Distributed Systems

(4th edition, version 01)

Chapter 04: Communication
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Drawbacks

® Focus on message-passing only
¢ Often unneeded or unwanted functionality
® Violates access transparency



Low-level layers

Recap

® Physical layer: contains the specification and implementation of bits, and
their transmission between sender and receiver

e Data link layer: prescribes the transmission of a series of bits into a frame
to allow for error and flow control

* Network layer: describes how packets in a network of computers are to
be routed.

Observation

For many distributed systems, the lowest-level interface is that of the network
layer.
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Transport Layer

Important
The transport layer provides the actual communication facilities for most
distributed systems.

Standard Internet protocols

e TCP: connection-oriented, reliable, stream-oriented communication
e UDP: unreliable (best-effort) datagram communication
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Middleware layer

Observation
Middleware is invented to provide common services and protocols that can be
used by many different applications

® A rich set of communication protocols

® (Un)marshaling of data, necessary for integrated systems
¢ Naming protocols, to allow easy sharing of resources
Security protocols for secure communication

Scaling mechanisms, such as for replication and caching

Note
What remains are truly application-specific protocols... such as?
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Foundations

An adapted layering scheme

Application protocol
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Foundations

Types of communication

Distinguish...

Synchronize at Synchronize at Synchronize after
request submission request delivery processing by server

Client I/ I/

Request
Transmission
interrupt
Storage
facility
Reply

Server Time —>

\

® Transient versus persistent communication
® Asynchronous versus synchronous communication
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Foundations

Types of communication

Transient versus persistent

Synchronize at Synchronize at Synchronize after
request submission request delivery processing by server
Client I/ I/
Request

Transmission
interrupt

Storage
facility

Server Time —>

® Transient communication: Comm. server discards message when it
cannot be delivered at the next server, or at the receiver.

® Persistent communication: A message is stored at a communication
server as long as it takes to deliver it.
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Foundations

Types of communication

Places for synchronization

Synchronize at Synchronize at Synchronize after
request submission request delivery processing by server

Client I/ I/

Request

Transmission
interrupt

Storage
facility

Server Time —>

® At request submission
® At request delivery
® After request processing
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Client/Server

Some observations
Client/Server computing is generally based on a model of transient
synchronous communication:

¢ Client and server have to be active at the time of communication

¢ Client issues request and blocks until it receives reply

® Server essentially waits only for incoming requests, and subsequently
processes them
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Client/Server

Some observations
Client/Server computing is generally based on a model of transient
synchronous communication:

¢ Client and server have to be active at the time of communication

¢ Client issues request and blocks until it receives reply

® Server essentially waits only for incoming requests, and subsequently
processes them

Drawbacks synchronous communication

¢ Client cannot do any other work while waiting for reply
® Failures have to be handled immediately: the client is waiting
® The model may simply not be appropriate (mail, news)

Types of Communication 10/45



Messaging

Message-oriented middleware
Aims at high-level persistent asynchronous communication:

® Processes send each other messages, which are queued
¢ Sender need not wait for immediate reply, but can do other things
* Middleware often ensures fault tolerance
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Basic RPC operation

Observations

® Application developers are familiar with simple procedure model
* Well-engineered procedures operate in isolation (black box)
® There is no fundamental reason not to execute procedures on separate

machine
operation ) response
C - - - waitforreply - - - - -
Conclusion
Communication between caller &
callee can be hidden by using s

procedure-call mechanism.  ~ koeo-oooo-o-- !

and return results
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Communication

Basic RPC operation

Client machine

Server machine

Client process . Server process
1. Client call to .
procedure Implementation
of doit
Server stub
7= doil(a,b) 4
.t Client stub I~
proc: “doit” proc: “doit”
type1: val(a) 2. Stub builds type1: val(a)
type2: val(b) message type2: val(b)
A
proc: “doit”
Client OS type1: val(a) Server OS
g type2: val(b) )

Remote procedure call

6. Stub makes
local call to “doit”

5. Stub unpacks
message

4. Server OS
hands message
to server stub

3. Message is sent
across the network

Client procedure calls client stub. 6.
Stub builds message; calls local OS. 7.
OS sends message to remote OS. 8.
Remote OS gives message to stub. 9.
Stub unpacks parameters; calls server. 10.

ahN

Basic RPC operation

Server does local call; returns result to stub.
Stub builds message; calls OS.

