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Coordination Clock synchronization

Physical clocks

Problem
Sometimes we simply need the exact time, not just an ordering.

Solution: Universal Coordinated Time (UTC)

• Based on the number of transitions per second of the cesium 133 atom
(pretty accurate).

• At present, the real time is taken as the average of some 50 cesium
clocks around the world.

• Introduces a leap second from time to time to compensate that days are
getting longer.

Note
UTC is broadcast through short-wave radio and satellite. Satellites can give an
accuracy of about ±0.5 ms.
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Clock synchronization

Precision
The goal is to keep the deviation between two clocks on any two machines
within a specified bound, known as the precision π:

∀t ,∀p,q : |Cp(t)−Cq(t)| ≤ π

with Cp(t) the computed clock time of machine p at UTC time t .

Accuracy
In the case of accuracy, we aim to keep the clock bound to a value α:

∀t ,∀p : |Cp(t)− t | ≤ α

Synchronization

• Internal synchronization: keep clocks precise
• External synchronization: keep clocks accurate
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Clock drift

Clock specifications

• A clock comes specified with its maximum clock drift rate ρ.
• F (t) denotes oscillator frequency of the hardware clock at time t
• F is the clock’s ideal (constant) frequency⇒ living up to specifications:

∀t : (1−ρ)≤ F (t)
F
≤ (1+ρ)

Observation
By using hardware interrupts we couple
a software clock to the hardware clock,
and thus also its clock drift rate:

Cp(t) =
1
F

∫ t

0
F (t)dt ⇒ dCp(t)

dt
=

F (t)
F

⇒∀t : 1−ρ ≤ dCp(t)
dt

≤ 1+ρ

Fast, perfect, slow clocks
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Detecting and adjusting incorrect times

Getting the current time from a timeserver

Computing the relative offset θ and delay δ
Assumption: δTreq = T2−T1 ≈ T4−T3 = δTres

θ = T3 +
(
(T2−T1)+(T4−T3)

)
/2−T4 =

(
(T2−T1)+(T3−T4)

)
/2

δ =
(
(T4−T1)− (T3−T2)

)
/2

Network Time Protocol
Collect (θ ,δ ) pairs. Choose θ for which associated delay δ was minimal.
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Reference broadcast synchronization

Essence
• A node broadcasts a reference message m⇒ each receiving node p

records the time Tp,m that it received m.
• Note: Tp,m is read from p’s local clock.

Problem: averaging will not capture
drift⇒ use linear regression

NO: Offset[p,q](t) = ∑M
k=1(Tp,k−Tq,k )

M

YES: Offset[p,q](t) = αt +β

RBS minimizes critical path
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Coordination Logical clocks

The Happened-before relationship

Issue
What usually matters is not that all processes agree on exactly what time it is,
but that they agree on the order in which events occur. Requires a notion of
ordering.

The happened-before relation

• If a and b are two events in the same process, and a comes before b,
then a→ b.

• If a is the sending of a message, and b is the receipt of that message,
then a→ b

• If a→ b and b→ c, then a→ c

Note
This introduces a partial ordering of events in a system with concurrently
operating processes.
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Logical clocks

Problem
How do we maintain a global view of the system’s behavior that is consistent
with the happened-before relation?

Attach a timestamp C(e) to each event e, satisfying the following
properties:

P1 If a and b are two events in the same process, and a→ b, then we
demand that C(a)< C(b).

P2 If a corresponds to sending a message m, and b to the receipt of that
message, then also C(a)< C(b).

Problem
How to attach a timestamp to an event when there’s no global clock⇒
maintain a consistent set of logical clocks, one per process.
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Logical clocks: solution

Each process Pi maintains a local counter Ci and adjusts this counter

1. For each new event that takes place within Pi , Ci is incremented by 1.
2. Each time a message m is sent by process Pi , the message receives a

timestamp ts(m) = Ci .
3. Whenever a message m is received by a process Pj , Pj adjusts its local

counter Cj to max{Cj , ts(m)}; then executes step 1 before passing m to
the application.

