Distributed Systems

(4th edition, version 01)

Chapter 09: Security

Dependability

Basics
A dependable system provides availability, reliability, safety, maintainability,
confidentiality, and integrity.

* Confidentiality: refers to the property that information is disclosed only to
authorized parties.

* Integrity: alterations to a system’s assets can be made only in an
authorized way, ensuring accuracy and completeness.

Alternative
We attempt to protect against security threats:

1. Unauthorized information disclosure (confidentiality)

2. Unauthorized information modification (integrity)

3. Unauthorized denial of use (availability)

2/49 2/49

Introduction to security Introduction to security

Security mechanisms

® Encryption: transform data to something an attacker cannot understand,
or that can be checked for modificatons.

® Authentication: verify a claimed identity.

® Authorization: check an authenticated entity whether it has the proper
rights to access resources.

* Monitoring and auditing: (continuously) trace access to resources

3/49 3/49

Introduction to security Introduction to security

Security principles

® Fail-safe defaults: defaults should already provide good protection.
Infamous example: the default “admin,admin” for edge devices.

* Open design: do not apply security by obscurity: every aspect of a
distributed system is open for review.

Separation of privilege: ensure that critical aspects of a system can never
be fully controlled by just a single entity.

Least privilege: a process should operate with the fewest possible
privileges.

Least common mechanism: if multiple components require the same
mechanism, then they should all be offered the same implementation of
that mechanism.

4149 4749

Introduction to security Introduction to security’

Where to implement security mechanisms?

Application Application
Middleware High-level protocols Middleware
OS Services OS Services
Transport Transport
OS kernel OS kernel
Network Low-level p Network
Datalink Datalink
Hardware Physical Physical Hardware
I Network
Observation

We are increasingly seeing end-to-end security, meaning that mechanisms are
implemented at the level of applications.

Issue: which layer do we trust?
Trusted Computing Base: The set of all security mechanisms in a (distributed)
computer system that are necessary and sufficient to enforce a security policy.

5/49 5/49

Introduction to security Introduction to security’

On privacy

Observation

Privacy and confidentiality are closely related, yet are different. Privacy can be
invaded, whereas confidentiality can be breached = ensuring confidentiality is
not enough to guarantee privacy.

Right to privacy

The right to privacy is about “a right to appropriate flow of personal information.
Control who gets to see what, when, and how = a person should be able to
stop and revoke a flow of personal information.

General Data Protection Regulation (GDPR)
The GDPR is a comprehensive set of regulations aiming to protect personal
data.

6/49 6/49

Security

Introduction to security = =11(1)

GDPR: Database perspective

Introduction to security’

associated with their data

Origin, Sharing

GDPR regulation K on ¢ y
Attributes Actions
Collect data for explicit purposes Purpose Metadata indexing
Do not store data indefinitely TTL Timely deletion
Inform customers about GDPR metadata Purpose, TTL, Metadata indexing

Allow customers to access their data Person id Metadata indexing
Allow customers to erase their data TTL Timely deletion
Do not use data for objected reasons Objections Metadata indexing

Allow customers to withdraw from Automated Metadata indexing
algorithmic decision-making decisions

Safeguard and restrict access to data Access control

Do not grant unlimited access to data Access control
Audit operations on personal data Audit trail Monitor and log
Implement appropriate data security Encryption

Share audit trails from affected systems Audit trail Monitor and log

Design s esig s
Security
Cryptography

Passive intruder Active intruder Active intruder

only listens to C can alter messages can insert messages

.

4

Cryptography

Encryption

Sender key, Ex

Basic concepts

Decryption
key, D

. Encryption Ciphertext Decryption .
Plaintext, P —P{ method }»—{ C= ExP) method Plaintext

Receiver

® Plaintext: the original message or data (P)

* Ciphertext: the encrypted version of the the plaintext (C)

e Encryption key: input Ex to a function for encryption: C = Ex(P)

e Decryption key: input Dk to a function for decryption: P = Dx(C)

Security

Cryptosystems

8/49 Basics

Cryplography L TI0)

Symmetric : if P = Dx(Ek(P)) then Dy = Ek.

