physically distributed across multiple
computers, possibly separated by large distances.

Observation

Distribution transparancy is handled through many different techniques in a
layer between applications and operating systems: a middleware layer

Distribution transparency 8/53



Distribution transparency

Types

Transparency | Description

Access Hide differences in data representation and how an
object is accessed

Location Hide where an object is located

Relocation Hide that an object may be moved to another location
while in use

Migration Hide that an object may move to another location

Replication Hide that an object is replicated

Concurrency | Hide that an object may be shared by several
independent users

Failure Hide the failure and recovery of an object

Distribution transparency 9/58



Degree of transparency

Aiming at full distribution transparency may be too much
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Degree of transparency

Aiming at full distribution transparency may be too much

® There are communication latencies that cannot be hidden

e Completely hiding failures of networks and nodes is (theoretically and
practically) impossible
® You cannot distinguish a slow computer from a failing one
® You can never be sure that a server actually performed an operation
before a crash

e Full transparency will cost performance, exposing distribution of the
system

® Keeping replicas exactly up-to-date with the master takes time
* Immediately flushing write operations to disk for fault tolerance

Distribution transparency 10/53



Design goals

Degree of transparency

Exposing distribution may be good
* Making use of location-based services (finding your nearby friends)

® When dealing with users in different time zones

* When it makes it easier for a user to understand what’s going on (when
e.g., a server does not respond for a long time, report it as failing).
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Design goals

Degree of transparency

Exposing distribution may be good
* Making use of location-based services (finding your nearby friends)

® When dealing with users in different time zones

* When it makes it easier for a user to understand what’s going on (when
e.g., a server does not respond for a long time, report it as failing).

Conclusion
Distribution transparency is a nice goal, but achieving it is a different story, and

it should often not even be aimed at.
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Openness of distributed systems

Open distributed system

A system that offers components that can easily be used by, or integrated into
other systems. An open distributed system itself will often consist of
components that originate from elsewhere.

What are we talking about?

Be able to interact with services from other open systems, irrespective of the
underlying environment:

e Systems should conform to well-defined interfaces
® Systems should easily interoperate

® Systems should support portability of applications
¢ Systems should be easily extensible

Openness 12/53



Policies versus mechanisms

Implementing openness: policies

* What level of consistency do we require for client-cached data?
* Which operations do we allow downloaded code to perform?

Which QoS requirements do we adjust in the face of varying bandwidth?

What level of secrecy do we require for communication?

Implementing openness: mechanisms

Allow (dynamic) setting of caching policies
Support different levels of trust for mobile code

* Provide adjustable QoS parameters per data stream

Offer different encryption algorithms

Openness 13/53



On strict separation

Observation

The stricter the separation between policy and mechanism, the more we need
to ensure proper mechanisms, potentially leading to many configuration
parameters and complex management.

Finding a balance

Hard-coding policies often simplifies management, and reduces complexity at
the price of less flexibility. There is no obvious solution.
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Dependability

Basics

A component provides services to clients. To provide services, the component
may require the services from other components = a component may depend
on some other component.

Specifically
A component C depends on C* if the correctness of C’s behavior depends on
the correctness of C*’s behavior. (Components are processes or channels.)



Dependability

Requirements related to dependability

Requirement | Description

Availability Readiness for usage
Reliability Continuity of service delivery
Safety Very low probability of catastrophes

Maintainability | How easy can a failed system be repaired




Design goals

Reliability versus availability

Reliability R(t) of component C
Conditional probability that C has been functioning correctly during [0, t) given
C was functioning correctly at the time 7T = 0.

Traditional metrics
® Mean Time To Failure (MTTF): The average time until a component fails.