Notes
• Property P1 is satisfied by (1); Property P2 by (2) and (3).
• It can still occur that two events happen at the same time. Avoid this by

breaking ties through process IDs.
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Logical clocks: example

Consider three processes with event counters operating at different
rates
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Logical clocks: where implemented

Adjustments implemented in middleware
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Example: Totally ordered multicast

Concurrent updates on a replicated database are seen in the same
order everywhere

• P1 adds $100 to an account (initial value: $1000)
• P2 increments account by 1%
• There are two replicas

Result
In absence of proper synchronization:
replica #1← $1111, while replica #2← $1110.
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Example: Totally ordered multicast

Solution
• Process Pi sends timestamped message mi to all others. The message

itself is put in a local queue queuei .
• Any incoming message at Pj is queued in queuej , according to its

timestamp, and acknowledged to every other process.

Pj passes a message mi to its application if:

(1) mi is at the head of queuej
(2) for each process Pk , there is a message mk in queuej with a larger

timestamp.

Note
We are assuming that communication is reliable and FIFO ordered.
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Lamport’s clocks for mutual exclusion

1 class Process:
2 def __init__(self, chanID, procID, procIDSet):
3 self.chan.join(procID)
4 self.procID = int(procID)
5 self.otherProcs.remove(self.procID)
6 self.queue = [] # The request queue
7 self.clock = 0 # The current logical clock
8

9 def requestToEnter(self):
10 self.clock = self.clock + 1 # Increment clock value
11 self.queue.append((self.clock, self.procID, ENTER)) # Append request to q
12 self.cleanupQ() # Sort the queue
13 self.chan.sendTo(self.otherProcs, (self.clock, self.procID, ENTER)) # Send request
14

15 def ackToEnter(self, requester):
16 self.clock = self.clock + 1 # Increment clock value
17 self.chan.sendTo(requester, (self.clock, self.procID, ACK)) # Permit other
18

19 def release(self):
20 tmp = [r for r in self.queue[1:] if r[2] == ENTER] # Remove all ACKs
21 self.queue = tmp # and copy to new queue
22 self.clock = self.clock + 1 # Increment clock value
23 self.chan.sendTo(self.otherProcs, (self.clock, self.procID, RELEASE)) # Release
24

25 def allowedToEnter(self):
26 commProcs = set([req[1] for req in self.queue[1:]]) # See who has sent a message
27 return (self.queue[0][1] == self.procID and len(self.otherProcs) == len(commProcs))
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Lamport’s clocks for mutual exclusion

1 def receive(self):
2 msg = self.chan.recvFrom(self.otherProcs)[1] # Pick up any message
3 self.clock = max(self.clock, msg[0]) # Adjust clock value...
4 self.clock = self.clock + 1 # ...and increment
5 if msg[2] == ENTER:
6 self.queue.append(msg) # Append an ENTER request
7 self.ackToEnter(msg[1]) # and unconditionally allow
8 elif msg[2] == ACK:
9 self.queue.append(msg) # Append a received ACK
10 elif msg[2] == RELEASE:
11 del(self.queue[0]) # Just remove first message
12 self.cleanupQ() # And sort and cleanup
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Lamport’s clocks for mutual exclusion

Analogy with totally ordered multicast

• With totally ordered multicast, all processes build identical queues,
delivering messages in the same order

• Mutual exclusion is about agreeing in which order processes are allowed
to enter a critical region
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Vector clocks

Observation
Lamport’s clocks do not guarantee that if C(a)< C(b) that a causally
preceded b.

Concurrent message
transmission using logical
clocks

Observation
Event a: m1 is received at T = 16;
Event b: m2 is sent at T = 20.

Note
We cannot conclude that a causally
precedes b.
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Causal dependency

Definition
We say that b may causally depend on a if ts(a)< ts(b), with:

• for all k , ts(a)[k ]≤ ts(b)[k ] and

• there exists at least one index k ′ for which ts(a)[k ′]< ts(b)[k ′]

Precedence vs. dependency

• We say that a causally precedes b.

• b may causally depend on a, as there may be information from a that is
propagated into b.
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Capturing potential causality

Solution: each Pi maintains a vector VCi

• VCi [i] is the local logical clock at process Pi .

