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Fault tolerance Introduction to fault tolerance

Dependability

Basics
A component provides services to clients. To provide services, the component
may require the services from other components⇒ a component may depend
on some other component.

Specifically
A component C depends on C∗ if the correctness of C’s behavior depends on
the correctness of C∗’s behavior. (Components are processes or channels.)

Requirements related to dependability

Requirement Description

Availability Readiness for usage

Reliability Continuity of service delivery

Safety Very low probability of catastrophes

Maintainability How easy can a failed system be repaired
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Reliability versus availability

Reliability R(t) of component C
Conditional probability that C has been functioning correctly during [0, t) given
C was functioning correctly at time T = 0.

Traditional metrics
• Mean Time To Failure (MTTF): The average time until a component fails.
• Mean Time To Repair (MTTR): The average time needed to repair a

component.
• Mean Time Between Failures (MTBF): Simply MTTF + MTTR.
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Reliability versus availability

Availability A(t) of component C
Average fraction of time that C has been up-and-running in interval [0, t).

• Long-term availability A: A(∞)

• Note: A = MTTF
MTBF = MTTF

MTTF+MTTR

Observation
Reliability and availability make sense only if we have an accurate notion of
what a failure actually is.
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Terminology

Failure, error, fault

Term Description Example

Failure A component is not living up to
its specifications

Crashed program

Error Part of a component that can
lead to a failure

Programming bug

Fault Cause of an error Sloppy programmer
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Terminology

Handling faults

Term Description Example

Fault
prevention

Prevent the occurrence
of a fault

Don’t hire sloppy
programmers

Fault tolerance Build a component
such that it can mask
the occurrence of a
fault

Build each component
by two independent
programmers

Fault removal Reduce the presence,
number, or seriousness
of a fault

Get rid of sloppy
programmers

Fault
forecasting

Estimate current
presence, future
incidence, and
consequences of faults

Estimate how a
recruiter is doing when
it comes to hiring
sloppy programmers
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Failure models

Types of failures

Type Description of server’s behavior

Crash failure Halts, but is working correctly until it halts

Omission failure Fails to respond to incoming requests

Receive omission Fails to receive incoming messages

Send omission Fails to send messages

Timing failure Response lies outside a specified time interval

Response failure Response is incorrect

Value failure The value of the response is wrong

State-transition failure Deviates from the correct flow of control

Arbitrary failure May produce arbitrary responses at arbitrary
times
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Dependability versus security

Omission versus commission
Arbitrary failures are sometimes qualified as malicious. It is better to make the
following distinction:

• Omission failures: a component fails to take an action that it should have
taken

• Commission failure: a component takes an action that it should not have
taken

Observation
Note that deliberate failures, be they omission or commission failures, are
typically security problems. Distinguishing between deliberate failures and
unintentional ones is, in general, impossible.
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Halting failures

Scenario
C no longer perceives any activity from C∗ — a halting failure? Distinguishing
between a crash or omission/timing failure may be impossible.

Asynchronous versus synchronous systems

• Asynchronous system: no assumptions about process execution speeds
or message delivery times→ cannot reliably detect crash failures.

• Synchronous system: process execution speeds and message delivery
times are bounded→ we can reliably detect omission and timing failures.

• In practice we have partially synchronous systems: most of the time, we
can assume the system to be synchronous, yet there is no bound on the
time that a system is asynchronous→ can normally reliably detect crash
failures.
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Halting failures

Assumptions we can make

Halting type Description

Fail-stop Crash failures, but reliably detectable

Fail-noisy Crash failures, eventually reliably detectable

Fail-silent Omission or crash failures: clients cannot tell
what went wrong

Fail-safe Arbitrary, yet benign failures (i.e., they cannot
do any harm)

Fail-arbitrary Arbitrary, with malicious failures
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Redundancy for failure masking

Types of redundancy

• Information redundancy: Add extra bits to data units so that errors can
recovered when bits are garbled.

• Time redundancy: Design a system such that an action can be performed
again if anything went wrong. Typically used when faults are transient or
intermittent.