® Mean Time To Repair (MTTR): The average time needed to repair a
component.
® Mean Time Between Failures (MTBF): Simply MTTF + MTTR.
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Terminology

Failure, error, fault

Term Description Example

Failure | A component is not living up to | Crashed program
its specifications

Error Part of a component that can Programming bug
lead to a failure

Fault Cause of an error Sloppy programmer




Introduction

Terminology

Handling faults

Design goals

Term Description Example
Fault Prevent the occurrence | Don't hire sloppy
prevention of a fault programmers

Fault tolerance

Build a component and
make it mask the
occurrence of a fault

Build each component
by two independent
programmers

Fault removal

Reduce the presence,
number, or seriousness
of a fault

Get rid of sloppy
programmers

Fault
forecasting

Estimate current
presence, future
incidence, and
consequences of faults

Estimate how a
recruiter is doing when
it comes to hiring
sloppy programmers

Dependability
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On security

Observation
A distributed system that is not secure, is not dependable
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A distributed system that is not secure, is not dependable
What we need
® Confidentiality: information is disclosed only to authorized parties

® |ntegrity: Ensure that alterations to assets of a system can be made only
in an authorized way
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On security

Observation
A distributed system that is not secure, is not dependable
What we need
® Confidentiality: information is disclosed only to authorized parties

® |ntegrity: Ensure that alterations to assets of a system can be made only
in an authorized way

Authorization, Authentication, Trust
® Authentication: verifying the correctness of a claimed identity
e Authorization: does an identified entity has proper access rights?

® Trust: one entity can be assured that another will perform particular
actions according to a specific expectation

E—



Design goals

Security mechanisms

Keeping it simple
It's all about encrypting and decrypting data using security keys.

Notation
K(data) denotes that we use key K to encrypt/decrypt data.
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Introduction Design goals

Security mechanisms

Symmetric cryptosystem

With encryption key Ek(data) and decryption key Dy (data):
if data= Dy (Ek(data)) then Dy = Ek. Note: encryption and descryption key
are the same and should be kept secret.

Asymmetric cryptosystem
Distinguish a public key PK(data) and a private (secret) key SK(data).

Sent by Alice

—_——
* Encrypt message from Alice to Bob: data = SKpop( PKpop(data))

Action by Bob

® Sign message for Bob by Alice:
[data, data L PKaiice(SKaiice (data))] = [data, SKjice(data)]

Check by Bob Sent by Alice

E—



Design goals

Security mechanisms

Secure hashing
In practice, we use secure hash functions: H(data) returns a fixed-length

string.
° gAny change from data to data* will lead to a completely different string
H(data*).
® Given a hash value, it is computationally impossible to find a data with
h = H(data)

23/53



Design goals

Security mechanisms

Secure hashing
In practice, we use secure hash functions: H(data) returns a fixed-length

string.
° gAny change from data to data* will lead to a completely different string
H(data*).
® Given a hash value, it is computationally impossible to find a data with
h = H(data)

Practical digital signatures
Sign message for Bob by Alice:

[data, H(data) = PKajce(sgn)] = [data, H, sgn = SKajce( H(0ata))]

Check by Bob Sent by Alice




Design goals

Scale in distributed systems
Observation

Many developers of modern distributed systems easily use the adjective
“scalable” without making clear why their system actually scales.
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Introduction Design goals

Scale in distributed systems

Observation
Many developers of modern distributed systems easily use the adjective
“scalable” without making clear why their system actually scales.

At least three components
* Number of users or processes (size scalability)
* Maximum distance between nodes (geographical scalability)

® Number of administrative domains (administrative scalability)

Observation

Most systems account only, to a certain extent, for size scalability. Often a
solution: multiple powerful servers operating independently in parallel. Today,
the challenge still lies in geographical and administrative scalability.
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Size scalability

Root causes for scalability problems with centralized solutions

* The computational capacity, limited by the CPUs
® The storage capacity, including the transfer rate between CPUs and disks

* The network between the user and the centralized service



Formal analysis

A centralized service can be modeled as a simple queuing system

Requests —» Response

Queue Process

Assumptions and notations

® The queue has infinite capacity = arrival rate of requests is not
influenced by current queue length or what is being processed.