• If VCi [j] = k then Pi knows that k events have occurred at Pj .

Maintaining vector clocks

1. Before executing an event, Pi executes VCi [i]← VCi [i]+1.

2. When process Pi sends a message m to Pj , it sets m’s (vector)
timestamp ts(m) equal to VCi after having executed step 1.

3. Upon the receipt of a message m, process Pj sets
VCj [k ]←max{VCj [k ], ts(m)[k ]} for each k , after which it executes step 1
and then delivers the message to the application.
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Vector clocks: Example

Capturing potential causality when exchanging messages

(a) (b)

Analysis

Situation ts(m2) ts(m4) ts(m2) ts(m2) Conclusion
< >

ts(m4) ts(m4)

(a) (2,1,0) (4,3,0) Yes No m2 may causally precede m4

(b) (4,1,0) (2,3,0) No No m2 and m4 may conflict
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Causally ordered multicasting

Observation
We can now ensure that a message is delivered only if all causally preceding
messages have already been delivered.

Adjustment
Pi increments VCi [i] only when sending a message, and Pj “adjusts” VCj
when receiving a message (i.e., effectively does not change VCj [j]).

Pj postpones delivery of m until:

1. ts(m)[i] = VCj [i]+1
2. ts(m)[k ]≤ VCj [k ] for all k ̸= i

Vector clocks 21 / 72
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Causally ordered multicasting

Enforcing causal communication

Example
Take VC3 = [0,2,2], ts(m) = [1,3,0] from P1. What information does P3 have,
and what will it do when receiving m (from P1)?
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Mutual exclusion

Problem
Several processes in a distributed system want exclusive access to some
resource.

Basic solutions

Permission-based: A process wanting to enter its critical region, or access a
resource, needs permission from other processes.

Token-based: A token is passed between processes. The one who has the
token may proceed in its critical region, or pass it on when not
interested.

Overview 23 / 72
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Permission-based, centralized

Simply use a coordinator

(a) (b) (c)

(a) Process P1 asks the coordinator for permission to access a shared
resource. Permission is granted.

(b) Process P2 then asks permission to access the same resource. The
coordinator does not reply.

(c) When P1 releases the resource, it tells the coordinator, which then replies
to P2 .

A centralized algorithm 24 / 72
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Mutual exclusion: Ricart & Agrawala

The same as Lamport except that acknowledgments are not sent
Return a response to a request only when:

• The receiving process has no interest in the shared resource; or
• The receiving process is waiting for the resource, but has lower priority

(known through comparison of timestamps).

In all other cases, reply is deferred, implying some more local administration.
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Mutual exclusion: Ricart & Agrawala

Example with three processes

(a) (b) (c)

(a) Two processes want to access a shared resource at the same moment.
(b) P0 has the lowest timestamp, so it wins.
(c) When process P0 is done, it sends an OK also, so P2 can now go ahead.
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Mutual exclusion: Token ring algorithm

Essence
Organize processes in a logical ring, and let a token be passed between them.
The one that holds the token is allowed to enter the critical region (if it wants
to).

An overlay network constructed as a logical ring with a circulating token
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Decentralized mutual exclusion

Principle
Assume every resource is replicated N times, with each replica having its own
coordinator⇒ access requires a majority vote from m > N/2 coordinators. A
coordinator always responds immediately to a request.

Assumption
When a coordinator crashes, it will recover quickly, but will have forgotten
about permissions it had granted.

A decentralized algorithm 28 / 72
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Decentralized mutual exclusion

How robust is this system?

• Let p =∆t/T be the probability that a coordinator resets during a time
interval ∆t , while having a lifetime of T .

• The probability P[k ] that k out of m coordinators reset during the same
interval is

P[k ] =
(

m
k

)
pk (1−p)m−k

• f coordinators reset⇒ correctness is violated when there is only a
minority of nonfaulty coordinators: when N− (m− f )≥m, or, f ≥ 2m−N.