• Physical redundancy: add equipment or processes in order to allow one
or more components to fail. This type is extensively used in distributed
systems.
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Process resilience

Basic idea
Protect against malfunctioning processes through process replication,
organizing multiple processes into a process group. Distinguish between flat
groups and hierarchical groups.
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Groups and failure masking

k -fault tolerant group
When a group can mask any k concurrent member failures (k is called degree
of fault tolerance).

How large does a k -fault tolerant group need to be?

• With halting failures (crash/omission/timing failures): we need a total of
k +1 members as no member will produce an incorrect result, so the
result of one member is good enough.

• With arbitrary failures: we need 2k +1 members so that the correct result
can be obtained through a majority vote.

Important assumptions

• All members are identical
• All members process commands in the same order

Result: We can now be sure that all processes do exactly the same thing.
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Consensus

Prerequisite
In a fault-tolerant process group, each nonfaulty process executes the same
commands, and in the same order, as every other nonfaulty process.

Reformulation
Nonfaulty group members need to reach consensus on which command to
execute next.
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Flooding-based consensus

System model

• A process group P = {P1, . . . ,Pn}
• Fail-stop failure semantics, i.e., with reliable failure detection

• A client contacts a Pi requesting it to execute a command

• Every Pi maintains a list of proposed commands

Basic algorithm (based on rounds)

1. In round r , Pi multicasts its known set of commands Cr
i to all others

2. At the end of r , each Pi merges all received commands into a new Cr+1
i .

3. Next command cmdi selected through a globally shared, deterministic
function: cmdi ← select(Cr+1

i ).
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Flooding-based consensus: Example

Observations
• P2 received all proposed commands from all other processes⇒ makes

decision.

• P3 may have detected that P1 crashed, but does not know if P2 received
anything, i.e., P3 cannot know if it has the same information as P2 ⇒
cannot make decision (same for P4).
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Raft

Developed for understandability

• Uses a fairly straightforward leader-election algorithm (see Chp. 5). The
current leader operates during the current term.

• Every server (typically, five) keeps a log of operations, some of which
have been committed. A backup will not vote for a new leader if its own
log is more up to date.

• All committed operations have the same position in the log of each
respective server.

• The leader decides which pending operation is to be committed next⇒ a
primary-backup approach.
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Raft

When submitting an operation

• A client submits a request for operation o.

• The leader appends the request ⟨o, t ,⟩ to its own log (registering the
current term t and length of ).

• The log is (conceptually) broadcast to the other servers.

• The others (conceptually) copy the log and acknowledge the receipt.

• When a majority of acks arrives, the leader commits o.

Note
In practice, only updates are broadcast. At the end, every server has the same
view and knows about the c committed operations. Note that effectively, any
information at the backups is overwritten.
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Raft: when a leader crashes

Crucial observations
• The new leader has the most committed operations in its log.

• Any missing commits will eventually be sent to the other backups.
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Realistic consensus: Paxos

Assumptions (rather weak ones, and realistic)

• A partially synchronous system (in fact, it may even be asynchronous).

• Communication between processes may be unreliable: messages may
be lost, duplicated, or reordered.

• Corrupted message can be detected (and thus subsequently ignored).

• All operations are deterministic: once an execution is started, it is known
exactly what it will do.

• Processes may exhibit crash failures, but not arbitrary failures.

• Processes do not collude.

Understanding Paxos
We will build up Paxos from scratch to understand where many consensus
algorithms actually come from.
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Paxos essentials

Starting point

• We assume a client-server configuration, with initially one primary server.

• To make the server more robust, we start with adding a backup server.

• To ensure that all commands are executed in the same order at both
servers, the primary assigns unique sequence numbers to all commands.
In Paxos, the primary is called the leader.

• Assume that actual commands can always be restored (either from
clients or servers)⇒ we consider only control messages.
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Two-server situation

Example: Paxos 22 / 77
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Handling lost messages

Some Paxos terminology

• The leader sends an accept message ACCEPT(o, t) to backups when
assigning a timestamp t to command o.

