
Distributed Systems
(4th edition, version 01)

Chapter 02: Architectures

1 / 46

Architectures Architectural styles

Architectural styles

Basic idea
A style is formulated in terms of

• (replaceable) components with well-defined interfaces
• the way that components are connected to each other
• the data exchanged between components
• how these components and connectors are jointly configured into a

system.

Connector
A mechanism that mediates communication, coordination, or cooperation
among components. Example: facilities for (remote) procedure call,
messaging, or streaming.

2 / 46

Architectures Architectural styles

2 / 46

Architectures Architectural styles

Layered architecture

Different layered organizations

(a) (b) (c)

Layered architectures 3 / 46

Architectures Architectural styles

Layered architectures 3 / 46



Architectures Architectural styles

Example: communication protocols

Protocol, service, interface

Layered architectures 4 / 46

Architectures Architectural styles

Layered architectures 4 / 46

Architectures Architectural styles

Two-party communication

Server
1 from socket import *
2

3 s = socket(AF_INET, SOCK_STREAM)
4 (conn, addr) = s.accept() # returns new socket and addr. client
5 while True: # forever
6 data = conn.recv(1024) # receive data from client
7 if not data: break # stop if client stopped
8 msg = data.decode()+"*" # process the incoming data into a response
9 conn.send(msg.encode()) # return the response

10 conn.close() # close the connection

Client
1 from socket import *
2

3 s = socket(AF_INET, SOCK_STREAM)
4 s.connect((HOST, PORT)) # connect to server (block until accepted)
5 msg = "Hello World" # compose a message
6 s.send(msg.encode()) # send the message
7 data = s.recv(1024) # receive the response
8 print(data.decode()) # print the result
9 s.close() # close the connection

Layered architectures 5 / 46

Architectures Architectural styles

Layered architectures 5 / 46

Architectures Architectural styles

Application Layering

Traditional three-layered view

• Application-interface layer contains units for interfacing to users or
external applications

• Processing layer contains the functions of an application, i.e., without
specific data

• Data layer contains the data that a client wants to manipulate through the
application components

Observation
This layering is found in many distributed information systems, using traditional
database technology and accompanying applications.

Layered architectures 6 / 46

Architectures Architectural styles

Layered architectures 6 / 46



Architectures Architectural styles

Application Layering

Example: a simple search engine

Layered architectures 7 / 46

Architectures Architectural styles

Layered architectures 7 / 46

Architectures Architectural styles

Object-based style

Essence
Components are objects, connected to each other through procedure calls.
Objects may be placed on different machines; calls can thus execute across a
network.

Encapsulation
Objects are said to encapsulate data and offer methods on that data without
revealing the internal implementation.

Service-oriented architectures 8 / 46

Architectures Architectural styles

Service-oriented architectures 8 / 46

Architectures Architectural styles

RESTful architectures

Essence
View a distributed system as a collection of resources, individually managed by
components. Resources may be added, removed, retrieved, and modified by
(remote) applications.

1. Resources are identified through a single naming scheme
2. All services offer the same interface
3. Messages sent to or from a service are fully self-described
4. After executing an operation at a service, that component forgets

everything about the caller

Basic operations

Operation Description

PUT Create a new resource

GET Retrieve the state of a resource in some representation

DELETE Delete a resource

POST Modify a resource by transferring a new state

Service-oriented architectures 9 / 46

Architectures Architectural styles

Service-oriented architectures 9 / 46



Architectures Architectural styles

Example: Amazon’s Simple Storage Service

Essence
Objects (i.e., files) are placed into buckets (i.e., directories). Buckets cannot be
placed into buckets. Operations on ObjectName in bucket BucketName
require the following identifier:

http://BucketName.s3.amazonaws.com/ObjectName

Typical operations
All operations are carried out by sending HTTP requests:

• Create a bucket/object: PUT, along with the URI
• Listing objects: GET on a bucket name
• Reading an object: GET on a full URI

Service-oriented architectures 10 / 46

Architectures Architectural styles

Service-oriented architectures 10 / 46

Architectures Architectural styles

On interfaces

Issue
Many people like RESTful approaches because the interface to a service is so
simple. The catch is that much needs to be done in the parameter space.