® Arrival rate requests: 4

® Processing capacity service: u requests per second

Fraction of time having k requests in the system

Design goals



Design goals

Formal analysis

Utilization U of a service is the fraction of time that it is busy

A
U= Zpk—1—po——:»pk—(1—U)Uk
k>0

Average number of requests in the system

—~ (a-uu U
N=Y k-p k-(1-U)Uk=(1-U) Y k-Ur= =—
kgo - kgo kgo (-02 1-U
Average throughput

X= Up +(1-U0)-0=2.p=2
—~ Y~ Hu

server at work server idle
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Cimtroduction LT
Formal analysis

Response time: total time take to process a request after submission

R=x=10"

with S =  being the service time.

N S R 1
S

Observations

e |f Uis small, response-to-service time is close to 1: a request is
immediately processed

e |f U goes up to 1, the system comes to a grinding halt.
Solution: decrease S.



Problems with geographical scalability

e Cannot simply go from LAN to WAN: many distributed systems assume
synchronous client-server interactions: client sends request and waits for
an answer. Latency may easily prohibit this scheme.

¢ WAN links are often inherently unreliable: simply moving streaming video
from LAN to WAN is bound to fail.

® | ack of multipoint communication, so that a simple search broadcast
cannot be deployed. Solution is to develop separate naming and directory
services (having their own scalability problems).

—



Introduction Design goals

Problems with administrative scalability

Essence
Conflicting policies concerning usage (and thus payment), management, and
security

Examples

e Computational grids: share expensive resources between different
domains.

e Shared equipment: how to control, manage, and use a shared radio
telescope constructed as large-scale shared sensor network?

Exception: several peer-to-peer networks

® File-sharing systems (based, e.g., on BitTorrent)
* Peer-to-peer telephony (early versions of Skype)

® Peer-assisted audio streaming (Spotify)
Note: end users collaborate and not administrative entities.

Scalability 30/53



Techniques for scaling

Hide communication latencies
® Make use of asynchronous communication

* Have separate handler for incoming response

* Problem: not every application fits this model
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Techniques for scaling

Facilitate solution by moving computations to client

Client Server
FIRSTNAME [MAARTEN | @> ’
LAST NAME may >
E-MAIL m > >
=
[N[=>
> 4 1y
\
Check form Process form
Client Server
FIRST NAME [MAARTEN |
LAST NAME  [VAN STEEN \hf:h?g-;EEN —»
E-MAIL [MVS@VAN-STEEN.NET MVS@VAN-STEEN.NET
A ;
\
Check form Process form



Techniques for scaling

Partition data and computations across multiple machines

* Move computations to clients (Java applets and scripts)
¢ Decentralized naming services (DNS)

¢ Decentralized information systems (WWW)



Techniques for scaling

Replication and caching: Make copies of data available at different
machines
* Replicated file servers and databases

* Mirrored Websites

Web caches (in browsers and proxies)

File caching (at server and client)
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Scaling: The problem with replication

Applying replication is easy, except for one thing
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(EEET
Scaling: The problem with replication

Applying replication is easy, except for one thing

¢ Having multiple copies (cached or replicated), leads to inconsistencies:
modifying one copy makes that copy different from the rest.

* Always keeping copies consistent and in a general way requires global
synchronization on each modification.

¢ Global synchronization precludes large-scale solutions.

Observation
If we can tolerate inconsistencies, we may reduce the need for global
synchronization, but tolerating inconsistencies is application dependent.
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A simple classification of distributed systems

Parallel computing

Observation
High-performance distributed computing started with parallel computing

Multiprocessor and multicore versus multicomputer

Shared memory Private memory
Interconnect $ g
Iil ﬁl B EI I Interconnect

Processor Memory
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Distributed shared memory systems

Observation

Multiprocessors are relatively easy to program in comparison to
multicomputers, yet have problems when increasing the number of processors
(or cores). Solution: Try to implement a shared-memory model on top of a
multicomputer.