• The probability of a violation is ∑m
k=2m−N P[k ].
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Decentralized mutual exclusion

Violation probabilities for various parameter values

N m p Violation

8 5 3 sec/hour < 10−5

8 6 3 sec/hour < 10−11

16 9 3 sec/hour < 10−4

16 12 3 sec/hour < 10−21

32 17 3 sec/hour < 10−4

32 24 3 sec/hour < 10−43

N m p Violation

8 5 30 sec/hour < 10−3

8 6 30 sec/hour < 10−7

16 9 30 sec/hour < 10−2

16 12 30 sec/hour < 10−13

32 17 30 sec/hour < 10−2

32 24 30 sec/hour < 10−27

So....
What can we conclude?
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Mutual exclusion: comparison

Messages per Delay before entry
Algorithm entry/exit (in message times)

Centralized 3 2

Distributed 2(N−1) 2(N−1)

Token ring 1, . . . ,∞ 0, . . . ,N−1

Decentralized 2kN +(k −1)N/2+N,k = 1,2, . . . 2kN +(k −1)N/2
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Example: ZooKeeper

Basics (and keeping it simple)

• Centralized server setup
• All client-server communication is nonblocking: a client immediately gets

a response
• ZooKeeper maintains a tree-based namespace, akin to that of a

filesystem
• Clients can create, delete, or update nodes, as well as check existence.

Example: Simple locking with ZooKeeper 32 / 72
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ZooKeeper race condition

Note
ZooKeeper allows a client to be notified when a node, or a branch in the tree,
changes. This may easily lead to race conditions.

Consider a simple locking mechanism

1. A client C1 creates a node /lock .

2. A client C2 wants to acquire the lock but is notified that the associated
node already exists.

3. Before C2 subscribes to a notification, C1 releases the lock, i.e., deletes
/lock .

4. Client C2 subscribes to changes to /lock and blocks locally.

Solution
Use version numbers

Example: Simple locking with ZooKeeper 33 / 72
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ZooKeeper versioning

Notations
• W (n,k)a: request to write a to node n, assuming current version is k .
• R(n,k): current version of node n is k .
• R(n): client wants to know the current value of node n
• R(n,k)a: value a from node n is returned with its current version k .

Example: Simple locking with ZooKeeper 34 / 72
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ZooKeeper locking protocol

It is now very simple

1. lock: A client C1 creates a node /lock .

2. lock: A client C2 wants to acquire the lock but is notified that the
associated node already exists⇒ C2 subscribes to notification on
changes of /lock .

3. unlock: Client C1 deletes node /lock ⇒ all subscribers to changes are
notified.

Example: Simple locking with ZooKeeper 35 / 72
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Election algorithms

Principle
An algorithm requires that some process acts as a coordinator. The question is
how to select this special process dynamically.

Note
In many systems, the coordinator is chosen manually (e.g., file servers). This
leads to centralized solutions⇒ single point of failure.

Teasers

1. If a coordinator is chosen dynamically, to what extent can we speak about
a centralized or distributed solution?

2. Is a fully distributed solution, i.e. one without a coordinator, always more
robust than any centralized/coordinated solution?
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Basic assumptions

• All processes have unique id’s

• All processes know id’s of all processes in the system (but not if they are
up or down)

• Election means identifying the process with the highest id that is up

37 / 72
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Election by bullying

Principle
Consider N processes {P0 , . . . ,PN−1} and let id(Pk ) = k . When a process Pk
notices that the coordinator is no longer responding to requests, it initiates an
election:

1. Pk sends an ELECTION message to all processes with higher identifiers:
Pk+1,Pk+2 , . . . ,PN−1.

2. If no one responds, Pk wins the election and becomes coordinator.

3. If one of the higher-ups answers, it takes over and Pk ’s job is done.

The bully algorithm 38 / 72
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Election by bullying

The bully election algorithm
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Election in a ring

Principle
Process priority is obtained by organizing processes into a (logical) ring. The
process with the highest priority should be elected as coordinator.

• Any process can start an election by sending an election message to its
successor. If a successor is down, the message is passed on to the next
successor.

• If a message is passed on, the sender adds itself to the list. When it gets
back to the initiator, everyone had a chance to make its presence known.

• The initiator sends a coordinator message around the ring containing a
list of all living processes. The one with the highest priority is elected as
coordinator.