• A backup responds by sending a learn message: LEARN(o, t)

• When the leader notices that operation o has not yet been learned, it
retransmits ACCEPT(o, t) with the original timestamp.
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Two servers and one crash: problem

Problem
Primary crashes after executing an operation, but the backup never received
the accept message.
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Two servers and one crash: solution

Solution
Never execute an operation before it is clear that is has been learned.

Example: Paxos 25 / 77

Fault tolerance Process resilience

Example: Paxos 25 / 77

Fault tolerance Process resilience

Three servers and two crashes: still a problem?

Scenario
What happens when LEARN(o1) as sent by S2 to S1 is lost?

Solution
S2 will also have to wait until it knows that S3 has learned o1.
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Paxos: fundamental rule

General rule
In Paxos, a server S cannot execute an operation o until it has received a
LEARN(o) from all other nonfaulty servers.
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Failure detection

Practice
Reliable failure detection is practically impossible. A solution is to set timeouts,
but take into account that a detected failure may be false.
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Required number of servers

Observation
Paxos needs at least three servers

Adapted fundamental rule
In Paxos with three servers, a server S cannot execute an operation o until it
has received at least one (other) LEARN(o) message, so that it knows that a
majority of servers will execute o.
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Required number of servers

Assumptions before taking the next steps

• Initially, S1 is the leader.
• A server can reliably detect it has missed a message, and recover from

that miss.
• When a new leader needs to be elected, the remaining servers follow a

strictly deterministic algorithm, such as S1 → S2 → S3 .
• A client cannot be asked to help the servers to resolve a situation.

Observation
If either one of the backups (S2 or S3) crashes, Paxos will behave correctly:
operations at nonfaulty servers are executed in the same order.
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Leader crashes after executing o1

S3 is completely ignorant of any activity by S1

• S2 received ACCEPT(o,1), detects crash, and becomes leader.

• S3 even never received ACCEPT(o,1).

• If S2 sends ACCEPT(o2 ,2)⇒ S3 sees unexpected timestamp and tells
S2 that it missed o1.

• S2 retransmits ACCEPT(o1,1), allowing S3 to catch up.

S2 missed ACCEPT(o1,1)

• S2 did detect crash and became new leader

• If S2 sends ACCEPT(o1,1)⇒ S3 retransmits LEARN(o1).

• If S2 sends ACCEPT(o2 ,1)⇒ S3 tells S2 that it apparently missed
ACCEPT(o1,1) from S1, so that S2 can catch up.
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Leader crashes after sending ACCEPT(o1,1)

S3 is completely ignorant of any activity by S1

As soon as S2 announces that o2 is to be accepted, S3 will notice that it
missed an operation and can ask S2 to help recover.

S2 had missed ACCEPT(o1,1)
As soon as S2 proposes an operation, it will be using a stale timestamp,
allowing S3 to tell S2 that it missed operation o1.

Observation
Paxos (with three servers) behaves correctly when a single server crashes,
regardless when that crash took place.
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False crash detections

Problem and solution
S3 receives ACCEPT(o1,1), but much later than ACCEPT(o2 ,1). If it knew who
the current leader was, it could safely reject the delayed accept message⇒
leaders should include their ID in messages.
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But what about progress?

Essence of solution
When S2 takes over, it needs to make sure that any outstanding operations
initiated by S1 have been properly flushed, i.e., executed by enough servers.
This requires an explicit leadership takeover by which other servers are
informed before sending out new accept messages.
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Consensus under arbitrary failure semantics

Essence
We consider process groups in which communication between process is
inconsistent.

Improper forwarding Different messages

Consensus in faulty systems with arbitrary failures 35 / 77
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Consensus under arbitrary failure semantics

System model

• We consider a primary P and n−1 backups B1, . . . ,Bn−1.
• A client sends v ∈ {T ,F} to P
• Messages may be lost, but this can be detected.
• Messages cannot be corrupted beyond detection.
• A receiver of a message can reliably detect its sender.