Amazon S3 SOAP interface

Service-oriented architectures 11 / 46

Architectures Architectural styles

Service-oriented architectures 11 / 46

Architectures Architectural styles

On interfaces

Simplifications
Assume an interface bucket offering an operation create, requiring an input
string such as mybucket, for creating a bucket “mybucket.”

SOAP
import bucket
bucket.create("mybucket")

RESTful
PUT "https://mybucket.s3.amazonsws.com/"

Conclusions
Are there any to draw?

Service-oriented architectures 12 / 46

Architectures Architectural styles

Service-oriented architectures 12 / 46



Architectures Architectural styles

Coordination

Temporal and referential coupling

Temporally coupled Temporally coupled
Referentially coupled Direct Mailbox

Referentially decoupled Event-based Shared data space

Event-based and Shared data space

Publish-subscribe architectures 13 / 46

Architectures Architectural styles

Publish-subscribe architectures 13 / 46

Architectures Architectural styles

Example: Linda tuple space

Three simple operations

• in(t): remove a tuple matching template t
• rd(t): obtain copy of a tuple matching template t
• out(t): add tuple t to the tuple space

More details
• Calling out(t) twice in a row, leads to storing two copies of tuple t⇒ a

tuple space is modeled as a multiset.
• Both in and rd are blocking operations: the caller will be blocked until a

matching tuple is found, or has become available.

Publish-subscribe architectures 14 / 46

Architectures Architectural styles

Publish-subscribe architectures 14 / 46

Architectures Architectural styles

Example: Linda tuple space

Bob:

1 import linda
2 linda.connect()
3

4 blog = linda.TupleSpace()
5 linda.universe._out(("MicroBlog",blog))
6

7 blog = linda.universe._rd(("MicroBlog",linda.TupleSpace))[1]
8

9 blog._out(("bob","distsys","I am studying chap 2"))
10 blog._out(("bob","distsys","The linda example’s pretty simple"))
11 blog._out(("bob","gtcn","Cool book!"))

Alice:

1 import linda
2 linda.connect()
3

4 blog = linda.universe._rd(("MicroBlog",linda.TupleSpace))[1]
5

6 blog._out(("alice","gtcn","This graph theory stuff is not easy"))
7 blog._out(("alice","distsys","I like systems more than graphs"))

Chuck:

1 import linda
2 linda.connect()
3

4 blog = linda.universe._rd(("MicroBlog",linda.TupleSpace))[1]
5

6 t1 = blog._rd(("bob","distsys",str))
7 t2 = blog._rd(("alice","gtcn",str))
8 t3 = blog._rd(("bob","gtcn",str))
9

10 print t1
11 print t2
12 print t3

Publish-subscribe architectures 15 / 46

Architectures Architectural styles

Publish-subscribe architectures 15 / 46



Architectures Architectural styles

Publish and subscribe

Issue: how to match events?
• Assume events are described by (attribute,value) pairs
• topic-based subscription: specify a “attribute = value” series
• content-based subscription: specify a “attribute ∈ range” series

Observation
Content-based subscriptions may easily have serious scalability problems
(why?)

Publish-subscribe architectures 16 / 46

Architectures Architectural styles

Publish-subscribe architectures 16 / 46

Architectures Middleware and distributed systems

Middleware: the OS of distributed systems

What does it contain?
Commonly used components and functions that need not be implemented by
applications separately.

17 / 46

Architectures Middleware and distributed systems

17 / 46

Architectures Middleware and distributed systems

Using legacy to build middleware

Problem
The interfaces offered by a legacy component are most likely not suitable for all
applications.

Solution
A wrapper or adapter offers an interface acceptable to a client application. Its
functions are transformed into those available at the component.