A ring algorithm 40 / 72

Coordination Election algorithms

A ring algorithm 40 / 72

Coordination Election algorithms

Election in a ring

Election algorithm using a ring

• The solid line shows the election messages initiated by P6

• The dashed one, the messages by P3

A ring algorithm 41 / 72
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Example: Leader election in ZooKeeper server group

Basics
• Each server s in the server group has an identifier id(s)
• Each server has a monotonically increasing counter tx(s) of the latest

transaction it handled (i.e., series of operations on the namespace).
• When follower s suspects leader crashed, it broadcasts an ELECTION

message, along with the pair (voteID,voteTX ). Initially,
• voteID← id(s)
• voteTX ← tx(s)

• Each server s maintains two variables:
• leader(s): records the server that s believes may be final leader.

Initially, leader(s)← id(s).
• lastTX(s): what s knows to be the most recent transaction.

Initially, lastTX(s)← tx(s).

Example: Leader election in ZooKeeper 42 / 72
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Example: Leader election in ZooKeeper server group

When s∗ receives (voteID,voteTX )

• If lastTX(s∗)< voteTX , then s∗ just received more up-to-date information
on the most recent transaction, and sets

• leader(s∗)← voteID
• lastTX(s∗)← voteTX

• If lastTX(s∗) = voteTX and leader(s∗)< voteID, then s∗ knows as much
about the most recent transaction as what it was just sent, but its
perspective on which server will be the next leader needs to be updated:

• leader(s∗)← voteID

Note
When s∗ believes it should be the leader, it broadcasts ⟨id(s∗), tx(s∗)⟩.
Essentially, we’re bullying.

Example: Leader election in ZooKeeper 43 / 72
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Example: Leader election in Raft

Basics
• We have a (relatively small) group of servers
• A server is in one of three states: follower , candidate, or leader
• The protocol works in terms, starting with term 0
• Each server starts in the follower state.
• A leader is to regularly broadcast messages (perhaps just a simple

heartbeat)

Example: Leader election in Raft 44 / 72
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Example: Leader election in Raft

Selecting a new leader
When follower s∗ hasn’t received anything from the alleged leader s for some
time, s∗ broadcasts that it volunteers to be the next leader, increasing the term
by 1. s∗ enters the candidate state. Then:

• If leader s receives the message, it responds by acknowledging that it is
still the leader. s∗ returns to the follower state.

• If another follower s∗∗ gets the election message from s∗, and it is the first
election message during the current term, s∗∗ votes for s∗. Otherwise, it
simply ignores the election message from s∗. When s∗ has collected a
majority of votes, a new term starts with a new leader.

Observation
By slightly differing the timeout values per follower for deciding when to start
an election, we can avoid concurrent elections, and the election will rapidly
converge.

Example: Leader election in Raft 45 / 72
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Elections by proof of work

Basics
• Consider a potentially large group of processes
• Each process is required to solve a computational puzzle
• When a process solves the puzzle, it broadcasts its victory to the group
• We assume there is a conflict resolution procedure when more than one

process claims victory

Solving a computational puzzle

• Make use of a secure hashing function H(m):

• m is some data; H(m) returns a fixed-length bit string
• computing h = H(m) is computationally efficient
• finding a function H−1 such that m = H−1(H(m)) is computationally

extremely difficult

• Practice: finding H−1 boils down to an extensive trial-and-error procedure

Elections in large-scale systems 46 / 72
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Elections by proof of work

Controlled race
• Assume a globally known secure hash function H∗. Let Hi be the hash

function used by process Pi .

• Task: given a bit string h = Hi (m), find a bit string h̃ such that
h∗ = H∗(Hi (h̃⊙h)) where:

• h∗ is a bit string with K leading zeroes
• h̃⊙h denotes some predetermined bitwise operation on h̃ and h

Observation
By controlling K , we control the difficulty of finding h̃. If p is the probability that
a random guess for h̃ will suffice: p = (1/2)K .