Asymmetric : if P = Dk (Ex(P)) then Dx # Ek.
Also called public-key systems with a publicly known key PK and

secret key SK

Examples

Let PKx denote public key of X and SKx the associated secret key.

Confidential message : if mis to be kept private: C = PKrecejver(M).

Authenticated message : if m is to be authenticated: C = SKsenger(m).

Homomorphic encryption

Mathematical operations on plaintext can be performed on the corresponding
ciphertext: if x and y are two numbers, then

Ex(x)*Ex(y) = Ex(x*y)

Symmetric and asymmetric cryptosystems

“I/51 symmetric and asymmetric cryptosystems

7149

Cryptography

8/49

Cryptography

9/49

Hash functions

Description
A hash function H takes a message m of arbitrary length as input and
produces a bit string h having a fixed length as output:

h = H(m) with length of h fixed.

Example: digital signature

Alice computes a digest from m; encrypts the digest with her private key;
encrypted digest is sent along with m to Bob:

Alice: send [m, sig] with sig = SKa(H(m)).

Bob decrypts digest with Alice’s public key; separately calculates the message
digest. If both match, Bob knows the message has been signed by Alice:

Bob: receive [m, sig], compute h' = H(m) and verify ' = PKy(sig).

10/49 10/49

Cryptography Cryptography

Key management

Essence
How do Alice and Bob get the correct (often shared) keys so that they can set
up secure channels?

Diffie-Hellman key exchange
Assume two large, nonsecret numbers p and g (with specific mathematical
properties):

Alice Bob
picks x picks y

Bob computes
1 (g* mod p)Y
P. g, g¥mod p
:

=g¥ mod p

Alice
Bob

Alice computes

(g¥ mod p)*
=g~ mod p

11/49 11/49

Cryptography Cryptography

DH key exchange: example

Multiparty computation

Can we protect private data while computing statistics? Who has the highest
salary without revealing salaries? Can we compute the number of votes cast
for a specific candidate without revealing who voted for whom?

Oblivious transfer

Alice has n secret messages my,...,mp. Bob is interested (and allowed) to
know only message m;. Which message he wants to know should be kept
secret to Alice; all messages m; # m; should be kept secret to Bob.

Solution

Bob generates a number Q that Alice, in turn, uses to generate n different
encryption keys PKy,..., PKp: mf = PKi(my)

Bob uses Q to generate a decryption key SK; that matches only PK;. When
Bob receives my,..., m;, he can decrypt only m;. SK,-(m/f) (with i # j) will fail.

12/49 12/49

Cryptography Cryptography

1-out-of-2 oblivious transfer

Alice Bob
picks x picks y, and c € {0,1}
Ifc=0:Q<gY
1 Ifc=1:Q« gxg¥
3 2
L o
< 2—a 1 @
AK; — QX L Q | BK — g
AK, — (QigH)*
AK1(m+), AK;(my) dy = BK(mp
my mj dp = BK(m3)

Analysis

e c=0= Q=g’ AK; = BK = g%, AK, = g¥—°.
o c=1=Q=g"" AK; = g* Y AK, = BK = g¥.

Example, continued

Preliminaries

® P;and P, need to compute F(a,b).

13/49

Cryptography

* Parameter ais secret and known only to P¢; secret b known only to Ps.

® geXandbeY; Xand are finite.

® Construct a |X| x |Y| matrix F.

® F[i,j] = F(x;,y;) for each pair (x;,y;) € Xx Y.

Solution

¢ Py generates |X|-|Y| unique key pairs (Kj, Kj)
e Construct F*[i, /] = Ki(K;(F(x;,x;)))- Assume a= x;).
® P;permutes F* and sends it along with K to P>
® P;sends Q using a 1-out-of-|Y| oblivious transfer.

