Distributed Systems

(4th edition, version 01)

Chapter 01: Introduction

From networked systems to distributed systems From networked systems to distributed systems

Distributed versus Decentralized

What many people state

~

Centralized Decentralized Distributed

When does a decentralized system become distributed?

* Adding 1 link between two nodes in a decentralized system?
® Adding 2 links between two other nodes?
® In general: adding k > 0 links....?

2/53 2/53
From networked systems to distributed systems From networked systems to distributed systems

Alternative approach

Two views on realizing distributed systems

® |ntegrative view: connecting existing networked computer systems into a
larger a system.

® Expansive view: an existing networked computer systems is extended
with additional computers

Two definitions

* A decentralized system is a networked computer system in which
processes and resources are necessarily spread across multiple
computers.

® Adistributed system is a networked computer system in which processes
and resources are sufficiently spread across multiple computers.

3/53 3/53

Some common misconceptions

Centralized solutions do not scale
Make distinction between logically and physically centralized. The root of the

Domain Name System:
* logically centralized

® physically (massively) distributed
* decentralized across several organizations

Centralized solutions have a single point of failure

Generally not true (e.g., the root of DNS). A single point of failure is often:
® easier to manage
® easier to make more robust

Important

There are many, poorly founded, misconceptions regarding scalability, fault
tolerance, security, etc. We need to develop skills by which distributed systems
can be readily understood so as to judge such misconceptions.

Perspectives on distributed systems

Distributed systems are complex: take persepctives

® Architecture: common organizations

® Process: what kind of processes, and their relationships

* Communication: facilities for exchanging data

* Coordination: application-independent algorithms

Naming: how do you identify resources?

* Consistency and replication: performance requires of data, which need to
be the same

® Fault tolerance: keep running in the presence of partial failures

® Security: ensure authorized access to resources

5/53 5/53

Design goals Design goals

What do we want to achieve?

Overall design goals

® Support sharing of resources

e Distribution transparency

* Openness

® Scalability

6/53 6/53

Design goals Design goals

Sharing resources

Canonical examples

® Cloud-based shared storage and files

® Peer-to-peer assisted multimedia streaming

* Shared mail services (think of outsourced mail systems)

* Shared Web hosting (think of content distribution networks)

Observation
“The network is the computer”

(quote from John Gage, then at Sun Microsystems)

7/53 7/53
Distribution transparency
Same interface everywhere
Computer 1 Computer 2 Computer 3 Computer 4
ystem layer
| Local OS 1 | | Local OS 2 | | Local OS 3 | | Local OS 4 |
I I | |
Network
What is transparency?
The phenomenon by which a distributed system attempts to hide the fact that
its processes and resources are physically distributed across multiple
computers, possibly separated by large distances.
Observation
Distribution transparancy is handled through many different techniques in a
layer between applications and operating systems: a middleware layer
8/53 8/53

Distribution transparency

Types

Transparency | Description

Access Hide differences in data representation and how an
object is accessed

Location Hide where an object is located

Relocation Hide that an object may be moved to another location
while in use

Migration Hide that an object may move to another location

Replication Hide that an object is replicated

Concurrency | Hide that an object may be shared by several
independent users

Failure Hide the failure and recovery of an object

9/53 9/53

Design goals Design goals

Degree of transparency

Aiming at full distribution transparency may be too much

® There are communication latencies that cannot be hidden

® Completely hiding failures of networks and nodes is (theoretically and
practically) impossible
* You cannot distinguish a slow computer from a failing one
* You can never be sure that a server actually performed an operation
before a crash

* Full transparency will cost performance, exposing distribution of the
system

* Keeping replicas exactly up-to-date with the master takes time

* Immediately flushing write operations to disk for fault tolerance

10/53 10/53

Design goals Design goals

Degree of transparency

Exposing distribution may be good

* Making use of location-based services (finding your nearby friends)

* When dealing with users in different time zones

* When it makes it easier for a user to understand what’s going on (when
e.g., a server does not respond for a long time, report it as failing).

Conclusion
Distribution transparency is a nice goal, but achieving it is a different story, and
it should often not even be aimed at.

11/53 11/53

Design goals Design goals

Openness of distributed systems

Open distributed system

A system that offers components that can easily be used by, or integrated into
other systems. An open distributed system itself will often consist of
components that originate from elsewhere.

