Distributed Systems

(4th edition, version 01)

Chapter 06: Naming

Naming

Essence

Names are used to denote entities in a distributed system. To operate on an
entity, we need to access it at an access point. Access points are entities that
are named by means of an address.

Note
A location-independent name for an entity E, is independent of the addresses
of the access points offered by E.

2/53

Names, identifiers, and addresses

Identifiers

Pure name
A name that has no meaning at all; it is just a random string. Pure names can
be used for comparison only.

Identifier: A name having some specific properties

1. An identifier refers to at most one entity.
2. Each entity is referred to by at most one identifier.
3. An identifier always refers to the same entity (i.e., it is never reused).

Observation
An identifier need not necessarily be a pure name, i.e., it may have content.

Broadcasting

Broadcast the ID, requesting the entity to return its current address

¢ Can never scale beyond local-area networks
® Requires all processes to listen to incoming location requests

Address Resolution Protocol (ARP)

To find out which MAC address is associated with an IP address, broadcast the
query “who has this IP address”?

4/53

Forwarding pointers

When an entity moves, it leaves behind a pointer to its next location

* Dereferencing can be made entirely transparent to clients by simply
following the chain of pointers

® Update a client’s reference when present location is found

® Geographical scalability problems (for which separate chain reduction
mechanisms are needed):

® Long chains are not fault tolerant
® Increased network latency at dereferencing

Home-based approaches

Single-tiered scheme: Let a home keep track of where the entity is

¢ Entity’s home address registered at a naming service
* The home registers the foreign address of the entity
¢ Client contacts the home first, and then continues with foreign location

Flat naming

The principle of mobile IP

Host's home
location

/H /
[1. Send packet to host at its home

2. Return address

= of current location

\ 3. Tunnel packet to
current location

Client's

4. Send successive packets
to current location

Host's current location

7153

Home-based approaches

Problems with home-based approaches

* Home address has to be supported for entity’s lifetime

* Home address is fixed = unnecessary burden when the entity
permanently moves

® Poor geographical scalability (entity may be next to client)

Note
Permanent moves may be tackled with another level of naming (DNS)

Illustrative: Chord

Consider the organization of many nodes into a logical ring

® Each node is assigned a random m-bit identifier.

e Every entity is assigned a unique m-bit key.

e Entity with key k falls under jurisdiction of node with smallest id > k
(called its successor succ(k)).

Nonsolution
Let each node keep track of its neighbor and start linear search along the ring.

Notation
We will speak of node p as the node have identifier p

Chord finger tables
Principle
® Each node p maintains a finger table FTp[] with at most m entries:
FTp[i] = succ(p+2"—")

Note: the i-th entry points to the first node succeeding p by at least 2/~ 1.

10/53

Chord finger tables
Principle
® Each node p maintains a finger table FTp[] with at most m entries:
FTp[i] = succ(p+2"—")

Note: the i-th entry points to the first node succeeding p by at least 2/~ 1.

* To look up a key k, node p forwards the request to node with index j
satisfying

Chord finger tables
Principle
® Each node p maintains a finger table FTp[] with at most m entries:
FTp[i] = succ(p+2"—")

Note: the i-th entry points to the first node succeeding p by at least 2/~ 1.

* To look up a key k, node p forwards the request to node with index j

satisfying

® If p< k < FTp[1], the request is also forwarded to FTp[1]

Flat naming

Chord lookup example
Resolving key 26 from node 7 and key 12 from node 28

Finger table

Actual node

Resolve k =12
from node 28

=[=[2]

Resolve k = 26
from node 1

o] |
(/oo

Teolol=]
|

bbbl

11/53

Chord in Python

1 class ChordNode:

2

3 def __ succNode(self, key):

4 if (key <= self.nodeSet[0] or

5 key > self.nodeSet[len(self.nodeSet)-1]): # key is in segment for which

6 return self.nodeSet[0] # this node is responsible

7 for i in range(l,len(self.nodeSet)) :

8 if (key <= self.nodeSet[i]): # key is in segment for which

9 return self.nodeSet[i] # node (i+l) may be responsible

11 def __ finger(self, 1i):

