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Security Introduction to security

Dependability

Basics
A dependable system provides availability, reliability, safety, maintainability,
confidentiality, and integrity.

• Confidentiality: refers to the property that information is disclosed only to
authorized parties.

• Integrity: alterations to a system’s assets can be made only in an
authorized way, ensuring accuracy and completeness.

Alternative
We attempt to protect against security threats:

1. Unauthorized information disclosure (confidentiality)

2. Unauthorized information modification (integrity)

3. Unauthorized denial of use (availability)
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Security mechanisms

• Encryption: transform data to something an attacker cannot understand,
or that can be checked for modificatons.

• Authentication: verify a claimed identity.

• Authorization: check an authenticated entity whether it has the proper
rights to access resources.

• Monitoring and auditing: (continuously) trace access to resources
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Security principles

• Fail-safe defaults: defaults should already provide good protection.
Infamous example: the default “admin,admin” for edge devices.

• Open design: do not apply security by obscurity: every aspect of a
distributed system is open for review.

• Separation of privilege: ensure that critical aspects of a system can never
be fully controlled by just a single entity.

• Least privilege: a process should operate with the fewest possible
privileges.

• Least common mechanism: if multiple components require the same
mechanism, then they should all be offered the same implementation of
that mechanism.
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Where to implement security mechanisms?

Observation
We are increasingly seeing end-to-end security, meaning that mechanisms are
implemented at the level of applications.

Issue: which layer do we trust?
Trusted Computing Base: The set of all security mechanisms in a (distributed)
computer system that are necessary and sufficient to enforce a security policy.
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On privacy

Observation
Privacy and confidentiality are closely related, yet are different. Privacy can be
invaded, whereas confidentiality can be breached ⇒ ensuring confidentiality is
not enough to guarantee privacy.

Right to privacy
The right to privacy is about “a right to appropriate flow of personal information.”
Control who gets to see what, when, and how ⇒ a person should be able to
stop and revoke a flow of personal information.

General Data Protection Regulation (GDPR)
The GDPR is a comprehensive set of regulations aiming to protect personal
data.
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GDPR: Database perspective

GDPR regulation Impact on database systems
Attributes Actions

Collect data for explicit purposes Purpose Metadata indexing

Do not store data indefinitely TTL Timely deletion

Inform customers about GDPR metadata
associated with their data

Purpose, TTL,
Origin, Sharing

Metadata indexing

Allow customers to access their data Person id Metadata indexing

Allow customers to erase their data TTL Timely deletion

Do not use data for objected reasons Objections Metadata indexing

Allow customers to withdraw from
algorithmic decision-making

Automated
decisions

Metadata indexing

Safeguard and restrict access to data Access control

Do not grant unlimited access to data Access control

Audit operations on personal data Audit trail Monitor and log

Implement appropriate data security Encryption

Share audit trails from affected systems Audit trail Monitor and log
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Cryptography

Basic concepts

• Plaintext: the original message or data (P)

• Ciphertext: the encrypted version of the the plaintext (C)

• Encryption key: input EK to a function for encryption: C = EK (P)

• Decryption key: input DK to a function for decryption: P = DK (C)
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Cryptosystems

Symmetric : if P = DK (EK (P)) then DK = EK .

Asymmetric : if P = DK (EK (P)) then DK ̸= EK .

Also called public-key systems with a publicly known key PK and
secret key SK

Examples
Let PKX denote public key of X and SKX the associated secret key.

Confidential message : if m is to be kept private: C = PKreceiver (m).

Authenticated message : if m is to be authenticated: C = SKsender (m).

Homomorphic encryption
Mathematical operations on plaintext can be performed on the corresponding
ciphertext: if x and y are two numbers, then

EK (x)⋆EK (y) = EK (x ⋆y)
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Hash functions

Description
A hash function H takes a message m of arbitrary length as input and
produces a bit string h having a fixed length as output:

h = H(m) with length of h fixed.

Example: digital signature
Alice computes a digest from m; encrypts the digest with her private key;
encrypted digest is sent along with m to Bob:

Alice: send [m,sig] with sig = SKA(H(m)).