What are we talking about?

Be able to interact with services from other open systems, irrespective of the
underlying environment:

Systems should conform to well-defined interfaces
Systems should easily interoperate

Systems should support portability of applications
Systems should be easily extensible

12/53 12/53

Design goals Design goals

Policies versus mechanisms

Implementing openness: policies

* What level of consistency do we require for client-cached data?

* Which operations do we allow downloaded code to perform?

* Which QoS requirements do we adjust in the face of varying bandwidth?

* What level of secrecy do we require for communication?

Implementing openness: mechanisms

* Allow (dynamic) setting of caching policies

* Support different levels of trust for mobile code

* Provide adjustable QoS parameters per data stream

o Offer different encryption algorithms

13/53 13/53

Design goals Design goals

On strict separation

Observation

The stricter the separation between policy and mechanism, the more we need
to ensure proper mechanisms, potentially leading to many configuration
parameters and complex management.

Finding a balance
Hard-coding policies often simplifies management, and reduces complexity at
the price of less flexibility. There is no obvious solution.

14/53 14/53

Design goals Design goals

Dependability

Basics

A component provides services to clients. To provide services, the component
may require the services from other components = a component may depend
on some other component.

Specifically
A component C depends on C* if the correctness of C’s behavior depends on
the correctness of C*’s behavior. (Components are processes or channels.)

15/53 15/53

Design goals

Dependability

Requirements related to dependability

Requirement

Description

Availability Readiness for usage
Reliability Continuity of service delivery
Safety Very low probability of catastrophes

Maintainability

How easy can a failed system be repaired

Reliability versus availability

Reliability R(t) of component C
Conditional probability that C has been functioning correctly during [0, t) given
C was functioning correctly at the time T = 0.

Traditional metrics

Design goals

16/53

Design goals

® Mean Time To Failure (MTTF): The average time until a component fails.

® Mean Time To Repair (MTTR): The average time needed to repair a

component.

* Mean Time Between Failures (MTBF): Simply MTTF + MTTR.

Terminology

Failure, error, fault

Term Description Example

Failure | A component is not living up to | Crashed program
its specifications

Error Part of a component that can Programming bug
lead to a failure

Fault Cause of an error Sloppy programmer

17/53

Design goals

18/53

16/53

Design goals

17/53

Design goals

18/53

Terminology

Handling faults

Term Description Example
Fault Prevent the occurrence | Don't hire sloppy
prevention of a fault programmers

Fault tolerance

Build a component and
make it mask the

Build each component
by two independent

of a fault

occurrence of a fault programmers
Fault removal Reduce the presence, Get rid of sloppy
number, or seriousness | programmers

Fault
forecasting

Estimate current
presence, future
incidence, and
consequences of faults

Estimate how a
recruiter is doing when
it comes to hiring
sloppy programmers

On security

Observation

A distributed system that is not secure, is not dependable

What we need

* Confidentiality: information is disclosed only to authorized parties

Design goals

19/53

Design goals

® Integrity: Ensure that alterations to assets of a system can be made only
in an authorized way

Authorization, Authentication, Trust

* Authentication: verifying the correctness of a claimed identity
® Authorization: does an identified entity has proper access rights?

* Trust: one entity can be assured that another will perform particular

actions according to a specific expectation

Security mechanisms

Keeping it simple

It's all about encrypting and decrypting data using security keys.

Notation

K(data) denotes that we use key K to encrypt/decrypt data.

20/53

Design goals

21/53

Design goals

19/53

Design goals

20/53

Design goals

21/53

Design goals Design goals

Security mechanisms

Symmetric cryptosystem

With encryption key Ek(data) and decryption key Dy (data):

if data= Dy (Ex(data)) then Dx = Ek. Note: encryption and descryption key
are the same and should be kept secret.

Asymmetric cryptosystem
Distinguish a public key PK(data) and a private (secret) key SK(data).