12 return self._ succNode((self.nodeID + pow(2,1i-1)) % self.MAXPROC) # succ(p+2”(i-1))
13

14 def __ recomputeFingerTable (self) :

15 self.FT[0] = self.nodeSet[(self.nodeInd - 1)%len(self.nodeSet)] # Predecessor

16 self.FT[1:] = [self.__finger(i) for i in range(l,self.nBits+l)] # Successors

17 self.FT.append(self.nodeID) # This node

18

19 def _ localSuccNode (self, key):

20 if self. inbetween(key, self.FT[0]+1, self.nodeID+l): # key in (pred,self]

21 return self.nodeID # this node is responsible
22 elif self. inbetween(key, self.nodeID+l, self.FT[1]): # key in (self,FT[1]]

23 return self.FT[1] # successor responsible

24 for i in range(l, self.nBits+2): # go through rest of FT

25 if self._ inbetween(key, self.FT[i], self.FT[(i+l)]): # key in [FT[i],FT[i+1])
26 return self.FT[i] # FT[1] is responsible

12/53

Flat naming

Exploiting network proximity

Problem
The logical organization of nodes in the overlay may lead to erratic message

transfers in the underlying Internet: node p and node succ(p+ 1) may be very
far apart.

Solutions

13/53

Flat naming

Exploiting network proximity

Problem
The logical organization of nodes in the overlay may lead to erratic message

transfers in the underlying Internet: node p and node succ(p+ 1) may be very
far apart.

Solutions

® Topology-aware node assignment: When assigning an ID to a node,
make sure that nodes close in the ID space are also close in the network.

Can be very difficult.

N7
Exploiting network proximity

Problem

The logical organization of nodes in the overlay may lead to erratic message
transfers in the underlying Internet: node p and node succ(p+ 1) may be very
far apart.

Solutions

® Topology-aware node assignment: When assigning an ID to a node,
make sure that nodes close in the ID space are also close in the network.
Can be very difficult.

® Proximity routing: Maintain more than one possible successor, and
forward to the closest.
Example: in Chord FTp[i] points to first node in

INT = [p+2i_1 ,p+2’ —1]. Node p can also store pointers to other nodes
in INT.

Distributed hash tables 13/53

N7
Exploiting network proximity

Problem

The logical organization of nodes in the overlay may lead to erratic message
transfers in the underlying Internet: node p and node succ(p+ 1) may be very
far apart.

Solutions

® Topology-aware node assignment: When assigning an ID to a node,
make sure that nodes close in the ID space are also close in the network.
Can be very difficult.

® Proximity routing: Maintain more than one possible successor, and
forward to the closest.
Example: in Chord FTp[i] points to first node in
INT = [p+2"1 p+2— 1]. Node p can also store pointers to other nodes
in INT.

* Proximity neighbor selection: When there is a choice of selecting who
your neighbor will be (not in Chord), pick the closest one.

Distributed hash tables 13/53

Flat naming

Hierarchical Location Services (HLS)

Basic idea
Build a large-scale search tree for which the underlying network is divided into

hierarchical domains. Each domain is represented by a separate directory
node.

Principle

The root directory
. Top-level
node dir(T) do?nain T

Directory node
dir(S) of domain S

A subdomain S
of top-level domain T
(S is contained in T)

A leaf domain, contained in S

14/53

Flat naming

HLS: Tree organization
Invariants

® Address of entity E is stored in a leaf or intermediate node

® Intermediate nodes contain a pointer to a child if and only if the subtree
rooted at the child stores an address of the entity

* The root knows about all entities

Storing information of an entity having two addresses in different leaf
domains

Field with no data
Field for domain PUEEE,
dom(N) with e
pointer to N

h

Location record
" for E at node M

Location record
with only one field,
containing an address

Domain D1

Domain D2

HLS: Lookup operation

Basic principles

e Start lookup at local leaf node
® Node knows about E = follow downward pointer, else go up
e Upward lookup always stops at root

Looking up a location

Node knows
about E, so request
Node has no is forwarded to child

record for E, so
that request is
forwarded to

parent

Look-up i Domain D

IIIEH#IH%HHH@II

HLS: Insert operation

(a) An insert request is forwarded to the first node that knows about
entity E. (b) A chain of forwarding pointers to the leaf node is created

Node knows
Node has no about E, so request
record for E, is no longer forwarded Node creates record

so request is
forwarded
to parent

and stores pointer

""""" . Node creates
record and
stores address

! Domain D
! Insert
' request

(a) (b)

17 /53

Can an HLS scale?