Current practice
In many PoW-based blockchain systems, K = 64

• With K = 64, it takes about 10 minutes on a supercomputer to find h̃

• With K = 64, it takes about 100 years on a laptop to find h̃

Elections in large-scale systems 47 / 72
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Elections by proof of stake

Basics
We assume a blockchain system in which N secure tokens are used:

• Each token has a unique owner

• Each token has a uniquely associated index 1≤ k ≤ N

• A token cannot be modified or copied without this going unnoticed

Principle

• Draw a random number k ∈ {1, . . . ,N}
• Look up the process P that owns the token with index k . P is the next

leader.

Observation
The more tokens a process owns, the higher the probability it will be selected
as leader.
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A solution for wireless networks

A sample network

Essence
Find the node with the highest capacity to select as the next leader.

Elections in wireless environments 49 / 72
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A solution for wireless networks

A sample network
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A solution for wireless networks

A sample network

Essence
A node reports back only the node that it found to have the highest capacity.
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Gossip-based coordination: aggregation

Typical apps

• Data dissemination: Perhaps the most important one. Note that there are
many variants of dissemination.

• Aggregation: Let every node Pi maintain a variable vi . When two nodes
gossip, they each reset their variable to

vi ,vj ← (vi +vj )/2

Result: in the end each node will have computed the average v̄ = ∑i vi/N.

• What happens in the case that initially vi = 1 and vj = 0, j ̸= i?

Aggregation 52 / 72
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Gossip-based coordination: peer sampling

Problem
For many gossip-based applications, you need to select a peer uniformly at
random from the entire network. In principle, this means you need to know all
other peers. Impossible?

Basics
• Each node maintains a list of c references to other nodes

• Regularly, pick another node at random (from the list), and exchange
roughly c/2 references

• When the application needs to select a node at random, it also picks a
random one from from its local list.

Observation
Statistically, it turns out that the selection of a peer from the local list is
indistinguishable from selecting uniformly at random peer from the entire
network
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Gossip-based overlay construction

Essence
Maintain two local lists of neighbors. The lowest is used for providing a
peer-sampling service; the highest list is used to carefully select
application-dependent neighbors.
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Gossip-based overlay construction: a 2D torus

Consider a logical N×N grid, with a node on each point of the grid.

• Every node must maintain a list of c nearest neighbors

• Distance between node at (a1,a2) and (b1,b2) is d1 +d2, with
di =min(N−|ai −bi |, |ai −bi |)

• Every node picks a random other node from its lowest-level list, and
keeps only the closest one in its top-level list.

• Once every node has picked and selected a random node, we move to
the next round

start (N = 50) after 5 rounds after 20 rounds
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A gossip-based 2D torus in Python (outline)

1 def maintainViews():
2 for viewType in [viewOverlay, viewPSS]: # For each view, do the same
3 peer[viewType] = None
4 if time to maintain viewType: # This viewType needs to be updated
5 peer[viewType] = selectPeer(viewType) # Select a peer
6 links = selectLinks(viewType, peer[viewType]) # Select links
7 sendTo(peer[viewType], Request[viewType], links) # Send links asynchronously
8

9 while True:
10 block = (peer[viewOverlay] != None) or (peer[viewPSS] != None)
11 sender, msgType, msgData = recvFromAny(block) # Block if expecting something
12

13 if msg == None: # All work has been done, simply return from the call
14 return
15

16 for viewType in [viewOverlay, viewPSS]: # For each view, do the same
17 if msgType == Response[viewType]: # Response to previously sent links
18 updateOwnView(viewType, msgData) # Just update the own view
19

20 elif msgType == Request[viewType]: # Request for exchanging links
21 if peer[viewType] == None: # No outstanding exchange request
22 links = selectLinks(viewType, sender) # Select links
23 sendTo(sender, Response[viewType], links) # Send them asynchronously
24 updateOwnView(viewType,msgData) # Update own view
25 else: # This node already has a pending exchange request, ignore this one
26 sendTo(sender, IgnoreRequest[viewType])
27

28 elif msgType == IgnoreRequest[viewType]: # Request has been denied, give up
29 peer[viewType] = None
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Secure gossiping

Dramatic attack
Consider when exchanging references, a set of colluding nodes systematically
returns links only to each other⇒ we are dealing with hub attack.