Bob decrypts digest with Alice’s public key; separately calculates the message
digest. If both match, Bob knows the message has been signed by Alice:

Bob: receive [m,sig], compute h′ = H(m) and verify h′ = PKA(sig).
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Key management

Essence
How do Alice and Bob get the correct (often shared) keys so that they can set
up secure channels?

Diffie-Hellman key exchange
Assume two large, nonsecret numbers p and g (with specific mathematical
properties):
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DH key exchange: example

Multiparty computation
Can we protect private data while computing statistics? Who has the highest
salary without revealing salaries? Can we compute the number of votes cast
for a specific candidate without revealing who voted for whom?

Oblivious transfer
Alice has n secret messages m1, . . . ,mn. Bob is interested (and allowed) to
know only message mi . Which message he wants to know should be kept
secret to Alice; all messages mj ̸= mi should be kept secret to Bob.

Solution
Bob generates a number Q that Alice, in turn, uses to generate n different
encryption keys PK1, . . . ,PKn: m∗

i = PKi (mi )

Bob uses Q to generate a decryption key SKi that matches only PKi . When
Bob receives m∗

1, . . . ,m
∗
n he can decrypt only m∗

i . SKi (m∗
j ) (with i ̸= j) will fail.
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1-out-of-2 oblivious transfer

Analysis

• c = 0 ⇒ Q = gy ,AK1 = BK = gxy ,AK2 = gxy−x2
.

• c = 1 ⇒ Q = gx+y ,AK1 = gx2+xy ,AK2 = BK = gxy .
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Example, continued

Preliminaries
• P1 and P2 need to compute F (a,b).

• Parameter a is secret and known only to P1; secret b known only to P2 .

• a ∈ X and b ∈ Y; X and Y are finite.

• Construct a |X|× |Y| matrix F.

• F[i , j] = F (xi ,yj ) for each pair (xi ,yj ) ∈ X×Y.

Solution
• P1 generates |X| · |Y| unique key pairs (Ki ,Kj )

• Construct F∗[i , j] = Ki (Kj (F (xi ,xj ))). Assume a = xi ).

• P1 permutes F∗ and sends it along with Ki to P2

• P1 sends Q using a 1-out-of-|Y| oblivious transfer.

• Assume b = yj . Using Q, P2 can construct Kj , and only Kj

• P2 decrypts F∗[i , j], corresponding to F (a,b).
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What is needed to distribute keys

Symmetric-key distribution

Observation
In general, we will need a secure channel to distribute the secret key to the
communicating parties.
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What is needed to distribute keys

Public-key distribution

Observation
No need for a scure channel in the case of the public key, but you do need to
know that the key is authentic ⇒ have the public key be signed by a
certification authority. Note, we do need to trust that authority, or otherwise
make sure that its signature can be verified as well.
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Authentication

Essence
Verifying the claimed identity of a person, a software component, a device, and
so on.

Means of authentication

1. Based on what a client knows, such as a password or a personal
identification number.

2. Based on what a client has, such as an ID card, cell phone, or software
token.

3. Based on what a client is, i.e., static biometrics such as a fingerprint or
facial characteristics.

4. Based on what a client does, i.e., dynamic biometrics such as voice
patterns or typing patterns.
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Authentication versus message integrity

Observation
Authentication without integrity (and vice versa) is meaningles:

• Consider a system that supports authentication but no mechanisms to
ensure message integrity. Bob may know for sure that Alice sent m, but
how useful is that if he doesn’t know that m may have been modified?

• Consider a system that guarantees message integrity, but does not
provide authentication. Can Bob be happy with a guaranteed unmodified
message that states he just won $1,000,000?
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Using a shared secret key

Steps

1. Alice announces she wants to talk to Bob.

2. Bob returns a nonce.

3. Alice encrypts the nonce with the shared key KA,B , thus proving that she
owns KA,B ⇒ Bob knows he’s talking to Alice.

4. Alice sends a nonce to Bob.

5. Bob returns proof that he owns the shared secret key as well ⇒ Alice
knows she’s talking to Bob.
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About optimizations

Let’s reduce the num-
ber of messages

We just broke the pro-
tocol
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Using a Key Distribution Center

Basics
Every client has a secret key shared with the KDC.