Sent by Alice

——~
* Encrypt message from Alice to Bob: data = SKpp(PKpop(data))
N—— —

Action by Bob
® Sign message for Bob by Alice:

[data, data L PKaiice(SKaiice(data))] = [data, SKajice(data)]

Check by Bob Sent by Alice

22/53 22/53

Design goals Design goals

Security mechanisms

Secure hashing
In practice, we use secure hash functions: H(data) returns a fixed-length

string.
. gAny change from data to data* will lead to a completely different string
H(data*).
* Given a hash value, it is computationally impossible to find a data with
h= H(data)

Practical digital signatures
Sign message for Bob by Alice:

[data, H(data) = PKajce(sgn)] = [data, H, sgn = SKyjce(H(data))]

Check by Bob Sent by Alice

23/53 23/53

Design goals Design goals

Scale in distributed systems

Observation
Many developers of modern distributed systems easily use the adjective
“scalable” without making clear why their system actually scales.

At least three components

* Number of users or processes (size scalability)

* Maximum distance between nodes (geographical scalability)

* Number of administrative domains (administrative scalability)

Observation

Most systems account only, to a certain extent, for size scalability. Often a
solution: multiple powerful servers operating independently in parallel. Today,
the challenge still lies in geographical and administrative scalability.

24/53 24/53

Design goals Design goals

Size scalability

Root causes for scalability problems with centralized solutions

* The computational capacity, limited by the CPUs
* The storage capacity, including the transfer rate between CPUs and disks

* The network between the user and the centralized service

25/53 25/53

Design goals Design goals

Formal analysis

A centralized service can be modeled as a simple queuing system

Requests —» Response

Queue Process

Assumptions and notations

* The queue has infinite capacity = arrival rate of requests is not
influenced by current queue length or what is being processed.

® Arrival rate requests: 4

® Processing capacity service: u requests per second

Fraction of time having k requests in the system

pe=(1-5) ()"

26/53 26/53

Design goals Design goals

Formal analysis

Utilization U of a service is the fraction of time that it is busy

A
U=Y pe=1-po="=pc=(-U)U"
k>0 K

Average number of requests in the system

= B . K (1-uu_ U
N_Igok~pk_lgok~(1—U)U _(1—U)k);0k~U = GUF-TU

Average throughput

X= Upn +(17U)-0:&-p:l
~N— = U

server at work server idle

27/53 27/53

Design goals Design goals

Formal analysis

Response time: total time take to process a request after submission

g N__ S _R__1_
TXT1T-U07§° 1-U
with Szﬁbeing the service time.

Observations

* |f Uis small, response-to-service time is close to 1: a request is
immediately processed

e |f U goes up to 1, the system comes to a grinding halt.
Solution: decrease S.

28/53 28/53

Design goals Design goals

Problems with geographical scalability

® Cannot simply go from LAN to WAN: many distributed systems assume
synchronous client-server interactions: client sends request and waits for
an answer. Latency may easily prohibit this scheme.

* WAN links are often inherently unreliable: simply moving streaming video
from LAN to WAN is bound to fail.
e Lack of multipoint communication, so that a simple search broadcast

cannot be deployed. Solution is to develop separate naming and directory
services (having their own scalability problems).

29/53 29/53

Design goals Design goals

Problems with administrative scalability

Essence
Conflicting policies concerning usage (and thus payment), management, and
security

Examples

* Computational grids: share expensive resources between different
domains.

® Shared equipment: how to control, manage, and use a shared radio
telescope constructed as large-scale shared sensor network?

Exception: several peer-to-peer networks

® File-sharing systems (based, e.g., on BitTorrent)
® Peer-to-peer telephony (early versions of Skype)

* Peer-assisted audio streaming (Spotify)
Note: end users collaborate and not administrative entities.

30/53 30/53

Design goals Design goals

Techniques for scaling

Hide communication latencies
® Make use of asynchronous communication
® Have separate handler for incoming response

* Problem: not every application fits this model

31/53 31/53
Design goals Design goals
Techniques for scaling
Facilitate solution by moving computations to client
Client Server
FIRST NAME [MAARTEN @, >
LASTNAME [VANSTEEN | =
E-MAIL MVS@VAN-STEEN.NET E@» >
=
@ A -
> 1Y
Check form Process form
Client Server
FIRST NAME
LAST NAME VAn STEN »
E-MAIL MVS@VAN-STEEN.NET
>
A 1Y
\
Check form Process form
32/53 32/53

Design goals Design goals

Techniques for scaling

Partition data and computations across multiple machines

* Move computations to clients (Java applets and scripts)
® Decentralized naming services (DNS)
® Decentralized information systems (WWW)

33/53 33/53

Design goals Design goals

Techniques for scaling

Replication and caching: Make copies of data available at different
machines

* Replicated file servers and databases

® Mirrored Websites
* Web caches (in browsers and proxies)

® File caching (at server and client)

34/53 34/53

Design goals

Design goals

Scaling: The problem with replication

Applying replication is easy, except for one thing

* Having multiple copies (cached or replicated), leads to inconsistencies:
modifying one copy makes that copy different from the rest.