Example through virtual-memory techniques

Map all main-memory pages (from different processors) into one single virtual
address space. If a process at processor A addresses a page P located at
processor B, the OS at A traps and fetches P from B, just as it would if P had
been located on local disk.

Problem

Performance of distributed shared memory could never compete with that of
multiprocessors, and failed to meet the expectations of programmers. It has
been widely abandoned by now.
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Cluster computing

Essentially a group of high-end systems connected through a LAN

* Homogeneous: same OS, near-identical hardware
¢ Single, or tightly coupled managing node(s)

Management
High-speed interconnect node
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High-performance
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Compute node
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Grid computing

The next step: plenty of nodes from everywhere
® Heterogeneous
® Dispersed across several organizations

¢ Can easily span a wide-area network

Note

To allow for collaborations, grids generally use virtual organizations. In
essence, this is a grouping of users (or better: their IDs) that allows for
authorization on resource allocation.
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Architecture for grid computing

The layers

® Fabric: Provides interfaces to local
resources (for querying state and
capabilities, locking, etc.)

Applications
Collective layer

Connectivity: Communication/transaction
protocols, e.g., for moving data between
resources. Also various authentication
protocols.

® Resource: Manages a single resource,
such as creating processes or reading
data.

Connectivity layer H Resource layer

Fabric layer

Collective: Handles access to multiple
resources: discovery, scheduling,
replication.

Application: Contains actual grid
applications in a single organization.




Introduction A simple classification of distributed systems

Integrating applications

Situation
Organizations confronted with many networked applications, but achieving
interoperability was painful.

Basic approach

A networked application is one that runs on a server making its services
available to remote clients. Simple integration: clients combine requests for
(different) applications; send that off; collect responses, and present a
coherent result to the user.

Next step
Allow direct application-to-application communication, leading to Enterprise
Application Integration.

Distributed information systems 41/53



Introduction A simple classification of distributed systems

Example EAI: (nested) transactions
Transaction

Primitive Description

BEGIN_TRANSACTION Mark the start of a transaction
END_TRANSACTION Terminate the transaction and try to commit
ABORT_TRANSACTION | Kill the transaction and restore the old values
READ Read data from a file, a table, or otherwise
WRITE Write data to a file, a table, or otherwise

Issue: all-or-nothing

Nested transaction Atomic: happens indivisibly (seemingly)

Consistent: does not violate system invariants
Isolated: not mutual interference
Durable: commit means changes are permanent

Subtransaction Subtransaction
| T |

=, =

Airline database\ /T—kne[ database

Two different (independent) databases
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A simple classification of distributed systems

TPM: Transaction Processing Monitor

Server
Reply
Transaction Request
Requests
R RequesL
Client ( ) | TP monitor 7| Server i
application | <
N\ % Reply
Reply
Request
Reply Server i
Observation

Often, the data involved in a transaction is distributed across several servers. A
TP Monitor is responsible for coordinating the execution of a transaction.
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Middleware and EAI

Client Client
application application

I [

| Communication middleware |

[ [ I

Server-side Server-side Server-side
application application application

= = =

Middleware offers communication facilities for integration

Remote Procedure Call (RPC): Requests are sent through local procedure
call, packaged as message, processed, responded through message, and
result returned as return from call.

Message Oriented Middleware (MOM): Messages are sent to logical contact
point (published), and forwarded to subscribed applications.
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How to integrate applications

File transfer: Technically simple, but not flexible:
* Figure out file format and layout
® Figure out file management
¢ Update propagation, and update notifications.

Shared database: Much more flexible, but still requires common data scheme
next to risk of bottleneck.

Remote procedure call: Effective when execution of a series of actions is
needed.

Messaging: RPCs require caller and callee to be up and running at the same
time. Messaging allows decoupling in time and space.