® Assume b= y;. Using Q, P> can construct Kj, and only K;

® P, decrypts F*[i.j], corresponding to F(a,b).

13/49

Cryptography

14/ 49

14/49

Cryptography

Cryptography

What is needed to distribute keys

Symmetric-key distribution

Plaintext, P

Encryption Decryption .
method method Plaintext

A
Encryption Ciphertext

key, K

Observation

A
Decryption
key, K

ic-k
| Y

Communication channels with

confidentiality and authentication

In general, we will need a secure channel to distribute the secret key to the
communicating parties.

15/49

15/49

Cryptography Cryptography

What is needed to distribute keys

Public-key distribution

. Encryption Decryption .
Plaintext, P method method Plaintext
A A
Ciphertext
Public Private
key, PK key, SK
A ok
Y
generator
Communication channel with Communication channel with
authentication only authentication and confidentiality
Observation

No need for a scure channel in the case of the public key, but you do need to
know that the key is authentic = have the public key be signed by a
certification authority. Note, we do need to trust that authority, or otherwise
make sure that its signature can be verified as well.

16/49 16/49

Authentication
Essence
Verifying the claimed identity of a person, a software component, a device, and
so on.

Means of authentication

1. Based on what a client knows, such as a password or a personal
identification number.

2. Based on what a client has, such as an ID card, cell phone, or software
token.

3. Based on what a client is, i.e., static biometrics such as a fingerprint or
facial characteristics.

4. Based on what a client does, i.e., dynamic biometrics such as voice
patterns or typing patterns.

17/49 7/49

Authentication Authentication

Authentication versus message integrity

Observation
Authentication without integrity (and vice versa) is meaningles:

* Consider a system that supports authentication but no mechanisms to
ensure message integrity. Bob may know for sure that Alice sent m, but
how useful is that if he doesn’t know that m may have been modified?

* Consider a system that guarantees message integrity, but does not
provide authentication. Can Bob be happy with a guaranteed unmodified
message that states he just won $1,000,000?

18/49 18/49

Authentication Authentication

Using a shared secret key

%’[ﬂ

4

Alice
Bob

#]

Steps
1. Alice announces she wants to talk to Bob.

2. Bob returns a nonce.
3. Alice encrypts the nonce with the shared key Ky g, thus proving that she
owns Kz g = Bob knows he’s talking to Alice.

4. Alice sends a nonce to Bob.
5. Bob returns proof that he owns the shared secret key as well = Alice

knows she’s talking to Bob.
19/49 19/49

Authentication Authentication

About optimizations

Let’s reduce the num- AR
ber of messages e

s

Y

Alice
Bob

. AR >
A Ro } First session

We just broke the pro- e
tocol «—1{Ra KasRo) |———

STAR >

Chuck
E

} Second session

Bob

4
Rg2, Kas(Re)

L] : Ka,5(Rs) _} First session

20/49 20/49

Authentication Authentication

Using a Key Distribution Center

KB,KDC(KA.B)

2
KA,KDC(KA‘B)

KDC, generates K AB

Basics
Every client has a secret key shared with the KDC.

1. Alice tells the KDC that she wants to talk to Bob
2. The KDC sends a fresh secret key, shared by Alice and Bob

21/49 21/49

Authentication Authentication

Using a Key Distribution Center

Alice

Basics
Using a ticket is practically better:

1. Alice tells the KDC that she wants to talk to Bob
2. The KDC sends a fresh secret key, shared by Alice and Bob
3. Alice tells Bob that she wants to talk, along with the key to be used.

22/49 22/49

Authentication Authentication

The Needham-Schroeder protocol

e—2{KaxocRar, B Kng, KexocAKag))
K\ 5(Ra2). Koo Kng) _——>
‘

{Kas(Re - 1) >

Bob

Alice

Important observation
In the case of request-response messages, you want to make sure that the
received response, is associated with the sent request. Mitigates replay

attacks.