* Always keeping copies consistent and in a general way requires global
synchronization on each modification.

® Global synchronization precludes large-scale solutions.

Observation
If we can tolerate inconsistencies, we may reduce the need for global

synchronization, but tolerating inconsistencies is application dependent.

35/53 35/53

A simple classification of distributed systems A simple classification of distributed systems

Parallel computing

Observation
High-performance distributed computing started with parallel computing

Multiprocessor and multicore versus multicomputer
Private memory

Shared memory

Memory

Processor

36/53 36/53

Distributed shared memory systems

Observation

Multiprocessors are relatively easy to program in comparison to
multicomputers, yet have problems when increasing the number of processors
(or cores). Solution: Try to implement a shared-memory model on top of a
multicomputer.

Example through virtual-memory techniques

Map all main-memory pages (from different processors) into one single virtual
address space. If a process at processor A addresses a page P located at
processor B, the OS at A traps and fetches P from B, just as it would if P had
been located on local disk.

Problem

Performance of distributed shared memory could never compete with that of
multiprocessors, and failed to meet the expectations of programmers. It has
been widely abandoned by now.

37/53 37/53

Cluster computing

Essentially a group of high-end systems connected through a LAN

* Homogeneous: same OS, near-identical hardware
® Single, or tightly coupled managing node(s)

Management
High-speed interconnect node

High-performance
filesystem

Compute node

High-} 38/53 38/53

Grid computing

The next step: plenty of nodes from everywhere

® Heterogeneous

* Dispersed across several organizations

e Can easily span a wide-area network

Note

To allow for collaborations, grids generally use virtual organizations. In
essence, this is a grouping of users (or better: their IDs) that allows for
authorization on resource allocation.

39/53 39/53

Architecture for grid computing

The layers
® Fabric: Provides interfaces to local
resources (for querying state and
capabilities, locking, etc.)

Applications
Collective layer

Connectivity: Communication/transaction
protocols, e.g., for moving data between
resources. Also various authentication
protocols.

* Resource: Manages a single resource,

such as creating processes or reading
data.

Connectivity layer H Resource layer

Fabric layer

Collective: Handles access to multiple
resources: discovery, scheduling,
replication.

Application: Contains actual grid
applications in a single organization.

40/53 40/53

A simple classification of distributed systems A simple classification of distributed systems

Integrating applications

Situation
Organizations confronted with many networked applications, but achieving
interoperability was painful.

Basic approach

A networked application is one that runs on a server making its services
available to remote clients. Simple integration: clients combine requests for
(different) applications; send that off; collect responses, and present a
coherent result to the user.

Next step
Allow direct application-to-application communication, leading to Enterprise
Application Integration.

41/53 41/53

A simple classification of distributed systems A simple classification of distributed systems.
Example EAI: (nested) transactions
Transaction
Primitive Description
BEGIN_TRANSACTION Mark the start of a transaction
END_TRANSACTION Terminate the transaction and try to commit
ABORT_TRANSACTION | Kill the transaction and restore the old values
READ Read data from a file, a table, or otherwise
WRITE Write data to a file, a table, or otherwise

Issue: all-or-nothing

Nested ransaction Atomic: happens indivisibly (seemingly)

Consistent: does not violate system invariants
Isolated: not mutual interference
Durable: commit means changes are permanent

Subtransaction Subtransaction
—

Airline dalabase\ ﬂlolel database

Two different (independent) databases

42/53 42/53

A simple classification of distributed systems

A simple classification of distributed systems

TPM: Transaction Processing Monitor

Server
Reply

Transaction Request
Requests
Request
Client > . > g
- (| TP monitor erver
!l
N\ Reply
Reply
Request

Observation

Often, the data involved in a transaction is distributed across several servers. A
TP Monitor is responsible for coordinating the execution of a transaction.