OS sends message to client’s OS.

Client’s OS gives message to stub.

Client stub unpacks result; returns to client.
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RPC: Parameter passing

There’s more than just wrapping parameters into a message

¢ Client and server machines may have different data representations (think
of byte ordering)

* Wrapping a parameter means transforming a value into a sequence of

bytes

Client and server have to agree on the same encoding:

® How are basic data values represented (integers, floats, characters)
* How are complex data values represented (arrays, unions)

Conclusion

Client and server need to properly interpret messages, transforming them into
machine-dependent representations.
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RPC: Parameter passing

Some assumptions

® Copy in/copy out semantics: while procedure is executed, nothing can be
assumed about parameter values.

¢ All data that is to be operated on is passed by parameters. Excludes
passing references to (global) data.
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RPC: Parameter passing

Some assumptions

® Copy in/copy out semantics: while procedure is executed, nothing can be
assumed about parameter values.

¢ All data that is to be operated on is passed by parameters. Excludes
passing references to (global) data.

Conclusion
Full access transparency cannot be realized.

A remote reference mechanism enhances access transparency

* Remote reference offers unified access to remote data
* Remote references can be passed as parameter in RPCs
* Note: stubs can sometimes be used as such references

Parameter passing 15/45



Asynchronous RPCs

Essence
Try to get rid of the strict request-reply behavior, but let the client continue
without waiting for an answer from the server.

call RPC return results

callback

and return results
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Sending out multiple RPCs

Essence
Sending an RPC request to a group of servers.

call local procedure

callback
C —calRPC ----- wait for results - - - N

callback

S2
call local procedure

Remote procedure call
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Transient messaging: sockets

Berkeley socket interface

Operation Description
socket Create a new communication end point
bind Attach a local address to a socket
listen Tell operating system what the maximum number of pending
connection requests should be

accept Block caller until a connection request arrives
connect | Actively attempt to establish a connection
send Send some data over the connection
receive | Receive some data over the connection
close Release the connection

Server

socket listen

b
i

Synchronization point —— i Commumcatlon \
|

A 4
socket »{connect}»] send I—Hrecelvebﬂ close |
Client

Simple transient messaging with sockets 18/45




Message-oriented communication

Sockets: Python code
Server

1 from socket import *

2

3 class Server:

4 def run(self) :

5 s = socket (AF_INET, SOCK_STREAM)

6 s.bind( (HOST, PORT))

7 s.listen(l)

8 (conn, addr) = s.accept() # returns new socket and addr. client
9 while True: # forever

10 data = conn.recv(1024) # receive data from client

11 if not data: break # stop if client stopped

12 conn.send (datatb"+") # return sent data plus an "#"
13 conn.close() # close the connection

Client

1 class Client:

2 def run(self):

3 s = socket (AF_INET, SOCK_STREAM)

4 s.connect ( (HOST, PORT)) # connect to server (block until accepted)
5 s.send(b"Hello, world") # send same data

6 data = s.recv(1024) # receive the response

7 print (data) # print what you received

8 s.send("") # tell the server to close

9 s.close() # close the connection
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Making sockets easier to work with

Observation

Sockets are rather low level and programming mistakes are easily made.
However, the way that they are used is often the same (such as in a
client-server setting).

Alternative: ZeroMQ

Provides a higher level of expression by pairing sockets: one for sending
messages at process P and a corresponding one at process Q for receiving
messages. All communication is asynchronous.