General principle
Use nonces to relate any combination of request-response messages.

23/49 23/49

Authentication Authentication

Mitigate against reuse of keys

] iyl
LA] >

2
< Ks,koc(Re1)
4
<_|KA,KDC(RA|- B, Kag Kg.kpc(AKasRs1))

5
———————1{Ka.5(Raz). Kg.kocA, Kag: Ren)|F—————>
6
<+KA,B(RA2 -1, Rap)

KasRaz -1 >
1Kap(Rez - 1)f > |

Bob

Alice

Some observations
* Note how BT ties message #2 to #5
* Note that by returning Ry — 1 in #6, Bob proves he knows Ky g
* And, likewise, in the case of Alice in #6 (by modifying Rgp).

24/49 24/49

Using public keys

Alice
Bob

Steps

1. Alice tells Bob she wants to talk, sending a nonce R4, and encrypting the
message with Bob’s public key.

2. Bob generates a shared secret session key Ky g, proves he is the owner
of PKp by decrypting Ry, and challenges Alice to prove she owns PKj4.

3. Alice decrypts the response, and proves to Bob that she is Alice by then
sending Bob’s nonce back encrypted with the generated session key

KA.B'

25/49 25/49

Authentication Authentication

Practical example: Kerberos

2] >
LA

3
<_| Ka,as(Katas: Kas,tas(A Katas)) '—

6

—| Kas res(A Kates) B, Ka 1as(t) '—>
7

[—— Ka76s(B.Kag). K, 765(B.Kag) —

Alice's workstation

TGS

Essence

1,2 Alice types in her login name.

3 The Authentication Service returns a ticket Kys 7gs(A, Ka 1gs) that she
can use with the Ticket Granting Service.

4,5 To be able to decrypt the message, Alice must type in her password. She
is then logged in. Using the AS in this way, we have a single sign-on
system.

6,7 Alice wants to talk to Bob, and requests the TGS for a session key.
26/49 26/49

Transport Layer Security

Client Server

picks x picks y
oH] [] PKs: public key
PKg™= g*mod p certified by CA

|

m_PK2'Rc, G

PKR"= gy mod p

5 DH 2| sk = g mod p
o1 I 5
SKg'§=g¥modp | O 2
Compute SKg g Compute 5.
SK¢,s(l PKs sigeal) Compute SK&'s

Compute SKE's

i

SK¢ s(data)

SKE 5 = fiH(myImy), SKEE)
SKE's = f{H(m4ImaIm3), SKE')

* Gdenotes a specific set of parameter settings, called a group (e.g.,
values for p and g).

27/49 27/49

Authentication Authentication

Transport Layer Security

Client Server
picks x picks y
] [] PKs: public key
PK2"= g<mod p certified by CA

Server

mq
SK2Y = g mod p
—m |_PKBFRs |——

Re. G
mg Compute SKg g

Client

SKEIHS =g¥mod p
Compute SKg g

PKRH= g¥mod p

— .
SKE o[PKs Sigca)) Compute SKGs
SK¢ s(data)

SKE 5 = fiH(myImy), SKEE)
SKE's = f{H(m4Im;Im3), SKE'S)

Compute SK&'s

® The client uses a nonce Rg; the server uses Rg

® H(my|my) denotes the hash over the concatenation of m; and my

28/49 28/49

Trust in distributed systems Trust in distributed systems

On trust

Definition
Trust is the assurance that one entity holds that another will perform
particular actions according to a specific expectation.

Important observation

* Expectations have been made explicit = no need to talk about trust?
e Example: Consider a Byzantine fault-tolerant process group of size n

* Specificiation: the group can tolerate that at most k < (n—1)/3
processes go rogue.
* Realisation: for example PBFT.
* Consequence: if more than k processes fail, all bets are simply off.
* Consequence: it’s not about trust, it’s all about meeting
specifications.
* Observation: if a process group often does not meet its specifications,
one may start to doubt its reliability, but this is something else than
(dis)trusting the system.