43/53

43/53

A simple classification of distributed systems

A simple classification of distributed systems

Middleware and EAI

Client Client
application application

| Communication middleware |

I [I

Server-side Server-side Server-side
application application application

= = =

Middleware offers communication facilities for integration

Remote Procedure Call (RPC): Requests are sent through local procedure
call, packaged as message, processed, responded through message, and
result returned as return from call.

Message Oriented Middleware (MOM): Messages are sent to logical contact
point (published), and forwarded to subscribed applications.

44/53

44/53

A simple classification of distributed systems

A simple classification of distributed systems

How to integrate applications

File transfer: Technically simple, but not flexible:
® Figure out file format and layout
® Figure out file management
* Update propagation, and update notifications.

Shared database: Much more flexible, but still requires common data scheme
next to risk of bottleneck.

Remote procedure call: Effective when execution of a series of actions is
needed.

Messaging: RPCs require caller and callee to be up and running at the same
time. Messaging allows decoupling in time and space.

45/53

45/53

inroducion Inroducion
Distributed pervasive systems

Observation

Emerging next-generation of distributed systems in which nodes are small,
mobile, and often embedded in a larger system, characterized by the fact that
the system naturally blends into the user’s environment.

Three (overlapping) subtypes

* Ubiquitous computing systems: pervasive and continuously present, i.e.,
there is a continuous interaction between system and user.

* Mobile computing systems: pervasive, but emphasis is on the fact that
devices are inherently mobile.

® Sensor (and actuator) networks: pervasive, with emphasis on the actual
(collaborative) sensing and actuation of the environment.

Pervasive systems 46/53 Pervasive systems 46/53

inroducion Inroducion
Ubiquitous systems

Core elements

1. (Distribution) Devices are networked, distributed, and accessible
transparently

2. (Interaction) Interaction between users and devices is highly unobtrusive

3. (Context awareness) The system is aware of a user’s context to optimize
interaction

4. (Autonomy) Devices operate autonomously without human intervention,
and are thus highly self-managed

5. (Intelligence) The system as a whole can handle a wide range of dynamic
actions and interactions

L— L—

Inoducion Inoducion
Mobile computing

Distinctive features

* A myriad of different mobile devices (smartphones, tablets, GPS devices,
remote controls, active badges).

* Mobile implies that a device’s location is expected to change over time =
change of local services, reachability, etc. Keyword: discovery.

® Maintaining stable communication can introduce serious problems.

® For a long time, research has focused on directly sharing resources
between mobile devices. It never became popular and is by now
considered to be a fruitless path for research.

Bottomline
Mobile devices set up connections to stationary servers, essentially bringing
mobile computing in the position of clients of cloud-based services.

Pervasive systems 48/53 Pervasive systems 48/53

cation of distributed systems A simple classification of distributed systems

Mobile computing

Mobile devices

Cloud of servers

Mobile cloud computing

Mobile devices

D'//'N;fa?e}dge
data center

Cloud of servers

Mobile edge computing

49/53 49/53
A simple classification of distributed systems A simple classification of distributed systems
Sensor networks
Characteristics
The nodes to which sensors are attached are:
* Many (10s-1000s)
* Simple (small memory/compute/communication capacity)
e Often battery-powered (or even battery-less)
50/53 50/53
A simple classification of distributed systems A simple classification of distributed systems

Sensor networks as distributed databases

Two extremes

Sensor network

Operator's site

T I

Sensor data
is sent directly
to operator

Each sensor
can process and Sensor network

store data

Operator's site

Query

—_—
Sensors E

send only
answers

51/53 il

cation of distributed systems A simple classification of distributed systems

The cloud-edge continuum

More Less
Cloud computing

Reliable connectivity I’:Aoc;:_ig’n awarenness
Computing power obility suppol
Data Iogngevity . Geographical distribution
Data storage Edge computing Responsiveness
Reliabili ess
Latency (Dlgcltz:; awareness

Internet-of-Things
Less More

52/53 52/53

Pitfalls Pitfalls

Developing distributed systems: Pitfalls

Observation
Many distributed systems are needlessly complex, caused by mistakes that
required patching later on. Many false assumptions are often made.

False (and often hidden) assumptions

® The network is reliable

® The network is secure

® The network is homogeneous

The topology does not change

® Latency is zero

Bandwidth is infinite

Transport cost is zero

® There is one administrator

53 /53 53/53