Middleware organization 18 / 46

Architectures Middleware and distributed systems

Middleware organization 18 / 46



Architectures Middleware and distributed systems

Organizing wrappers

Two solutions: 1-on-1 or through a broker

Complexity with N applications

• 1-on-1: requires N × (N −1) = O(N2) wrappers

• broker: requires 2N = O(N) wrappers

Middleware organization 19 / 46

Architectures Middleware and distributed systems

Middleware organization 19 / 46

Architectures Middleware and distributed systems

Developing adaptable middleware

Problem
Middleware contains solutions that are good for most applications ⇒ you may
want to adapt its behavior for specific applications.

Middleware organization 20 / 46

Architectures Middleware and distributed systems

Middleware organization 20 / 46

Architectures Middleware and distributed systems

Intercept the usual flow of control

Middleware organization 21 / 46

Architectures Middleware and distributed systems

Middleware organization 21 / 46



Architectures Layered-system architectures

Centralized system architectures

Basic Client–Server Model
Characteristics:

• There are processes offering services (servers)
• There are processes that use services (clients)
• Clients and servers can be on different machines
• Clients follow request/reply model regarding using services

Simple client-server architecture 22 / 46

Architectures Layered-system architectures

Simple client-server architecture 22 / 46

Architectures Layered-system architectures

Multi-tiered centralized system architectures

Some traditional organizations

• Single-tiered: dumb terminal/mainframe configuration
• Two-tiered: client/single server configuration
• Three-tiered: each layer on separate machine

Traditional two-tiered configurations

(a) (b) (c) (d) (e)

Multitiered Architectures 23 / 46

Architectures Layered-system architectures

Multitiered Architectures 23 / 46

Architectures Layered-system architectures

Being client and server at the same time

Three-tiered architecture

Multitiered Architectures 24 / 46

Architectures Layered-system architectures

Multitiered Architectures 24 / 46



Architectures Layered-system architectures

Example: The Network File System

Foundations
Each NFS server provides a standardized view of its local file system: each
server supports the same model, regardless the implementation of the file
system.

The NFS remote access model

Remote access Upload/download
Note
FTP is a typical upload/download model. The same can be said for systems
like Dropbox.

Example: The Network File System 25 / 46

Architectures Layered-system architectures

Example: The Network File System 25 / 46

Architectures Layered-system architectures

NFS architecture

Example: The Network File System 26 / 46

Architectures Layered-system architectures

Example: The Network File System 26 / 46

Architectures Layered-system architectures

Example: Simple Web servers

Back in the old days...

...life was simple:

• A website consisted as a collection of HTML files
• HTML files could be referred to each other by a hyperlink
• A Web server essentially needed only a hyperlink to fetch a file
• A browser took care of properly rendering the content of a file

Example: The Web 27 / 46

Architectures Layered-system architectures

Example: The Web 27 / 46



Architectures Layered-system architectures

Example (cnt’d): Less simple Web servers

Still back in the old days...

...life became a bit more complicated:

• A website was built around a database with content
• A Webpage could still be referred to by a hyperlink
• A Web server essentially needed only a hyperlink to fetch a file
• A separate program (Common Gateway Interface) composed a page
• A browser took care of properly rendering the content of a file

Example: The Web 28 / 46

Architectures Layered-system architectures

Example: The Web 28 / 46

Architectures Symmetrically distributed system architectures

Alternative organizations

Vertical distribution
Comes from dividing distributed applications into three logical layers, and
running the components from each layer on a different server (machine).

Horizontal distribution
A client or server may be physically split up into logically equivalent parts, but
each part is operating on its own share of the complete data set.

Peer-to-peer architectures
Processes are all equal: the functions that need to be carried out are
represented by every process ⇒ each process will act as a client and a server
at the same time (i.e., acting as a servant).

29 / 46

Architectures Symmetrically distributed system architectures

29 / 46

Architectures Symmetrically distributed system architectures

Structured P2P

Essence
Make use of a semantic-free index: each data item is uniquely associated with
a key, in turn used as an index. Common practice: use a hash function

key(data item) = hash(data item’s value).

P2P system now responsible for storing (key,value) pairs.

Simple example: hypercube

Looking up d with key k ∈ {0,1,2, . . . ,24 −1} means routing request to node
with identifier k .