29/49 29/49

Trust in distributed systems Trust in distributed systems

Sybil attack

Essence: Just create multiple identities, but owned by one entity

® In the case of a peer-to-peer network:

1 H = set of honest nodes

2 S = set of Sybil nodes

3 A = Attacker node

4 d =minimal fraction of Sybil nodes needed for an attack

5

6 while True:

7 s = A.createNode() # create a Sybil node

8 S.add(s) # add it to the set S

9

10 h = random.choice (H) # pick an arbitrary honets node
11 s.connectTo (h) # connect the new sybil node to h
12

13 if len(S) / len(H) > d: # enough sybil nodes for. ..

14 A.attack() # ...an attack

® In the case of a Web-of-trust:
* Endorse a public key without an out-of-band check.
® Bob checks with k > 1 others that they have endorsed Alice’s key.
® Alice creates k > 1 identities each stating her key is valid.

30/49 30/49

Trust in distributed systems Trust in distributed systems

Eclipse attack

Essence: Try to isolate a node from the network

Example: a hub attack in the case of a gossip-based service. In this case,
when exchanging links to other peers, a colluding node returns links only to
other colluders.

100000 -

75000 -

50000 -

25000 -

Number of affected nodes

04

T T T
0 50 100 150 200 250
Number of rounds

Affected node: has links only to colluders.

General solution
Use a centralized certification authority.

31/49 31/49

Trust in distributed systems Trust in distributed systems

Preventing Sybil attacks: Blockchain solutions

Essence: creating an identity comes at a cost
In the case of permissionless blockchains:

* Proof-of-Work: Let validators run a computational race. This approach
requires considerable computational resources

* Proof-of-Stake: Pick a validator as a function of the number of tokens it
owns. This approach requires risking loss of tokens.

32/49 32/49

Trust in distributed systems Trust in distributed systems

Preventing Sybil attacks: Decentralized accounting

A simple example

® Each node P maintains a list of nodes interested in doing work for P: the
choice set of P (choice(P)).

® Selecting Q € choice(P) depends on Q's work for others (i.e., its
reputation).

® P maintains a (subjective) view on reputations. Of course, P knows
precisely what it has done for others, and what others have done for P.

® P can compute a capacity (cap(Q):

cap(Q) = max{MF(Q, P) - MF(P,Q),0}

with MF(P, Q) the amount of work that P has, or could have contributed
to work done for Q, including the work done by others.

33/49 33/49

Trust in distributed systems Trust in distributed systems

Preventing Sybil attacks: Decentralized accounting

Essence: Keep track of work that nodes do for each other

* Assume R directly contributed 3 units of work for Q, and R had processed
7 units for P = P may have contributed 3 units of work for Q, through R.

* Reasoning: R may never have been able to work for Q, if it had not
worked for P.

34/49 34/49

Trust in distributed systems Trust in distributed systems

Preventing Sybil attacks: Decentralized accounting

How Sybil attacks are prevented

® Let Q € choice(P) create n Sybil nodes Qj,...,Qy; Q= Q)
® For work by Q7 for Q}‘ to increase cap(Q;):
1. Q! needs to have worked for some node R
2. Rneeds to have worked for P
In other words: Q can successfully attack only if it had worked for honest
nodes. Also, honest nodes have to work for Q: the total capacity Tcap(Q)
of the Sybils must grow, with

Teap(Q) = Zn" cap(Qy)
k=0

¢ Assume that P works 1 unit for Q; = MF(P, Q}) increases by 1 unit =
cap(Qy) drops by 1 unit, and so does Tcap(Q).

® As soon as Tcap(Q) drops to 0, P will look at other nodes.