1. Alice tells the KDC that she wants to talk to Bob

2. The KDC sends a fresh secret key, shared by Alice and Bob
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Using a Key Distribution Center

Basics
Using a ticket is practically better:

1. Alice tells the KDC that she wants to talk to Bob

2. The KDC sends a fresh secret key, shared by Alice and Bob

3. Alice tells Bob that she wants to talk, along with the key to be used.
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The Needham-Schroeder protocol

Important observation
In the case of request-response messages, you want to make sure that the
received response, is associated with the sent request. Mitigates replay
attacks.

General principle
Use nonces to relate any combination of request-response messages.
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Mitigate against reuse of keys

Some observations
• Note how B1 ties message #2 to #5

• Note that by returning RA2 −1 in #6, Bob proves he knows KA,B

• And, likewise, in the case of Alice in #6 (by modifying RB2 ).
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Using public keys

Steps

1. Alice tells Bob she wants to talk, sending a nonce RA, and encrypting the
message with Bob’s public key.

2. Bob generates a shared secret session key KA,B , proves he is the owner
of PKB by decrypting RA, and challenges Alice to prove she owns PKA.

3. Alice decrypts the response, and proves to Bob that she is Alice by then
sending Bob’s nonce back encrypted with the generated session key
KA,B .
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Practical example: Kerberos

Essence

1,2 Alice types in her login name.

3 The Authentication Service returns a ticket KAS,TGS(A,KA,TGS) that she
can use with the Ticket Granting Service.

4,5 To be able to decrypt the message, Alice must type in her password. She
is then logged in. Using the AS in this way, we have a single sign-on
system.

6,7 Alice wants to talk to Bob, and requests the TGS for a session key.
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Transport Layer Security

• G denotes a specific set of parameter settings, called a group (e.g.,
values for p and g).
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Transport Layer Security

• The client uses a nonce RC ; the server uses RS

• H(m1|m2) denotes the hash over the concatenation of m1 and m2
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Security Trust in distributed systems

On trust

Definition
Trust is the assurance that one entity holds that another will perform
particular actions according to a specific expectation.

Important observation

• Expectations have been made explicit ⇒ no need to talk about trust?

• Example: Consider a Byzantine fault-tolerant process group of size n

• Specificiation: the group can tolerate that at most k ≤ (n−1)/3
processes go rogue.

• Realisation: for example PBFT.
• Consequence: if more than k processes fail, all bets are simply off.
• Consequence: it’s not about trust, it’s all about meeting

specifications.

• Observation: if a process group often does not meet its specifications,
one may start to doubt its reliability, but this is something else than
(dis)trusting the system.

Trust in the face of Byzantine failures 29 / 49

Security Trust in distributed systems

Trust in the face of Byzantine failures 29 / 49

Security Trust in distributed systems

Sybil attack

Essence: Just create multiple identities, but owned by one entity

• In the case of a peer-to-peer network:

1 H = set of honest nodes
2 S = set of Sybil nodes
3 A = Attacker node
4 d = minimal fraction of Sybil nodes needed for an attack
5

6 while True:
7 s = A.createNode() # create a Sybil node
8 S.add(s) # add it to the set S
9

10 h = random.choice(H) # pick an arbitrary honets node
11 s.connectTo(h) # connect the new sybil node to h
12

13 if len(S) / len(H) > d: # enough sybil nodes for...
14 A.attack() # ...an attack

• In the case of a Web-of-trust:

• Endorse a public key without an out-of-band check.
• Bob checks with k > 1 others that they have endorsed Alice’s key.
• Alice creates k > 1 identities each stating her key is valid.
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Eclipse attack

Essence: Try to isolate a node from the network
Example: a hub attack in the case of a gossip-based service. In this case,
when exchanging links to other peers, a colluding node returns links only to
other colluders.

Affected node: has links only to colluders.