Three patterns

® Request-reply
® Publish-subscribe
® Pipeline

Advanced transient messaging 20/45



Message-oriented communication

Request-reply

import zmg

1
2
3 def server():

4 context = zmg.Context ()

5 socket = context.socket (zmg.REP)
6 socket.bind("tcp://*:12345")

7

8

while True:

9 message = socket.recv()

10 if not "STOP" in str(message) :

11 reply = str(message.decode() )+ x’
12 socket.send(reply.encode())

13 else:

14 break

16 def client():
17 context = zmg.Context ()
18 socket = context.socket (zmg.REQ)

19

20 socket.connect ("tcp: //localhost:12345")
21 socket.send (b"Hello world")

22 message = socket.recv()

23 socket.send (b"STOP")

24 print (message.decode() )

# create reply socket
# bind socket to address

# wait for incoming message
# 1f not to stop...

# append "+" to message

# send it away (encoded)

# break out of loop and end

# create request socket

# block until connected
# send message

# block until response
# tell server to stop
# print result




Publish-subscribe

import multiprocessing
import zmg, time

def server():
context = zmg.Context ()
socket = context.socket (zmg.PUB) # create a publisher socket
socket.bind("tcp://*:12345") # bind socket to the address
while True:

9 time.sleep(5) # wait every 5 seconds

10 t = "TIME " + time.asctime()

11 socket.send(t.encode() ) # publish the current time

[ R I SRR SR

13 def client():

14 context = zmg.Context ()

15 socket = context.socket (zmg.SUB) # create a subscriber socket
16 socket.connect ("tcp: //localhost:12345") # connect to the server

17 socket.setsockopt (zmg.SUBSCRIBE, L"TIME") # subscribe to TIME messages

19 for i in range(5): # Five iterations
20 time = socket.recv() # receive a message related to subscription
21 print (time.decode()) # print the result
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Pipeline

def producer() :
context = zmg.Context ()
socket = context.socket (zmg.PUSH) # create a push socket
socket.bind("tcp://127.0.0.1:12345") # bind socket to address

1
2

3

4

5

6 while True:
7 workload = random.randint (1, 100) # compute workload

8 socket.send (pickle.dumps (workload) ) # send workload to worker

9 time.sleep (workload/NWORKERS) # balance production by waiting
0

11 def worker(id) :

12 context = zmg.Context ()

13 socket = context.socket (zmg.PULL) # create a pull socket

14 socket.connect ("tcp: //localhost:12345") # connect to the producer

16 while True:

17 work = pickle.loads (socket.recv()) # receive work from a source
18 time.sleep (work) # pretend to work
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MPI: When lots of flexibility is needed

Representative operations

Operation Description

MPI_BSEND Append outgoing message to a local send buffer

MPTI_SEND Send a message and wait until copied to local or
remote buffer

MPI_SSEND Send a message and wait until transmission starts

MPI_SENDRECV | Send a message and wait for reply

MPI_ISEND Pass reference to outgoing message, and continue

MPI_ISSEND Pass reference to outgoing message, and wait until
receipt starts

MPI_RECV Receive a message; block if there is none

MPI_IRECV Check if there is an incoming message, but do not
block

Advanced transient messaging 24/45



Message-oriented communication

Queue-based messaging

Four possible combinations

Sender Sender Sender Sender
running running passive passive
e ) R )

<[l <«
[«

<
[

Receiver Receiver Receiver Receiver
running passive running passive

25/45



Communication Message-oriented communication

Message-oriented middleware

Essence
Asynchronous persistent communication through support of middleware-level
queues. Queues correspond to buffers at communication servers.

Operations

Operation | Description

PUT Append a message to a specified queue

GET Block until the specified queue is nonempty, and
remove the first message

POLL Check a specified queue for messages, and remove
the first. Never block

NOTIFY Install a handler to be called when a message is put
into the specified queue

Message-oriented persistent communication 26/45



Message-oriented communication

General model

Queue managers
Queues are managed by queue managers. An application can put messages
only into a local queue. Getting a message is possible by extracting it from a
local queue only = queue managers need to route messages.

address (name) |

Routing
Look up
Source queue contact address Destination queue
manager 1 of destination manager
queue manager
— Logical
— queue-level =

Address lookup Local OS

Local OS L database
_/ | Contact

— e I\Te;w-o:k """"""""""" address
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Message-oriented communication

Message broker

Observation
Message queuing systems assume a common messaging protocol: all
applications agree on message format (i.e., structure and data representation)

Broker handles application heterogeneity in an MQ system

® Transforms incoming messages to target format

® Very often acts as an application gateway

* May provide subject-based routing capabilities (i.e., publish-subscribe
capabilities)
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Message broker: general architecture

Source Message broker Destination

Application Application

[~

Broker plugins Rules

7 \
£ = Queuing | _
= =| |Z] layer HEE =
Local OS Local OS Local OS
[ — I e
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Example: AMQP

Lack of standardization

Advanced Message-Queuing Protocol was intended to play the same role as,
for example, TCP in networks: a protocol for high-level messaging with
different implementations.