Situation
A network with 100,000 nodes, a local list size c = 30, and only 30 attackers.
The y-axis shows the number of nodes with links only to the attackers. After
less than 300 rounds, the attackers have full control.
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A solution: gathering statistics

This is what measuring indegree distributions tells us: which fraction of nodes
(y-axis) have how many other nodes pointing to them (x-axis)?

Basic approach
When a benign node initiates an exchange, it may either use the result for
gathering statistics, or for updating its local list. An attacker is in limbo: will its
response be used for statistical purposes or for functional purposes?

Observation
When gathering statistics may reveal colluders, a colluding node will be forced
to behave according to the protocol.
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Distributed event matching

Principle

• A process specifies in which events it is interested (subscription S)

• When a process publishes a notification N we need to see whether S
matches N.

Hard part
Implementing the match function in a scalable manner.
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General approach

What is needed
• sub2node(S): map a subscription S to a nonempty subset S of servers
• not2node(N): map a notification N to a nonempty subset N of servers

Make sure that S∩N ̸= /0.

Observations
• Centralized solution is simple: S = N = {s}, i.e. a single server.

• Topic-based publish-subscribe is also simple: each S and N is tagged
with a single topic; each topic is handled by a single server (a
rendezevous node). Several topics may be handled by same server).

• Content-based publish-subscribe is tough: a subscription takes the form
(attribute, value) pair, with example values:

• range: “1≤ x < 10”
• containment: “x ∈ {red ,blue}”
• prefix and suffix expressions: “url.startswith("https")”
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Selective routing

(a) (b)

(a) first broadcast subscriptions

(b) forward notifications only to relevant rendezvous nodes

Example of a (partially filled) routing table

Interface Filter

To node 3 a ∈ [0,3]
To node 4 a ∈ [2,5]
Toward router R1 (unspecified)
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Gossiping: Sub-2-Sub

Basics
• Goal: To realize scalability, make sure that subscribers with the same

interests form just a single group
• Model: There are N attributes a1, . . . ,aN . An attribute value is always

(mappable to) a floating-point number.
• Subscription: Takes forms such as S = ⟨a1→ 3.0,a4→ [0.0, 0.5)⟩: a1

should be 3.0; a4 should lie between 0.0 and 0.5; other attribute values
don’t matter.

Observations
• A subscription Si specifies a subset Si in a N-dimensional space.
• We are interested only in notifications that fall into S = ∪Si.

Goal
Partition S into M disjoint subspaces S1, . . . ,SM such that

• Partitioning: ∀k ̸= m : Sk∩Sm = /0 and ∪m Sm = S
• Subscription coverage: (Sm∩Si ̸= /0)⇒ (Sm ⊆ Si)
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Gossiping: Sub-2-Sub

Consider a single attribute

• Nodes regularly exchange their subscriptions through gossiping

• An intersection between two nodes leads to a mutual reference

• If Sijk = Si∩Sj∩Sk ̸= /0 and Sij−Sijk ̸= /0, then:

• nodes i , j , k are grouped into a single overlay network (for Sijk)
• nodes i , j are grouped into a single overlay network (for Sij−Sijk)
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Secure publish-subscribe

We are facing nasty dilemma’s

• Referential decoupling: messages should be able to flow from a publisher
to subscribers while guaranteeing mutual anonymity⇒ we cannot set up
a secure channel.

• Not knowing where messages come from imposes integrity problems.

• Assuming a trusted broker may easily be practically impossible, certainly
when dealing with sensitive information⇒ we now have a routing
problem.

Solution
• Allow for searching (and matching) on encrypted data, without the need

for decryption.

• PEKS: accompany encryptyed messages with a collection of (again
encrypted) keywords and search for matches on keywords.
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Public-Key Encryption with Keyword Search (PEKS)

Basics
• Use a public key PK , message m and its n keywords KW1, . . . ,KWn are

stored at a server as the message m∗:

m∗ = [PK (m)|PEKS(PK ,KW1)|PEKS(PK ,KW2)| · · · |PEKS(PK ,KWn)]

• A subscriber gets the accompanying secret key.