Observation

A design flaw seems to be that the root node needs to keep track of all
identifiers = make a distinction between a logical design and its physical
implementation.

Notation

* Assume there are a total of N physical hosts {H;,Ho,...,Hy}. Each host
is capable of running one or more location servers.

* Dy (A) denotes the domain at level k that contains address A; k =0
denotes the root domain.

* [S,(E,A) denotes the unique location server in D (A) responsible for
keeping track of entity E.

Hierarchical approaches 18/53

Flat naming

Can an HLS scale?

Basic idea for scaling

® Choose different physical servers for the logical name servers on a
per-entity basis
® (at root level, but also intermediate)
* Implement a mapping of entities to physical servers such that the load of
storing records will be distributed

Can an HLS scale?

Solution

® Dy ={Dx 1,Dkp2,...,Dxn, } denotes the Nj, domains at level k

® Note: Ny =|Dg|=1.

® For each level k, the set of hosts is partitioned into Ny subsets, with each
host running a location server representing exactly one of the domains
Dk,i from Dy.

Principle of distributing logical location servers

Tree for one specific entity ~ Location server Host

Level 0
Level 1
Domain

Level 2

Level 3

Security in flat naming

Basics
Without special measures, we need to trust that the name-resolution process
to return what is associated with a flat name. Two approaches to follow:

¢ Secure the identifier-to-entity association

e Secure the name-resolution process

Self-certifying names

Use a value derived from the associated entity and make it (part of) the flat
name:

* jd(entity) = hash(data associated with the entity)
when dealing with read-only entities, otherwise
* jd(entity) = public key(entity)
in which case additional data is returned, such as a verifiable digital signature.
Securing the name-resolution process
Much more involved: discussion deferred until discussing secure DNS.

Structured naming

Name space

Naming graph
A graph in which a leaf node represents a (named) entity. A directory node is
an entity that refers to other nodes.

A general naming graph with a single root node
Data stored in n1

"keys"
"/home/steen/keys"

O Leaf node
D Directory node

. . "/home/steen/mbox"

Note
A directory node contains a table of (node identifier, edge label) pairs.

22/53

Name space

We can easily store all kinds of attributes in a node

* Type of the entity

® An identifier for that entity

® Address of the entity’s location
[]

Nicknames
[]

23/53

Name space

We can easily store all kinds of attributes in a node

* Type of the entity

® An identifier for that entity

® Address of the entity’s location
[]

Nicknames
[]

Note
Directory nodes can also have attributes, besides just storing a directory table
with (identifier, label) pairs.

Structured naming

Name resolution
Problem

To resolve a name, we need a directory node. How do we actually find that
(initial) node?

24/53

Structured naming

Name resolution

Problem
To resolve a name, we need a directory node. How do we actually find that

(initial) node?
Closure mechanism: The mechanism to select the implicit context from
which to start name resolution

* www.distributed-systems.net: start at a DNS name server

® /home/maarten/mbox: start at the local NFS file server (possible
recursive search)

® 0031 20 598 7784: dial a phone number

® 77.167.55.6: route message to a specific IP address

24/53

Naming Structured naming

Name resolution

Problem
To resolve a name, we need a directory node. How do we actually find that

(initial) node?

Closure mechanism: The mechanism to select the implicit context from
which to start name resolution
* www.distributed-systems.net: start at a DNS name server
® /home/maarten/mbox: start at the local NFS file server (possible
recursive search)
® 0031 20 598 7784: dial a phone number
® 77.167.55.6: route message to a specific IP address

Note
You cannot have an explicit closure mechanism — how would you start?