Byzantine agreement: requirements

BA1: Every nonfaulty backup process stores the same value.
BA2: If the primary is nonfaulty then every nonfaulty backup process stores

exactly what the primary had sent.

Observation
• Primary faulty⇒ BA1 says that backups may store the same, but different

(and thus wrong) value than originally sent by the client.
• Primary not faulty⇒ satisfying BA2 implies that BA1 is satisfied.
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Why having 3k processes is not enough
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Why having 3k+1 processes is enough
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Practical Byzantine Fault Tolerance (PBFT)

Background
One of the first solutions that managed to Byzantine fault tolerance while
keeping performance acceptable. Popularity has increased with the
introduction of permissioned blockchains.

Assumptions

• A server may exhibit arbitrary failures

• Messages may be lost, delayed, and received out of order

• Messages have an identifiable sender (i.e., they are signed)

• Partially synchronous execution model

Essence
A primary-backup approach with 3k +1 replica servers.
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PBFT: four phases

• C is the client
• P is the primary
• B1, B2 , B3 are backups
• Assume B2 is faulty
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PBFT: four phases

• All servers assume to be working in a current view v .
• C requests operation o to be executed
• P timestamps o and sends PRE-PREPARE(t ,v ,o)
• Backup Bi accepts the pre-prepare message if it is also is in v and has

not accepted a an operation with timestamp t before.
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PBFT: four phases

• Bi broadcasts PREPARE(t ,v ,o) to all (including the primary)
• Note: a nonfaulty server will eventually log 2k messages PREPARE(t ,v ,o)

(including its own)⇒ consensus on the ordering of o.
• Note: it doesn’t matter what faulty B2 sends, it cannot affect joint

decisions by P, B1, B3 .
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PBFT: four phases

• All servers broadcast COMMIT(t ,v ,o)
• The commit is needed to also make sure that o can be executed now,

that is, in the current view v .
• When 2k messages have been collected, excluding its own, the server

can safely execute o en reply to the client.
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PBFT: when the primary fails

Issue
When a backup detects the primary failed, it will broadcast a view change to
view v +1. We need to ensure that any outstanding request is executed once
and only once by all nonfaulty servers. The operation needs to be handed over
to the new view.

Procedure
• The next primary P∗ is known deterministically

• A backup server broadcasts VIEW-CHANGE(v +1,P): P is the set of
prepares it had sent out.

• P∗ waits for 2k +1 view-change messages, with X =
⋃

P containing all
previously sent prepares.

• P∗ sends out NEW-VIEW(v+1,X,O) with O a new set of pre-prepare
messages.

• Essence: this allows the nonfaulty backups to replay what has gone on in
the previous view, if necessary, and bring o into the new view v +1.
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Realizing fault tolerance

Observation
Considering that the members in a fault-tolerant process group are so tightly
coupled, we may bump into considerable performance problems, but perhaps
even situations in which realizing fault tolerance is impossible.

Question
Are there limitations to what can be readily achieved?

• What is needed to enable reaching consensus?

• What happens when groups are partitioned?
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Distributed consensus: when can it be reached

Formal requirements for consensus

• Processes produce the same output value
• Every output value must be valid
• Every process must eventually provide output
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Consistency, availability, and partitioning

CAP theorem
Any networked system providing shared data can provide only two of the
following three properties:

C: consistency, by which a shared and replicated data item appears as a
single, up-to-date copy

A: availability, by which updates will always be eventually executed

P: Tolerant to the partitioning of process group.

Conclusion
In a network subject to communication failures, it is impossible to realize an
atomic read/write shared memory that guarantees a response to every
request.
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CAP theorem intuition

Simple situation: two interacting processes

• P and Q can no longer communicate:

• Allow P and Q to go ahead⇒ no consistency
• Allow only one of P, Q to go ahead⇒ no availability

• P and Q have to be assumed to continue communication⇒ no
partitioning allowed.

Fundamental question
What are the practical ramifications of the CAP theorem?
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Failure detection

Issue
How can we reliably detect that a process has actually crashed?