• For each keyword KWi , a trapdoor TKWi
is generated: TW (m∗) will return

true iff W ∈ {KW1, . . . ,KWn}.

KW ∗
i = PEKS(PK ,KWi )
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Coordination Location systems

Positioning nodes

Issue
In large-scale distributed systems in which nodes are dispersed across a
wide-area network, we often need to take some notion of proximity or distance
into account⇒ it starts with determining a (relative) location of a node.
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Computing position

Observation
A node P needs d +1 landmarks to compute its own position in a
d-dimensional space. Consider two-dimensional case.

Computing a position in 2D Solution
P needs to solve three equations in
two unknowns (xP ,yP ):

di =
√
(xi −xP)

2 +(yi −yP)
2
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Global Positioning System

Assuming that the clocks of the satellites are accurate and
synchronized

• It takes a while before a signal reaches the receiver
• The receiver’s clock is definitely out of sync with the satellite

Basics
• ∆r : unknown deviation of the receiver’s clock.
• xr , yr , zr : unknown coordinates of the receiver.
• Ti : timestamp on a message from satellite i
• ∆i = (Tnow −Ti )+∆r : measured delay of the message sent by satellite i .
• Measured distance to satellite i : c×∆i (c is speed of light)
• Real distance: di = c∆i −c∆r =

√
(xi −xr )2 +(yi −yr )2 +(zi −zr )2

Observation
4 satellites⇒ 4 equations in 4 unknowns (with ∆r as one of them)
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WiFi-based location services

Basic idea
• Assume we have a database of known access points (APs) with

coordinates
• Assume we can estimate distance to an AP
• Then: with 3 detected access points, we can compute a position.

War driving: locating access points

• Use a WiFi-enabled device along with a GPS receiver, and move through
an area while recording observed access points.

• Compute the centroid: assume an access point AP has been detected at
N different locations {x⃗1, x⃗2, . . . , x⃗N}, with known GPS location.

• Compute location of AP as x⃗AP = ∑N
i=1 x⃗i
N .

Problems
• Limited accuracy of each GPS detection point x⃗i
• An access point has a nonuniform transmission range
• Number of sampled detection points N may be too low.
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Computing position

Problems
• Measured latencies to

landmarks fluctuate

• Computed distances will not
even be consistent

Inconsistent distances in 1D space

Solution: minimize errors
• Use N special landmark nodes L1, . . . ,LN .
• Landmarks measure their pairwise latencies d̃(Li ,Lj )
• A central node computes the coordinates for each landmark, minimizing:

N

∑
i=1

N

∑
j=i+1

(
d̃(Li ,Lj )− d̂(Li ,Lj )

d̃(Li ,Lj )

)2

where d̂(Li ,Lj ) is distance after nodes Li and Lj have been positioned.
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Computing position

Choosing the dimension m
The hidden parameter is the dimension m with N > m. A node P measures its
distance to each of the N landmarks and computes its coordinates by
minimizing

N

∑
i=1

(
d̃(Li ,P)− d̂(Li ,P)

d̃(Li ,P)

)2

Observation
Practice shows that m can be as small as 6 or 7 to achieve latency estimations
within a factor 2 of the actual value.
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Vivaldi

Principle: network of springs exerting forces
Consider a collection of N nodes P1, . . . ,PN , each Pi having coordinates x⃗i .
Two nodes exert a mutual force:

F⃗ij =
(
d̃(Pi ,Pj )− d̂(Pi ,Pj )

)
×u(x⃗i − x⃗j )

with u(x⃗i − x⃗j ) is the unit vector in the direction of x⃗i − x⃗j

Node Pi repeatedly executes steps

1. Measure the latency d̃ij to node Pj , and also receive Pj ’s coordinates x⃗j .
2. Compute the error e = d̃(Pi ,Pj )− d̂(Pi ,Pj )

3. Compute the direction u⃗ = u(x⃗i − x⃗j ).
4. Compute the force vector Fij = e · u⃗
5. Adjust own position by moving along the force vector: x⃗i ← x⃗i +δ · u⃗.

Logical positioning of nodes 72 / 72

Coordination Location systems

Logical positioning of nodes 72 / 72