Name resolution 24/53

Name linking

Hard link
What we have described so far as a path name: a name that is resolved by
following a specific path in a naming graph from one node to another.

Soft link: Allow a node N to contain a name of another node

¢ First resolve N's name (leading to N)
¢ Read the content of N, yielding name
* Name resolution continues with name

Naming Structured naming

Name linking

Hard link
What we have described so far as a path name: a name that is resolved by
following a specific path in a naming graph from one node to another.

Soft link: Allow a node N to contain a name of another node

¢ First resolve N's name (leading to N)
* Read the content of N, yielding name
* Name resolution continues with name

Observations

* The name resolution process determines that we read the content of a
node, in particular, the name in the other node that we need to go to.

* One way or the other, we know where and how to start name resolution
given name

Name resolution 25/53

Name linking

The concept of a symbolic link explained in a naming graph

Data stored in n1
n2: "elke"

Observation
Node n5 has only one name

26/53

Mounting

Issue

Name resolution can also be used to merge different name spaces
transparently through mounting: associating a node identifier of another name
space with a node in a current name space.

Terminology

* Foreign name space: the name space that needs to be accessed

* Mount point: the node in the current name space containing the node
identifier of the foreign name space

® Mounting point: the node in the foreign name space where to continue

name resolution
Mounting across a network

1. The name of an access protocol.
2. The name of the server.
3. The name of the mounting point in the foreign name space.

Name resolution 27/53

Structured naming

Mounting in distributed systems
Mounting remote name spaces through a specific access protocol

Name server Name server for foreign name space
\ Machine A Machine B

U ("nfs:/Alits.cs.vu.nl/home/steen”)

Network

Reference to foreign name space

Structured naming

Name-space implementation
Basic issue

Distribute the name resolution process as well as name space management
across multiple machines, by distributing nodes of the naming graph.

29/53

Structured naming

Name-space implementation

Basic issue
Distribute the name resolution process as well as name space management
across multiple machines, by distributing nodes of the naming graph.

Distinguish three levels

29/53

Structured naming

Name-space implementation

Basic issue
Distribute the name resolution process as well as name space management
across multiple machines, by distributing nodes of the naming graph.

Distinguish three levels

® Global level: Consists of the high-level directory nodes. Main aspect is
that these directory nodes have to be jointly managed by different
administrations

Name-space implementation

Basic issue
Distribute the name resolution process as well as name space management
across multiple machines, by distributing nodes of the naming graph.

Distinguish three levels

® Global level: Consists of the high-level directory nodes. Main aspect is
that these directory nodes have to be jointly managed by different
administrations

¢ Administrational level: Contains mid-level directory nodes that can be
grouped in such a way that each group can be assigned to a separate
administration.

The implementation of a name space 29/53

Name-space implementation

Basic issue
Distribute the name resolution process as well as name space management
across multiple machines, by distributing nodes of the naming graph.

Distinguish three levels

® Global level: Consists of the high-level directory nodes. Main aspect is
that these directory nodes have to be jointly managed by different
administrations

¢ Administrational level: Contains mid-level directory nodes that can be
grouped in such a way that each group can be assigned to a separate
administration.

® Managerial level: Consists of low-level directory nodes within a single
administration. Main issue is effectively mapping directory nodes to local
name servers.

The implementation of a name space 29/53

Structured naming

Name-space implementation
An example partitioning of the DNS name space, including network
files

Global
layer

Adminis-
trational
layer

Mana-
gerial
layer

Name-space implementation

A comparison between name servers for implementing nodes in a

name space
Item | Global Administrational | Managerial
1 Worldwide Organization Department
2 Few Many Vast numbers
3 Seconds Milliseconds Immediate
4 Lazy Immediate Immediate
5 Many None or few None
6 Yes Yes Sometimes
1: Geographical scale | 4: Update propagation
2: # Nodes 5: # Replicas
3: Responsiveness 6: Client-side caching?