General model
• Each process is equipped with a failure detection module

• A process P probes another process Q for a reaction

• If Q reacts: Q is considered to be alive (by P)

• If Q does not react with t time units: Q is suspected to have crashed

Observation for a synchronous system

a suspected crash ≡ a known crash
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Practical failure detection

Implementation

• If P did not receive heartbeat from Q within time t : P suspects Q.

• If Q later sends a message (which is received by P):

• P stops suspecting Q
• P increases the timeout value t

• Note: if Q did crash, P will keep suspecting Q.
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Reliable remote procedure calls

What can go wrong?

1. The client is unable to locate the server.

2. The request message from the client to the server is lost.

3. The server crashes after receiving a request.

4. The reply message from the server to the client is lost.

5. The client crashes after sending a request.

Two “easy” solutions

1: (cannot locate server): just report back to client

2: (request was lost): just resend message
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Reliable RPC: server crash

(a) (b) (c)

Problem
Where (a) is the normal case, situations (b) and (c) require different solutions.
However, we don’t know what happened. Two approaches:

• At-least-once-semantics: The server guarantees it will carry out an
operation at least once, no matter what.

• At-most-once-semantics: The server guarantees it will carry out an
operation at most once.
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Why fully transparent server recovery is impossible

Three type of events at the server
(Assume the server is requested to update a document.)

M: send the completion message
P: complete the processing of the document
C: crash

Six possible orderings
(Actions between brackets never take place)

1. M → P→ C: Crash after reporting completion.
2. M → C→ P: Crash after reporting completion, but before the update.
3. P→M → C: Crash after reporting completion, and after the update.
4. P→ C(→M): Update took place, and then a crash.
5. C(→ P→M): Crash before doing anything
6. C(→M → P): Crash before doing anything
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Why fully transparent server recovery is impossible
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Reliable RPC: lost reply messages

The real issue
What the client notices, is that it is not getting an answer. However, it cannot
decide whether this is caused by a lost request, a crashed server, or a lost
response.

Partial solution
Design the server such that its operations are idempotent: repeating the same
operation is the same as carrying it out exactly once:

• pure read operations
• strict overwrite operations

Many operations are inherently nonidempotent, such as many banking
transactions.
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Reliable RPC: client crash

Problem
The server is doing work and holding resources for nothing (called doing an
orphan computation).

Solution
• Orphan is killed (or rolled back) by the client when it recovers

• Client broadcasts new epoch number when recovering⇒ server kills
client’s orphans

• Require computations to complete in a T time units. Old ones are simply
removed.
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Simple reliable group communication

Intuition
A message sent to a process group G should be delivered to each member of
G. Important: make distinction between receiving and delivering messages.
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Less simple reliable group communication

Reliable communication in the presence of faulty processes
Group communication is reliable when it can be guaranteed that a message is
received and subsequently delivered by all nonfaulty group members.

Tricky part
Agreement is needed on what the group actually looks like before a received
message can be delivered.
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Simple reliable group communication

Reliable communication, but assume nonfaulty processes
Reliable group communication now boils down to reliable multicasting: is a
message received and delivered to each recipient, as intended by the sender.
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Distributed commit protocols

Problem
Have an operation being performed by each member of a process group, or
none at all.

• Reliable multicasting: a message is to be delivered to all recipients.

• Distributed transaction: each local transaction must succeed.
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Two-phase commit protocol (2PC)

Essence
The client who initiated the computation acts as coordinator; processes
required to commit are the participants.