General solution
Use a centralized certification authority.
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Preventing Sybil attacks: Blockchain solutions

Essence: creating an identity comes at a cost
In the case of permissionless blockchains:

• Proof-of-Work: Let validators run a computational race. This approach
requires considerable computational resources

• Proof-of-Stake: Pick a validator as a function of the number of tokens it
owns. This approach requires risking loss of tokens.
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Preventing Sybil attacks: Decentralized accounting

A simple example

• Each node P maintains a list of nodes interested in doing work for P: the
choice set of P (choice(P)).

• Selecting Q ∈ choice(P) depends on Q’s work for others (i.e., its
reputation).

• P maintains a (subjective) view on reputations. Of course, P knows
precisely what it has done for others, and what others have done for P.

• P can compute a capacity (cap(Q):

cap(Q) = max{MF (Q,P)−MF (P,Q),0}

with MF (P,Q) the amount of work that P has, or could have contributed
to work done for Q, including the work done by others.
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Preventing Sybil attacks: Decentralized accounting

Essence: Keep track of work that nodes do for each other

• Assume R directly contributed 3 units of work for Q, and R had processed
7 units for P ⇒ P may have contributed 3 units of work for Q, through R.

• Reasoning: R may never have been able to work for Q, if it had not
worked for P.
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Preventing Sybil attacks: Decentralized accounting

How Sybil attacks are prevented

• Let Q ∈ choice(P) create n Sybil nodes Q∗
1, . . . ,Q

∗
n; Q = Q∗

0

• For work by Q∗
i for Q∗

j to increase cap(Q∗
i ):

1. Q∗
j needs to have worked for some node R

2. R needs to have worked for P

In other words: Q can successfully attack only if it had worked for honest
nodes. Also, honest nodes have to work for Q: the total capacity Tcap(Q)

of the Sybils must grow, with

Tcap(Q) =
n

∑
k=0

cap(Q∗
k )

• Assume that P works 1 unit for Q∗
i ⇒ MF (P,Q∗

i ) increases by 1 unit ⇒
cap(Q∗

i ) drops by 1 unit, and so does Tcap(Q).

• As soon as Tcap(Q) drops to 0, P will look at other nodes.
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Trusting a system: Blockchains

Essence
One needs to know for sure that the information in a blockchain has not been
tampered with: data integrity assurance. Solution: make sure that no change
can go unnoticed (recall: a blockchain is an append-only data structure).

Observation
Any change of block Bk , will affect its hash value, and thus that of Bk+1, which
would then also need to be changed, in turn affecting the hash value of Bk+2 ,
and so on.
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Access control: General model

Authorization
Making sure that authenticated entities have only access to specific resources.

Observation
The reference monitor needs to be tamperproof: it is generally implemented
under full control of the operating system, or a secure server.
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Protection

...against invalid operations ...against unauthorized access

...against unauthorized invokers
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Access control policies

1. Mandatory access control: A central administration defines who gets
access to what.

2. Discretionary access control: The owner of an object can change access
rights, but also who may have access to that object.

3. Role-based access control: Users are not authorized based on their
identity, but based on the role they have within an organization.

4. Attribute-based access control: Attributes of users and of objects they
want to access are considered for deciding on a specific access rule.
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Access control matrix

Theory
Construct a matrix in which M[s,o] describes the access rights subject s has
with respect to object o. Impractical, so use access control lists or capabilities.

Access control list

Capabilities
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Special case: Attribute-based Access Control

Distinguish different classes of attributes:

• User attributes: name, data of birth, current roles, home address,
department, qualifiers obtained, contract status, etc. May also depend on
role (e.g., teacher or student).

• Object attributes: anything – creator, last-modified time, version number,
file type, file size, but also information related to its content.

• Environmental attributes: describe the current state of the system, e.g.,
date and time, current workload, maintenance status, storage properties,
available services, etc.

• Connection attributes provide information on the current session, e.g., IP
address, session duration, available bandwidth and latency estimates,
type and strength of security used.

• Administrative attributes: reflect global policies, e.g., minimal security
settings, general access regulations, and maximum session durations.
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Example: the Policy Machine

Essence
A server maintains sets of (atrribute,value) pairs, distinguishing users,
applications, operations, and objects. At the core, we formulate access control
rules.