Structured naming

lterative name resolution

Principle

1. resolve(dir,[namey, ...,namey]) sent to Server, responsible for dir

2. Server, resolves resolve(dir,name;) — diry, returning the identification
(address) of Servery, which stores dir;.

3. Client sends resolve(dir;,[name,, ...,nameg]) to Servery, etc.

1. [nl,vu,cs,ftp] o Root
2. #[nl], [vu,cs, ftp] name server
3. [vu.cs,ftp] »| Name server
Client's | 4. #[vul, [cs,ftp] i node
name
resolver | 5. [cs.ftp] »| Name server
Pl
< #los]. [ftp] vu node
7. [ftp] »| Name server
W cs node
[nI,vu,cs,ftp]T l#[nl,vu,cs,ftp] Nodes are / fte
managed by

the same server -l

Recursive name resolution

Principle

1. resolve(dir,[namey,...,nameg]) sent to Server, responsible for dir

2. Server, resolves resolve(dir,name;) — dirs, and sends
resolve(diry,[namey,...,namek]) to Server;, which stores dir;.

3. Servery waits for result from Servery, and returns it to client.

1. [nl,vu,cs,ftp]

Root

8. #[nl,vu,csftp] name server)2. [vu,cs, ftp]
C Name server

7. #[vu,cs,ftp]

Client's nl node 3. [cs,ftp]
name
resolver 6. #[cs, ftp] Name server
vu node 4. [ftp]
5. #[ftp] C Name server)

cs node

[nI,vu,cs,ftp]T i#[nl,vu,cs,ﬂp]

33/53

Structured naming

Caching in recursive name resolution

Server Should Looks up Passes to Receives Returns
for node resolve child and caches [to requester
cs ftp] #[ftp] — — #[ftp]
vu cs, ftp] #[cs] [ftp] #[ftp] #[cs]
#[cs, ftp]
nl [vu,cs, ftp] [#[vu] [cs, ftp] #[cs] #[vu]
#[cs, ftp] #[vu, cs]
#[vu, cs, ftp]
root [nl, vu, cs, ftp] |#[nl] [vu, cs, ftp] #[vu] #[nl]
#[vu, cs] #[nl, vu]
#[vu, cs, ftp] |#[nl, vu, cs]
#[nl, vu, cs, ftp]

Scalability issues

Size scalability

We need to ensure that servers can handle a large number of requests per
time unit = high-level servers are in big trouble.

35/53

Scalability issues

Size scalability

We need to ensure that servers can handle a large number of requests per
time unit = high-level servers are in big trouble.

Solution

Assume (at least at global and administrational level) that content of nodes
hardly ever changes. We can then apply extensive replication by mapping

nodes to multiple servers, and start name resolution at the nearest server.

35/53

Scalability issues

Size scalability

We need to ensure that servers can handle a large number of requests per
time unit = high-level servers are in big trouble.

Solution

Assume (at least at global and administrational level) that content of nodes
hardly ever changes. We can then apply extensive replication by mapping

nodes to multiple servers, and start name resolution at the nearest server.

Observation

An important attribute of many nodes is the address where the represented
entity can be contacted. Replicating nodes makes large-scale traditional name
servers unsuitable for locating mobile entities.

The implementation of a name space 35/53

Scalability issues

We need to ensure that the name resolution process scales across
large geographical distances

Recursive name resolution

R1

Name server
nl node
Name server
vu node
Name server
cs node

oo

Iterative name resolution

Long-distance communication

A
\4

Problem
By mapping nodes to servers that can be located anywhere, we introduce an
implicit location dependency.

36/53

DNS

Essence

® Hierarchically organized name space with each node having exactly one
incoming edge = edge label = node label.

® domain: a subtree

® domain name: a path name to a domain’s root node.