• Phase 1a: Coordinator sends VOTE-REQUEST to participants (also called
a pre-write)

• Phase 1b: When participant receives VOTE-REQUEST it returns either
VOTE-COMMIT or VOTE-ABORT to coordinator. If it sends VOTE-ABORT, it
aborts its local computation

• Phase 2a: Coordinator collects all votes; if all are VOTE-COMMIT, it sends
GLOBAL-COMMIT to all participants, otherwise it sends GLOBAL-ABORT

• Phase 2b: Each participant waits for GLOBAL-COMMIT or GLOBAL-ABORT

and handles accordingly.
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2PC - Finite state machines

Coordinator Participant
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2PC – Failing participant

Analysis: participant crashes in state S, and recovers to S

• INIT : No problem: participant was unaware of protocol

• READY : Participant is waiting to either commit or abort. After recovery,
participant needs to know which state transition it should make⇒ log the
coordinator’s decision

• ABORT : Merely make entry into abort state idempotent, e.g., removing
the workspace of results

• COMMIT : Also make entry into commit state idempotent, e.g., copying
workspace to storage.

Observation
When distributed commit is required, having participants use temporary
workspaces to keep their results allows for simple recovery in the presence of
failures.
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2PC – Failing participant

Alternative
When a recovery is needed to READY state, check state of other participants
⇒ no need to log coordinator’s decision.

Recovering participant P contacts another participant Q

State of Q Action by P

COMMIT Make transition to COMMIT

ABORT Make transition to ABORT

INIT Make transition to ABORT

READY Contact another participant

Result
If all participants are in the READY state, the protocol blocks. Apparently, the
coordinator is failing. Note: The protocol prescribes that we need the decision
from the coordinator.
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2PC – Failing coordinator

Observation
The real problem lies in the fact that the coordinator’s final decision may not be
available for some time (or actually lost).

Alternative
Let a participant P in the READY state timeout when it hasn’t received the
coordinator’s decision; P tries to find out what other participants know (as
discussed).

Observation
Essence of the problem is that a recovering participant cannot make a local
decision: it is dependent on other (possibly failed) processes
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Coordinator in Python

1 class Coordinator:
2 def run(self):
3 yetToReceive = list(self.participants)
4 self.log.info(’WAIT’)
5 self.chan.sendTo(self.participants, VOTE_REQUEST)
6 while len(yetToReceive) > 0:
7 msg = self.chan.recvFrom(self.participants, BLOCK, TIMEOUT)
8 if msg == -1 or (msg[1] == VOTE_ABORT):
9 self.log.info(’ABORT’)

10 self.chan.sendTo(self.participants, GLOBAL_ABORT)
11 return
12 else: # msg[1] == VOTE_COMMIT
13 yetToReceive.remove(msg[0])
14 self.log.info(’COMMIT’)
15 self.chan.sendTo(self.participants, GLOBAL_COMMIT)
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Participant in Python

1 class Participant:
2 def run(self):
3 self.log.info(’INIT’)
4 msg = self.chan.recvFrom(self.coordinator, BLOCK, TIMEOUT)
5 if msg == -1: # Crashed coordinator - give up entirely
6 decision = LOCAL_ABORT
7 else: # Coordinator will have sent VOTE_REQUEST
8 decision = self.do_work()
9 if decision == LOCAL_ABORT:

10 self.chan.sendTo(self.coordinator, VOTE_ABORT)
11 self.log.info(’LOCAL_ABORT’)
12 else: # Ready to commit, enter READY state
13 self.log.info(’READY’)
14 self.chan.sendTo(self.coordinator, VOTE_COMMIT)
15 msg = self.chan.recvFrom(self.coordinator, BLOCK, TIMEOUT)
16 if msg == -1: # Crashed coordinator - check the others
17 self.log.info(’NEED_DECISION’)
18 self.chan.sendTo(self.participants, NEED_DECISION)
19 while True:
20 msg = self.chan.recvFromAny()
21 if msg[1] in [GLOBAL_COMMIT, GLOBAL_ABORT, LOCAL_ABORT]:
22 decision = msg[1]
23 break
24 else: # Coordinator came to a decision
25 decision = msg[1]
26 if decision == GLOBAL_COMMIT:
27 self.log.info(’COMMIT’)
28 else: # decision in [GLOBAL_ABORT, LOCAL_ABORT]:
29 self.log.info(’ABORT’)
30 while True: # Help any other participant when coordinator crashed
31 msg = self.chan.recvFrom(self.participants)
32 if msg[1] == NEED_DECISION:
33 self.chan.sendTo([msg[0]], decision)
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Recovery: Background