Access control rules
• Assignment: A user u can be assigned to an attribute ua: u → ua. An

object to an attribute: o → oa; an attribute to an attribute: ua1 → ua2
(meaning that if u → ua1, then u → ua2 . Leads to rules like
allowed(ua,ops,oa): users assigned to ua are allowed to execute
operations in ops on objects assigned to oa.

• Prohibition: explicitly state what is not allowed, such as
denied(u,ops,os). Also: denied(u,ops,¬os), meaning denial when u
wants to perform o assigned to ops on an object not in os.

• Obligation: automated action upon an event, such as denying copying of
information:

when u reads f ∈ fs then denied(u,{write},¬fs).
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Delegation

What’s the issue?
Alice makes use of an e-mail service provider who stores her mailbox. She is
required to log in to the provider to access her mail. Alice wants to use her own
local mail client. How to allow that mail client to act on behalf of Alice? How to
delegate Alice’s access rights to her mail client?

Observation
It is not a good idea to hand over all user credentials to an application: why
would the application or the machine be trusted? ⇒ use a security proxy.
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Security proxy

How it works

1. Alice passes some rights R to Bob, together with a secret key SKproxy
2. When Bob wants to exercise his rights, he passes the certificate
3. The server wants Bob to prove he knows the secret key
4. Bob proves he does, and thus that Alice had delegated R.
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Example: Open Authorization (OAuth)

Four different roles
• Resource owner: typically an end user.
• Client: an application that one would like to act on behalf of the resource

owner,
• Resource server: An interface through which a person would normally

access the resource.
• Authorization server: an entity handing out certificates to a client on

behalf of a resource owner.

Initial steps

1. The client application registers itself at the authorization server and
receives its own identifier, cid .

2. Alice wants to delegate a list R of rights ⇒

Client: send [cid ,R,H(S)]

with a hash of a temporary secret S
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Completing the process

Final steps

3. Alice is required to log in and confirm delegation R to the client.

4. Server sends a temporary authorization code AC to client.

5. Client requests a final access token:

Client: sends [cid ,AC,S].

Sending S to the authorization server allows the latter to verify the identity
of the client (by computing H(S).

The authorization server has now (1) verified that Alice wants to delegate
access rights to the client, and (2) has verified the identity of the client ⇒ it
returns an access token to the client.
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Example: decentralized authorization

WAVE (and keeping it very simple)
Essence: Alice delegates rights to Bob, Bob delegates some of those rights to
Chuck.

• When Check wants to exercise his rights, there should be no need for
Alice or Bob to be online.

• No one but Alice, Bob, and Chuck need to be aware of the delegation.

Essentials
Alice delegates rights R to Bob, for which he creates a keypair (PK R

B ,SK R
B ):

A sends: PK R
B ([R|SK R

A ]
︸ ︷︷ ︸

m1

))

Bob delegates parts of those rights R′ to Chuck, assuming he is allowed to do
so:

B sends: PK R′
C ([R′|m1|SK R

B ]
︸ ︷︷ ︸

m2

)
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Security Monitoring

Firewalls

Essence
Simply prevent anything nasty coming in, but also preventing unwanted
outbound traffic.

Different types of firewalls
• Packet-filtering gateway: operates as a router and makes filters packets

based on source and destination address.
• Application-level gateway: inspects the content of an incoming or

outgoing message (e.g., gateways filtering spam e-mail).
• Proxy gateway: works as a front end to an application, filtering like an

application-level gateway (e.g., Web proxies).
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Intrusion detection systems

Two flavors
• Signature-based: matches against patterns of known network-level

intrusions. Problematic when series of packets need to be matched, or
when new attacks take place.

• Anomaly-based: assumes that we can model or extract typical behavior
to subsequently detect nontypical, or anomalous behavior. Relies heavily
on modern artificial-intelligence technologies.

Using sensors
Key idea is to manage false and true positives (FP/TP) as well as false and
true negatives (FN/TN). Maximize accuracy and precision:

Accuracy:
TP+TN

TP+TN+FP+FN

Precision:
TP

TP+FP
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