35/49 35/49

Trust in distributed systems

Trust in distributed systems

Trusting a system: Blockchains

Essence
One needs to know for sure that the information in a blockchain has not been

tampered with: data integrity assurance. Solution: make sure that no change
can go unnoticed (recall: a blockchain is an append-only data structure).

Block number Block number Block number Block number
Ti Ti Ti Timestamp
0x00000000 Hash pred Hash p Hash predecessor|
T, X, X, X,
X Xy X, X,
Hash Hash Hash Hash
Observation

Any change of block By, will affect its hash value, and thus that of By, 1, which
would then also need to be changed, in turn affecting the hash value of By »,
and so on.

36/49 36/49

Authorization Authorization

Access control: General model

Authorization
Making sure that authenticated entities have only access to specific resources.

’ Subject }_’_.{Relergnce}_‘_.{ Object ‘
monitor

Request for Authorized
operation request

Observation
The reference monitor needs to be tamperproof: it is generally implemented
under full control of the operating system, or a secure server.

37/49 37/49
Authorization Authorization
Protection
Data is protected against Data is protected against
wrong or invalid operations unauthorized operations
i i Data i %
i Object i
Call Operation
...against invalid operations ...against unauthorized access
Data is protected by
checking the caller
...against unauthorized invokers
38/49 38/49
Authorization Authorization

Access control policies

1. Mandatory access control: A central administration defines who gets
access to what.

2. Discretionary access control: The owner of an object can change access
rights, but also who may have access to that object.

3. Role-based access control: Users are not authorized based on their
identity, but based on the role they have within an organization.

4. Attribute-based access control: Attributes of users and of objects they
want to access are considered for deciding on a specific access rule.

39/49 39/49

Security

Access control matrix

Theory

Authorization

Construct a matrix in which M[s, o] describes the access rights subject s has
with respect to object o. Impractical, so use access control lists or capabilities.

Client Server

(s.r)

Create access request r AcL Object
as subject s

if (s appears in ACL) and
(r appears in ACL[s])
grant access

Access control list
Client Server

Create access request r Object
for object o. Pass

capability C (1)

» if (client owns C) and
(rappears in C)
grant access

General issues in access control

Security

Capabilities

40/ 49

Security.

Authorization

General issues in access control

secury
Special case: Attribute-based Access Control

Distinguish different classes of attributes:

User attributes: name, data of birth, current roles, home address,

department, qualifiers obtained, contract status, etc. May also depend on
role (e.g., teacher or student).

file type, file size, but also information related to its content.

Object attributes: anything — creator, last-modified time, version number,

Environmental attributes: describe the current state of the system, e.g.,

date and time, current workload, maintenance status, storage properties,
available services, etc.

type and strength of security used.

Attribute-based access control

Security

Administrative attributes: reflect global policies, e.g., minimal security
settings, general access regulations, and maximum session durations.

Connection attributes provide information on the current session, e.g., IP
address, session duration, available bandwidth and latency estimates,

40/49

Authorization

it e s oo

Authorization L)

Example: the Policy Machine

Essence

A server maintains sets of (atrribute,value) pairs, distinguishing users,

applications, operations, and objects. At the core, we formulate access control

rules.

Access control rules

* Assignment: A user u can be assigned to an attribute uva: u — ua. An
object to an attribute: 0 — oa; an attribute to an attribute: va; — vas

(meaning that if u — uay, then u — uap. Leads to rules like

allowed(ua, ops, 0a): users assigned to ua are allowed to execute

operations in ops on objects assigned to oa.

* Prohibition: explicitly state what is not allowed, such as

denied(u, ops, 0s). Also: denied(u, ops,—0s), meaning denial when u

wants to perform o assigned to ops on an object not in os.

* Obligation: automated action upon an event, such as denying copying of
information:

Attribute-based access control

when u reads f € fs then denied(u, {write}, - fs).

42/ 49

41/49

Authorization

Atiribute-based access control

42/49

Authorization Authorization

Delegation

What'’s the issue?