Application Queue manager
AMQP
Message queuing
AMQP AMQP
stub communication
Local OS T <
| K TCP/IP
Network
Basic model

Client sets up a (stable) connection, which is a container for serveral (possibly
ephemeral) one-way channels. Two one-way channels can form a session. A
link is akin to a socket, and maintains state about message transfers.

Example: Advanced Message Queuing Protocol (AMQP)



Example: AMQP-based producer

import rabbitpy

1
2
3 def producer() :

4 connection = rabbitpy.Connection() # Connect to RabbitMQ server

5 channel = connection.channel () # Create new channel on the connection
6

7

8

exchange = rabbitpy.Exchange (channel, ’exchange’) # Create an exchange
exchange.declare()

10 queuel = rabbitpy.Queue(channel, ’'examplel’) # Create lst queue
11 queuel.declare()

13 queue2 = rabbitpy.Queue(channel, ’'example2’) # Create 2nd queue
14 queue2.declare()

16 queuel.bind(exchange, ’example-key’) # Bind queuel to a single key
17 queue2.bind(exchange, ’example-key’) # Bind queuel to the same key

19 message = rabbitpy.Message(channel, ’'Test message’)

20 message.publish(exchange, ’example-key’) # Publish the message using the key
21 exchange.delete()
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Example: AMQP-based consumer

1 import rabbitpy

2

3 def consumer() :

4 connection = rabbitpy.Connection()
5 channel = connection.channel ()
6
7
8

queue = rabbitpy.Queue (channel, ’examplel’)

9 # While there are messages in the queue, fetch them using Basic.Get
10 while len(queue) > 0:

11 message = queue.get ()
12 print (‘Message Q1l: %s’ % message.body.decode())
13 message.ack()

15 queue = rabbitpy.Queue (channel, ’example2’)

17 while len(queue) > 0:

18 message = queue.get ()
19 print ("Message Q2: %s’ % message.body.decode())
20 message.ack ()
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Application-level multicasting

Essence
Organize nodes of a distributed system into an overlay network and use that
network to disseminate data:

e Oftentimes a tree, leading to unique paths
® Alternatively, also mesh networks, requiring a form of routing



Application-level multicasting in Chord

Basic approach

. Initiator generates a multicast identifier mid.

. Lookup succ(mid), the node responsible for mid.

. Request is routed to succ(mid), which will become the root.
. If P wants to join, it sends a join request to the root.

. When request arrives at Q:

® Q has not seen a join request before = it becomes forwarder; P
becomes child of Q. Join request continues to be forwarded.

® Q knows about tree = P becomes child of Q. No need to forward
join request anymore.

a B~ o=
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Communication
ALM: Some costs

Different metrics

End host

Overlay network

® Link stress: How often does an ALM message cross the same physical
link? Example: message from A to D needs to cross (Ra, Rb) twice.

e Stretch: Ratio in delay between ALM-level path and network-level path.
Example: messages B to C follow path of length 73 at ALM, but 47 at
network level = stretch = 73/47.

Application-level tree-based multicasting 35/45



Flooding

Essence
P simply sends a message m to each of its neighbors. Each neighbor will
forward that message, except to P, and only if it had not seen m before.
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Communication
Flooding
Essence

P simply sends a message m to each of its neighbors. Each neighbor will
forward that message, except to P, and only if it had not seen m before.
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Variation

Let Q forward a message with a certain probability ps0q, POSSibly even
dependent on its own number of neighbors (i.e., node degree) or the degree of
its neighbors.