Structured peer-to-peer systems 30 / 46

Architectures Symmetrically distributed system architectures

Structured peer-to-peer systems 30 / 46



Architectures Symmetrically distributed system architectures

Example: Chord

Principle

• Nodes are logically organized in a ring. Each node has an m-bit identifier.
• Each data item is hashed to an m-bit key.
• Data item with key k is stored at node with smallest identifier id ≥ k ,

called the successor of key k .
• The ring is extended with various shortcut links to other nodes.

Structured peer-to-peer systems 31 / 46

Architectures Symmetrically distributed system architectures

Structured peer-to-peer systems 31 / 46

Architectures Symmetrically distributed system architectures

Example: Chord

lookup(3)@9 : 28 → 1 → 4
Structured peer-to-peer systems 32 / 46

Architectures Symmetrically distributed system architectures

Structured peer-to-peer systems 32 / 46

Architectures Symmetrically distributed system architectures

Unstructured P2P

Essence
Each node maintains an ad hoc list of neighbors. The resulting overlay
resembles a random graph: an edge ⟨u,v⟩ exists only with a certain probability
P[⟨u,v⟩].

Searching

• Flooding: issuing node u passes request for d to all neighbors. Request
is ignored when receiving node had seen it before. Otherwise, v
searches locally for d (recursively). May be limited by a Time-To-Live: a
maximum number of hops.

• Random walk: issuing node u passes request for d to randomly chosen
neighbor, v . If v does not have d , it forwards request to one of its
randomly chosen neighbors, and so on.

Unstructured peer-to-peer systems 33 / 46

Architectures Symmetrically distributed system architectures

Unstructured peer-to-peer systems 33 / 46



Architectures Symmetrically distributed system architectures

Flooding versus random walk

Model
Assume N nodes and that each data item is replicated across r randomly
chosen nodes.

Random walk
P[k ] probability that item is found after k attempts:

P[k ] =
r
N
(1− r

N
)k−1.

S (“search size”) is expected number of nodes that need to be probed:

S =
N

∑
k=1

k ·P[k ] =
N

∑
k=1

k · r
N
(1− r

N
)k−1 ≈ N/r for 1 ≪ r ≤ N.

Unstructured peer-to-peer systems 34 / 46

Architectures Symmetrically distributed system architectures

Unstructured peer-to-peer systems 34 / 46

Architectures Symmetrically distributed system architectures

Flooding versus random walk

Flooding

• Flood to d randomly chosen neighbors
• After k steps, some R(k) = d · (d −1)k−1 will have been reached

(assuming k is small).
• With fraction r/N nodes having data, if r

N ·R(k)≥ 1, we will have found
the data item.

Comparison

• If r/N = 0.001, then S ≈ 1000

• With flooding and d = 10,k = 4, we contact 7290 nodes.

• Random walks are more communication efficient, but might take longer
before they find the result.

Unstructured peer-to-peer systems 35 / 46

Architectures Symmetrically distributed system architectures

Unstructured peer-to-peer systems 35 / 46

Architectures Symmetrically distributed system architectures

Super-peer networks

Essence
It is sometimes sensible to break the symmetry in pure peer-to-peer networks:

• When searching in unstructured P2P systems, having index servers
improves performance

• Deciding where to store data can often be done more efficiently through
brokers.

Hierarchically organized peer-to-peer networks 36 / 46

Architectures Symmetrically distributed system architectures

Hierarchically organized peer-to-peer networks 36 / 46



Architectures Symmetrically distributed system architectures

Collaboration: The BitTorrent case

Principle: search for a file F

• Lookup file at a global directory ⇒ returns a torrent file
• Torrent file contains reference to tracker: a server keeping an accurate

account of active nodes that have (chunks of) F .
• P can join swarm, get a chunk for free, and then trade a copy of that

chunk for another one with a peer Q also in the swarm.