Alice makes use of an e-mail service provider who stores her mailbox. She is
required to log in to the provider to access her mail. Alice wants to use her own
local mail client. How to allow that mail client to act on behalf of Alice? How to
delegate Alice’s access rights to her mail client?

Observation
It is not a good idea to hand over all user credentials to an application: why
would the application or the machine be trusted? = use a security proxy.

43749 43149

Authorization Authorization

Security proxy

Certificate

[RT Plooy [59ARPKoool| [Kooy |

T~ T~ N
access rights public part of secret signature private part of secret

[R, PKoroxyla: Ka,6(SKproxy)

How it works

1. Alice passes some rights R to Bob, together with a secret key SKproxy
2. When Bob wants to exercise his rights, he passes the certificate

3. The server wants Bob to prove he knows the secret key

4. Bob proves he does, and thus that Alice had delegated R.

4449 44/49

Authorization Authorization

Example: Open Authorization (OAuth)

Four different roles

* Resource owner: typically an end user.

e Client: an application that one would like to act on behalf of the resource
owner,

Resource server: An interface through which a person would normally
access the resource.

Authorization server: an entity handing out certificates to a client on
behalf of a resource owner.

Initial steps

1. The client application registers itself at the authorization server and
receives its own identifier, cid.

2. Alice wants to delegate a list R of rights =

Client: send [cid, R,H(S)]

with a hash of a temiorar‘ secret S
45/ 49 45/49

Security IR Security

Completing the process

Final steps
3. Alice is required to log in and confirm delegation R to the client.
4. Server sends a temporary authorization code AC to client.
5. Client requests a final access token:

Client: sends [cid,AC, S].
Sending S to the authorization server allows the latter to verify the identity
of the client (by computing H(S).

The authorization server has now (1) verified that Alice wants to delegate
access rights to the client, and (2) has verified the identity of the client = it
returns an access token to the client.

osgaon osgeon
seaurty ey

Example: decentralized authorization

WAVE (and keeping it very simple)
Essence: Alice delegates rights to Bob, Bob delegates some of those rights to
Chuck.

* When Check wants to exercise his rights, there should be no need for
Alice or Bob to be online.

* No one but Alice, Bob, and Chuck need to be aware of the delegation.

Essentials
Alice delegates rights R to Bob, for which he creates a keypair (PK§,SKE):

Asends: PKE([R|SKS]))
m
1

Bob delegates parts of those rights R’ to Chuck, assuming he is allowed to do

SO:
Bsends: PKE ([R|my|SKE])
————
mz
Decentralized authorization: an example Decentralized authorization: an example
sacny R~
Firewalls
Essence

Simply prevent anything nasty coming in, but also preventing unwanted

outbound traffic.
Packet Application Packet
filtering gateway filtering

router router
| |
Connections \ / Connections
tointernal] " tooutside
networks | I\ networks

Inside LAN Outside LAN

Firewall

Different types of firewalls
* Packet-filtering gateway: operates as a router and makes filters packets
based on source and destination address.
* Application-level gateway: inspects the content of an incoming or
outgoing message (e.g., gateways filtering spam e-mail).
* Proxy gateway: works as a front end to an application, filtering like an

annlication-level aatewav (e a_ Weh oroxie
Firewalls 48/49 Firewalls

Authorization

Authorization

48/49

Intrusion detection systems

Two flavors

* Signature-based: matches against patterns of known network-level
intrusions. Problematic when series of packets need to be matched, or
when new attacks take place.

* Anomaly-based: assumes that we can model or extract typical behavior
to subsequently detect nontypical, or anomalous behavior. Relies heavily
on modern artificial-intelligence technologies.

Using sensors

Key idea is to manage false and true positives (FP/TP) as well as false and
true negatives (FN/TN). Maximize accuracy and precision:

Accuracy: 7TP+ N

couracy: TP+ TN+ FP+ FN
Precision: L
’ TP+ FP

49/49 49/ 49