Epidemic protocols

Assume there are no write—write conflicts

® Update operations are performed at a single server

® A replica passes updated state to only a few neighbors
Update propagation is lazy, i.e., not immediate
Eventually, each update should reach every replica

Two forms of epidemics

® Anti-entropy: Each replica regularly chooses another replica at random,
and exchanges state differences, leading to identical states at both
afterwards

* Rumor spreading: A replica which has just been updated (i.e., has been
contaminated), tells several other replicas about its update (contaminating
them as well).



Multicast communication

Anti-entropy

Principle operations

® A node P selects another node Q from the system at random.
e Pull: P only pulls in new updates from Q

Push: P only pushes its own updates to Q

Push-pull: P and Q send updates to each other

Observation
For push-pull it takes ¢'(log(N)) rounds to disseminate updates to all N nodes
(round = when every node has taken the initiative to start an exchange).



Anti-entropy: analysis

Basics
Consider a single source, propagating its update. Let p; be the probability that
a node has not received the update after the i round.

Analysis: staying ignorant
e With pull, pj1 = (p;)?: the node was not updated during the i round
and should contact another ignorant node during the next round.
* With push, pj 1 = p;(1 — 55)N"D0-P) ~ p;e~" (for small p; and large

N): the node was ignorant during the i round and no updated node
chooses to contact it during the next round.

e With push-pull: (p;)?-(pie )

Gossip-based data dissemination 39/45



Anti-entropy performance
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Rumor spreading

Basic model

A server S having an update to report, contacts other servers. If a server is
contacted to which the update has already propagated, S stops contacting
other servers with probability ps¢op.

Observation
If s is the fraction of ignorant servers (i.e., which are unaware of the update), it
can be shown that with many servers

S= 97(1 /pstop+1 )(1 73)
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Formal analysis

Notations

Let s denote fraction of nodes that have not yet been updated (i.e., susceptible;
i the fraction of updated (infected) and active nodes; and r the fraction of
updated nodes that gave up (removed).

From theory of epidemics

(1) ds/dt = -s-i

(2) di/jdt = s-i—pstop-(1—5)-i

= di/ds = —(1 +pstop)+ps%

= i(s) = —(1+ Pstop) - S+ Pstop - In(s) + C

Wrap up
i(1)=0= C=1+4pstop = i(S) = (1 + Pstop) - (1 — ) + Pstop - In(s). We are
looking for the case i(s) = 0, which leads to s = e~ (!/Pstopt1)(1=9)

Gossip-based data dissemination 42/45



Rumor spreading

The effect of stopping
8 0.20 4 Consider 10,000 nodes
2 0.15 1/Pstop s Ns
é 1 0.203188 2032
297 2 0.059520 595
g 0.05 3 0.019827 198
2 0.001 4 0.006977 70
02 04 06 08 10 5 0.002516 25
Probability that a node stops spreading a rumor 6 0.000918 9
7 0.000336 3
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Rumor spreading

The effect of stopping
8 0.20 4 Consider 10,000 nodes
g 0.15 4 1/Pstop S Ns
é 1 0.203188 2032
297 2 0.059520 595
g 0.05 3 0.019827 198
2 0.001 4 0.006977 70
02 04 06 08 10 5 0.002516 25
Probability that a node stops spreading a rumor 6 0.000918 9
7 0.000336 3

Note
If we really have to ensure that all servers are eventually updated, rumor
spreading alone is not enough
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Multicast communication

Deleting values

Fundamental problem

We cannot remove an old value from a server and expect the removal to
propagate. Instead, mere removal will be undone in due time using epidemic
algorithms

Solution
Removal has to be registered as a special update by inserting a death

certificate
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Deleting values

When to remove a death certificate (it is not allowed to stay for ever)

® Run a global algorithm to detect whether the removal is known
everywhere, and then collect the death certificates (looks like garbage

collection)
® Assume death certificates propagate in finite time, and associate a
maximum lifetime for a certificate (can be done at risk of not reaching all

servers)

Note
It is necessary that a removal actually reaches all servers.

Gossip-based data dissemination 45/45
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