Distributed information systems 45/53



A simple classification of distributed systems

Distributed pervasive systems

Observation

Emerging next-generation of distributed systems in which nodes are small,
mobile, and often embedded in a larger system, characterized by the fact that
the system naturally blends into the user’s environment.

Three (overlapping) subtypes
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Introduction A simple classification of distributed systems

Distributed pervasive systems

Observation

Emerging next-generation of distributed systems in which nodes are small,
mobile, and often embedded in a larger system, characterized by the fact that
the system naturally blends into the user’s environment.

Three (overlapping) subtypes

¢ Ubiquitous computing systems: pervasive and continuously present, i.e.,
there is a continuous interaction between system and user.

* Mobile computing systems: pervasive, but emphasis is on the fact that
devices are inherently mobile.

® Sensor (and actuator) networks: pervasive, with emphasis on the actual
(collaborative) sensing and actuation of the environment.
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Ubiquitous systems

Core elements

1. (Distribution) Devices are networked, distributed, and accessible
transparently

2. (Interaction) Interaction between users and devices is highly unobtrusive

3. (Context awareness) The system is aware of a user’s context to optimize
interaction

4. (Autonomy) Devices operate autonomously without human intervention,
and are thus highly self-managed

5. (Intelligence) The system as a whole can handle a wide range of dynamic
actions and interactions
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Mobile computing

Distinctive features

* A myriad of different mobile devices (smartphones, tablets, GPS devices,
remote controls, active badges).

* Mobile implies that a device’s location is expected to change over time =
change of local services, reachability, etc. Keyword: discovery.

® Maintaining stable communication can introduce serious problems.

® For a long time, research has focused on directly sharing resources
between mobile devices. It never became popular and is by now
considered to be a fruitless path for research.
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Mobile computing

Distinctive features
* A myriad of different mobile devices (smartphones, tablets, GPS devices,
remote controls, active badges).
* Mobile implies that a device’s location is expected to change over time =
change of local services, reachability, etc. Keyword: discovery.
® Maintaining stable communication can introduce serious problems.

® For a long time, research has focused on directly sharing resources
between mobile devices. It never became popular and is by now
considered to be a fruitless path for research.

Bottomline
Mobile devices set up connections to stationary servers, essentially bringing
mobile computing in the position of clients of cloud-based services.
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Mobile computing

Mobile devices

Cloud of servers

Mobile cloud computing

Mobile devices

D//N’Lby”/dg
data center

Cloud of servers

Mobile edge computing
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A simple classification of distributed systems

Sensor networks

Characteristics
The nodes to which sensors are attached are:

e Many (10s-1000s)
¢ Simple (small memory/compute/communication capacity)

¢ Often battery-powered (or even battery-less)
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A simple classification of distributed systems

Sensor networks as distributed databases

Two extremes

Sensor network

Operator's site

i Sensor data

is sent directly
to operator

Each sensor
can process and Sensor network

store data

Operator's site

Query

e
Sensors E

send only
answers
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The cloud-edge continuum

More Less
A Cloud computing

Location awareness
Mobility support
Geographical distribution

Reliable connectivity
Computing power
Data longevity

Data storage Edge computing Responsiveness
Reliability Interactiveness
Latency Context awareness
Devices
Internet-of-Things v
Less More
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Pitfalls

Developing distributed systems: Pitfalls
Observation

Many distributed systems are needlessly complex, caused by mistakes that
required patching later on. Many false assumptions are often made.
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Developing distributed systems: Pitfalls

Observation
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Observation
Many distributed systems are needlessly complex, caused by mistakes that
required patching later on. Many false assumptions are often made.

False (and often hidden) assumptions
® The network is reliable
® The network is secure
® The network is homogeneous
® The topology does not change
® |atency is zero
® Bandwidth is infinite
® Transport cost is zero

® There is one administrator
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