Example: BitTorrent 37 / 46

Architectures Symmetrically distributed system architectures

Example: BitTorrent 37 / 46

Architectures Hybrid system architectures

Cloud computing

Cloud computing 38 / 46

Architectures Hybrid system architectures

Cloud computing 38 / 46

Architectures Hybrid system architectures

Cloud computing

Make a distinction between four layers

• Hardware: Processors, routers, power and cooling systems. Customers
normally never get to see these.

• Infrastructure: Deploys virtualization techniques. Evolves around
allocating and managing virtual storage devices and virtual servers.

• Platform: Provides higher-level abstractions for storage and such.
Example: Amazon S3 storage system offers an API for (locally created)
files to be organized and stored in so-called buckets.

• Application: Actual applications, such as office suites (text processors,
spreadsheet applications, presentation applications). Comparable to the
suite of apps shipped with OSes.

Cloud computing 39 / 46

Architectures Hybrid system architectures

Cloud computing 39 / 46



Architectures Hybrid system architectures

Edge-server architecture

Essence
Systems deployed on the Internet where servers are placed at the edge of the
network: the boundary between enterprise networks and the actual Internet.

The edge-cloud architecture 40 / 46

Architectures Hybrid system architectures

The edge-cloud architecture 40 / 46

Architectures Hybrid system architectures

Reasons for having an edge infrastructure

Commonly (and often misconceived) arguments

• Latency and bandwidth: Especially important for certain real-time
applications, such as augmented/virtual reality applications. Many people
underestimate the latency and bandwidth to the cloud.

• Reliability: The connection to the cloud is often assumed to be unreliable,
which is often a false assumption. There may be critical situations in
which extremely high connectivity guarantees are needed.

• Security and privacy: The implicit assumption is often that when assets
are nearby, they can be made better protected. Practice shows that this
assumption is generally false. However, securely handling data
operations in the cloud may be trickier than within your own organization.

The edge-cloud architecture 41 / 46

Architectures Hybrid system architectures

The edge-cloud architecture 41 / 46

Architectures Hybrid system architectures

Edge orchestration

Managing resources at the edge may be trickier than in the cloud

• Resource allocation: we need to guarantee the availability of the
resources required to perform a service.

• Service placement: we need to decide when and where to place a
service. This is notably relevant for mobile applications.

• Edge selection: we need to decide which edge infrastructure should be
used when a service needs to be offered. The closest one may not be the
best one.

Observation
There is still a lot of buzz about edge infrastructures and computing, yet
whether all that buzz makes any sense remains to be seen.

The edge-cloud architecture 42 / 46

Architectures Hybrid system architectures

The edge-cloud architecture 42 / 46



Architectures Hybrid system architectures

Blockchains

Principle working of a blockchain system

Observations
• Blocks are organized into an unforgeable append-only chain
• Each block in the blockchain is immutable ⇒ massive replication
• The real snag lies in who is allowed to append a block to a chain

Blockchain architectures 43 / 46

Architectures Hybrid system architectures

Blockchain architectures 43 / 46

Architectures Hybrid system architectures

Appending a block: distributed consensus

Centralized solution

Observation
A single entity decides on which validator can go ahead and append a block.
Does not fit the design goals of blockchains.

Blockchain architectures 44 / 46

Architectures Hybrid system architectures

Blockchain architectures 44 / 46

Architectures Hybrid system architectures

Appending a block: distributed consensus

Distributed solution (permissioned)

Observation
• A selected, relatively small group of servers jointly reach consensus on

which validator can go ahead.
• None of these servers needs to be trusted, as long as roughly two-thirds

behave according to their specifications.
• In practice, only a few tens of servers can be accommodated.

Blockchain architectures 45 / 46

Architectures Hybrid system architectures

Blockchain architectures 45 / 46



Architectures Hybrid system architectures

Appending a block: distributed consensus

Decentralized solution (permisionless)

Observation
• Participants collectively engage in a leader election. Only the elected

leader is allowed to append a block of validated transactions.
• Large-scale, decentralized leader election that is fair, robust, secure, and

so on, is far from trivial.

Blockchain architectures 46 / 46

Architectures Hybrid system architectures

Blockchain architectures 46 / 46