Information in a node

Type Refers to | Description

SOA Zone Holds info on the represented zone

A Host IP addr. of host this node represents
MX Domain Mail server to handle mail for this node
SRV Domain Server handling a specific service

NS Zone Name server for the represented zone
CNAME | Node Symbolic link

PTR Host Canonical name of a host

HINFO Host Info on this host

TXT Any kind Any info considered useful

Example: The Domain Name System 37/53

Structured naming

Modern DNS

i

The modern organization of DNS

38/53

Secure DNS

Basic approach
Resource records of the same type are grouped into a signed set, per zone.
Examples:

¢ A set with all the IPv4 addresses of a zone
® A set with all the IPv6 addresses of a zone
® A set with the name servers of a zone

The public key associated with the secret key used for signing a set of
resource records is added to a zone, called a zone-signing key.

Trusting the signatures

* All zone-signing keys are grouped again into a separate set, which is
signed using another secret key. The public key of the latter is the
key-signing key.

* The hash of the key-signing key is stored at, and signed by, the parent
zone

Example: The Domain Name System 39/53

Secure DNS

Level 0
(root)

| KSK0| 75K, | | HZOI | | SKZ,(HZo(KSK4))|

Level 1 | KSK, | ZSKq |HKq[HZ;| | SKK,(HK;(ZSKy) | SKZ(HZ/(KSKy)|

Level 2 | KSK; | ZSK, | HKy|HZ, | RR | SKK,(HK(ZSKy)) | SKZ,(HZ,RR) |

Building a trust chain

* Consider a single set of resource records RR, hashed with HZ; and
signed with SKZ;

® SZK has associated public key ZSKj
® (Set of) ZSKj is hashed with HK}, and signed with SKKj
* SKKj has associated public key KSKj

A client can verify signature SKZ>(HZ>(RR)) by checking

ZSK>(SKZ»(HZ(RR))) £ HZ»(RR)

Example: The Domain Name System 40/53

Naming in NFS

Client A Server Client B

mbox

O] |
Exported directory Exported directory
mounted by client mounted by client

Network

Observation

A server may export (a part of) its filesystem, which can then be imported by
different clients by mounting. Note that different clients will have different
(nonsharable) namespaces!

41/53

Mounting nested directories

Exported directory
contains imported

subdirectory

Client Server A Server B

Client

imports

directory

sefrrgg: A Server A
imports
directory

from

server B

Network

Client needs to
explicitly import
subdirectory from
server B

42/53

Attribute-based naming

Attribute-based naming
Observation

In many cases, it is much more convenient to name, and look up entities
through their attributes = traditional directory services (aka yellow pages).

43/53

Attribute-based naming

Observation
In many cases, it is much more convenient to name, and look up entities
through their attributes = traditional directory services (aka yellow pages).

Problem

Lookup operations can be expensive, as they require matching requested
attribute values, against actual attribute values = inspect all entities (in
principle).

Naming Attribute-based naming

Implementing directory services

Solution for scalable searching

Implement basic directory service as database, and combine with traditional
structured naming system.

Lightweight Directory Access Protocol (LDAP)

Each directory entry consists of (attribute, value) pairs, and is uniquely named
to ease lookups.

Attribute Abbr. | Value

Country o NL

Locality L Amsterdam

Organization (0] VU University

OrganizationalUnit | OU Computer Science

CommonName CN Main server

Mail_Servers - 137.37.20.3, 130.37.24.6, 137.37.20.10
FTP_Server - 130.37.20.20

WWW_Server - 130.37.20.20

Hierarchical implementations: LDAP 44 /53

LDAP

Essence

* Directory Information Base: collection of all directory entries in an LDAP
service.

e Each record is uniquely named as a sequence of naming attributes
(called Relative Distinguished Name), so that it can be looked up.

¢ Directory Information Tree: the naming graph of an LDAP directory
service; each node represents a directory entry.