Essence
When a failure occurs, we need to bring the system into an error-free state:

• Forward error recovery: Find a new state from which the system can
continue operation

• Backward error recovery: Bring the system back into a previous error-free
state

Practice
Use backward error recovery, requiring that we establish recovery points

Observation
Recovery in distributed systems is complicated by the fact that processes need
to cooperate in identifying a consistent state from where to recover

Introduction 68 / 77

Fault tolerance Recovery

Introduction 68 / 77

Fault tolerance Recovery

Consistent recovery state

Requirement
Every message that has been received is also shown to have been sent in the
state of the sender.

Recovery line
Assuming processes regularly checkpoint their state, the most recent
consistent global checkpoint.
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Coordinated checkpointing

Essence
Each process takes a checkpoint after a globally coordinated action.

Simple solution
Use a two-phase blocking protocol:

• A coordinator multicasts a checkpoint request message
• When a participant receives such a message, it takes a checkpoint, stops

sending (application) messages, and reports back that it has taken a
checkpoint

• When all checkpoints have been confirmed at the coordinator, the latter
broadcasts a checkpoint done message to allow all processes to continue

Observation
It is possible to consider only those processes that depend on the recovery of
the coordinator, and ignore the rest
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Cascaded rollback

Observation
If checkpointing is done at the “wrong” instants, the recovery line may lie at
system startup time. We have a so-called cascaded rollback.
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Independent checkpointing

Essence
Each process independently takes checkpoints, with the risk of a cascaded
rollback to system startup.

• Let CPi (m) denote mth checkpoint of process Pi and INTi (m) the interval
between CPi (m−1) and CPi (m).

• When process Pi sends a message in interval INTi (m), it piggybacks
(i ,m)

• When process Pj receives a message in interval INTj (n), it records the
dependency INTi (m)→ INTj (n).

• The dependency INTi (m)→ INTj (n) is saved to storage when taking
checkpoint CPj (n).

Observation
If process Pi rolls back to CPi (m−1), Pj must roll back to CPj (n−1).
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Message logging

Alternative
Instead of taking an (expensive) checkpoint, try to replay your (communication)
behavior from the most recent checkpoint⇒ store messages in a log.

Assumption
We assume a piecewise deterministic execution model:

• The execution of each process can be considered as a sequence of state
intervals

• Each state interval starts with a nondeterministic event (e.g., message
receipt)

• Execution in a state interval is deterministic

Conclusion
If we record nondeterministic events (to replay them later), we obtain a
deterministic execution model that will allow us to do a complete replay.
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Message logging and consistency

When should we actually log messages?
Avoid orphan processes:

• Process Q has just received and delivered messages m1 and m2
• Assume that m2 is never logged.
• After delivering m1 and m2 , Q sends message m3 to process R
• Process R receives and subsequently delivers m3 : it is an orphan.
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Message-logging schemes

Notations
• DEP(m): processes to which m has been delivered. If message m∗ is

causally dependent on the delivery of m, and m∗ has been delivered to Q,
then Q ∈ DEP(m).

• COPY(m): processes that have a copy of m, but have not (yet) reliably
stored it.

• FAIL: the collection of crashed processes.

Characterization

Q is orphaned⇔∃m : Q ∈ DEP(m) and COPY(m)⊆ FAIL
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Message-logging schemes

Pessimistic protocol
For each nonstable message m, there is at most one process dependent on m,
that is |DEP(m)| ≤ 1.

Consequence
An unstable message in a pessimistic protocol must be made stable before
sending a next message.
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Message-logging schemes

Optimistic protocol
For each unstable message m, we ensure that if COPY(m)⊆ FAIL, then
eventually also DEP(m)⊆ FAIL.

Consequence
To guarantee that DEP(m)⊆ FAIL, we generally roll back each orphan process
Q until Q ̸∈ DEP(m).
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