Part of a directory information tree

O = VU University
OU = Computer Science

CN = Main server

HostName = star HostName = zephyr

LDAP

Two directory entries having HostName as RDN

Attribute Value Attribute Value

Locality Amsterdam Locality Amsterdam
Organization VU University Organization VU University
OrganizationalUnit ~ Computer Science |OrganizationalUnit — Computer Science
CommonName Main server CommonName Main server
HostName star HostName zephyr
HostAddress 192.31.231.42 HostAddress 137.37.20.10

Result of search (" (C=NL) (0=VU University) (OU=«) (CN=Main
server)")

Hierarchical implementations: LDAP 46 /53

Distributed index

Basic idea

* Assume a set of attributes {a’,...,aV}

Each attribute a* takes values from a set R¥

For each attribute & associate a set Sk = {SX,..., Sk } of ny servers
Global mapping F: F(a¥,v) = SK with Sk € Sk and v € R

Observation
If L(a¥, v) is set of keys returned by F(a*,v), then a query can be formulated
as a logical expression, e.g.,

(F(a',v)AF(a,v3)) Vv F(a3,v3)

which can be processed by the client by constructing the set
(L@',v)nL(a? v3))uL(a® v3)

Decentralized implementations 47 /53

Drawbacks of distributed index

Quite a few
® A query involving k attributes requires contacting k servers

* Imagine looking up “lastName = Smith A firstName = Pheriby”: the client
may need to process many files as there are so many people named
“Smith.”

* No (easy) support for range queries, such as “price = [1000 — 2500]”

Naming

Alternative: map all attributes to 1 dimension and then index
Space-filling curves: principle

1. Map the N-dimensional space covered by the N attributes {a’,...,aV}
into a single dimension

2. Hashing values in order to distribute the 1-dimensional space among
index servers.

Hilbert space-filling curve of (a) order 1, and (b) order 4

1
14/16
Index 1 Index 2
12/16
N oN
3+ 3+
) o 1016
F 2
2 2 g6
s % £
© ©
» «» 616
g g
= = 416
o
s S
Index 0 Index 3 2116
0/16
0 A 1 0 2 4 6 8 10 12 14
16 16 16 16 16 16 16 16
(a) Values attribute #1 (b) Values attribute #1

Decentralized implementations

Space-filling curve

Once the curve has been drawn
Consider the two-dimensional case

e a Hilbert curve of order k connects 22¢ subsquares = has 22X indices.

® Arange query corresponds to a rectangle R in the 2-dimensional case

® Rintersects with a number of subsquares, each one corresponding to an
index = we now have a series of indices associated with R.

Getting to the entities

Each index is to be mapped to a server, who keeps a reference to the
associated entity. One possible solution: use a DHT.

Decentralized implementations 50/53

Named-data networking

Naming

Named-data networking

Application
(protocols)

Transport

Application
(protocols)

Fetch data

Route packets
by name

to destination

Link layer

Transmission
media

Transmission
media

Basics
¢ Retrieve an entity from the network by using that entity’s name and not

address.
® The network takes that name as input, and routes a request to a location

where the entity is stored.
* NDN takes over the role of IP in a future architecture of the Internet,

Example name
/ distributed—systems.net/books/ Distributed Systems/4/01/Naming

Basics

Routing

Question
Is there really a difference in attempting to route a request such as

distributed-systems.net/books/ Distributed Systems/4/01/Naming

from the IPv6 address
2001:610:508:108:192:87:108:15

Key observation

Theres is no fundamental difference. We decide which part of a name or
address (i.e., a prefix) should be announced within a global routing substrate,
just as with IPv4 addresses with BGP routers.

Named-data networking

Routing
NDN router
‘lJ‘ | Content Pending Forwarding
>3 store [»| interest [information
Incoming Q| table base Forward to
request |2 next router(s)
@ or source
Return data
if in store Add interface Drop request
to table for or send NACK
named data

Forwarding a request to (a next router on the way to) its destination

Return Pondi
data Content | ~ending
interest

7 store table | Returned
Y 3| data
Q Q
R I :
Cache data Drop data
in store (no interest)

Returning the request (to a router) on the path toward requester
53/53

	Naming
	Names, identifiers, and addresses
	Flat naming
	Simple solutions
	Home-based approaches
	Distributed hash tables
	Hierarchical approaches
	Secure flat naming

	Structured naming
	Name spaces
	Name resolution
	The implementation of a name space
	Example: The Domain Name System
	Example: The Network File System

	Attribute-based naming
	Directory services
	Hierarchical implementations: LDAP
	Decentralized implementations

	Named-data networking
	Basics
	Routing

