Distributed Systems

(4th edition, version 01)

Chapter 04: Communication

1/45

Foundations Foundations
Basic networking model
Appiiation Application protocol ______ ,
) Presentation protocol
Presentation 6
Session Session protocol s
Transport | J€--=---" Transport protocol _______ 4
Network protocol »!
Network 3
Data link protocol
Data link i 2
Physical ------Physical protocol _______ 1
Network
Drawbacks
® Focus on message-passing only
* Often unneeded or unwanted functionality
* Violates access transparency
2/45 2/45
Foundations Foundations

Low-level layers

Recap

® Physical layer: contains the specification and implementation of bits, and
their transmission between sender and receiver

* Data link layer: prescribes the transmission of a series of bits into a frame
to allow for error and flow control

* Network layer: describes how packets in a network of computers are to
be routed.

Observation
For many distributed systems, the lowest-level interface is that of the network
layer.

3/45 3/45

Foundations Foundations

Transport Layer

Important

The transport layer provides the actual communication facilities for most
distributed systems.

Standard Internet protocols

® TCP: connection-oriented, reliable, stream-oriented communication
* UDP: unreliable (best-effort) datagram communication

4/45 4/45
Middleware layer
Observation
Middleware is invented to provide common services and protocols that can be
used by many different applications
® Arich set of communication protocols
® (Un)marshaling of data, necessary for integrated systems
* Naming protocols, to allow easy sharing of resources
® Security protocols for secure communication
® Scaling mechanisms, such as for replication and caching
Note
What remains are truly application-specific protocols... such as?
5/45 5/45
Foundations Foundations

An adapted layering scheme

Application protocol
Application <

Middleware protocol

Y

Operating » Host-to-host protocol
system [
Physical/Link-level protocol [;:I
L < N
t <« >
Network

Types of communication

Distinguish...

Synchronize at Synchronize at Synchronize after
request submission request delivery processing by server

Client

Request

Transmission
interrupt

Storage
facility

Server Time —>

* Transient versus persistent communication
® Asynchronous versus synchronous communication

7/45 7145
Types of communication
Transient versus persistent
Synchronize at Synchronize at Synchronize after
request submission request delivery processing by server
Client
Request
Transmission
interrupt
Storage
facility
Server Time —>
e Transient communication: Comm. server discards message when it
cannot be delivered at the next server, or at the receiver.
® Persistent communication: A message is stored at a communication
server as long as it takes to deliver it.
8/45 8/45

Types of communication

Places for synchronization

Synchronize at Synchronize at Synchronize after
request submission request delivery processing by server

Client

Request

Transmission
interrupt

Storage
facility

Server Time —>

® At request submission
® Atrequest delivery
* After request processing

Client/Server

Some observations
Client/Server computing is generally based on a model of transient
synchronous communication:

® Client and server have to be active at the time of communication

® Client issues request and blocks until it receives reply

® Server essentially waits only for incoming requests, and subsequently
processes them

Drawbacks synchronous communication

® Client cannot do any other work while waiting for reply
® Failures have to be handled immediately: the client is waiting
* The model may simply not be appropriate (mail, news)

10/45 10/45

Foundations Foundations

Messaging

Message-oriented middleware
Aims at high-level persistent asynchronous communication:

® Processes send each other messages, which are queued
* Sender need not wait for immediate reply, but can do other things
* Middleware often ensures fault tolerance

11/45 11/45

Remote procedure call Remote procedure call

Basic RPC operation

Observations

* Application developers are familiar with simple procedure model
* Well-engineered procedures operate in isolation (black box)
* There is no fundamental reason not to execute procedures on separate

machine
operation . response
C - - - wait for reply - - - - -
Conclusion
Communication between caller &
callee can be hidden by using S

procedure-call mechanism. ~ © k-em-ooo---o I
and return results

12/45 12/45

Basic RPC operation

Client machine

Server machine

Remote procedure call

Client process 1. lient call & Server process
. Client call to
6. Stub makes
d
procedure local call to “doit”
Server stub
(7= dol@h)] | Giient stub
]
typel: val(a) 2. Stub builds type1: val(a) 5. Stub unpacks
type2: val(b; message type2: val(b
A
Client OS fypeT: vai(a) Server 03 & honce mer
l N\ [type2: val(b) | I to server stub

3. Message is sent
across the network

. Client procedure calls client stub.

. Stub builds message; calls local OS.

. OS sends message to remote OS.

. Remote OS gives message to stub.

. Stub unpacks parameters; calls server.

(S NEAN

Server does local call; returns result to stub.

Stub builds message; calls OS.

Client's OS gives message to stub.

1

6.
7.
8. OS sends message to client’s OS.
9.
0.

Client stub unpacks result; returns to client.

Remote procedure call

13/45

13/45

RPC: Parameter passing

Remote procedure call

There’s more than just wrapping parameters into a message

* Client and server machines may have different data representations (think

of byte ordering)

* Wrapping a parameter means transforming a value into a sequence of

bytes

® Client and server have to agree on the same encoding:

* How are basic data values represented (integers, floats, characters)

Conclusion

Client and server need to properly interpret messages, transforming them into

machine-dependent representations.

RPC: Parameter passing

Some assumptions

* Copy in/copy out semantics: while procedure is executed, nothing can be

assumed about parameter values.

How are complex data values represented (arrays, unions)

14/45

Remote procedure call

e All data that is to be operated on is passed by parameters. Excludes
passing references to (global) data.

Conclusion

Full access transparency cannot be realized.

A remote reference mechanism enhances access transparency

* Remote reference offers unified access to remote data
* Remote references can be passed as parameter in RPCs
* Note: stubs can sometimes be used as such references

Remote procedure call

14/ 45

Remote procedure call

15/45

15/45

Remote procedure call Remote procedure call

Asynchronous RPCs

Essence
Try to get rid of the strict request-reply behavior, but let the client continue
without waiting for an answer from the server.

call RPC return results

C

callback
and return results
16/45 16/45
Remote procedure call Remote procedure call
Sending out multiple RPCs
Essence
Sending an RPC request to a group of servers.
call local procedure
F----=-===-==- |
S1
callback
C —callRPC ----- wait for results - - - -\
callback
S2 I ——— i
call local procedure
17/45 17/45
Message-oriented communication Message-oriented communication

Transient messaging: sockets

Berkeley socket interface

Operation Description

socket Create a new communication end point

bind Attach a local address to a socket

listen Tell operating system what the maximum number of pending
connection requests should be

accept Block caller until a connection request arrives
connect | Actively attempt to establish a connection
send Send some data over the connection
receive | Receive some data over the connection
close Release the connection

socket bind listen accept | receive send close

\
\
\
\

0 D
| /
- . H /
Synchronization point —— / Communication
H /

v /

h |
socket r'\,unnuu[‘y—? send jreceivel;ﬂ close
Client

\
\
\

18/45 18/45

Message-oriented communication

Message-oriented commun

Sockets: Python code

Server
1 from socket import
2

3 class Server:

4 def run(self):

s s = socket (AF_INET, SOCK_STREAM)

6 s.bind((HOST, PORT))

7 s.listen(l)

8 (conn, addr) = s.accept() # returns new socket and addr. client
9 while True: # forever

10 data = conn.recv(1024) # receive data from client

11 if not data: break # stop if client stopped

12 conn.send (datatb"+") # return sent data plus an "x"
13 conn.close() # close the connection
Client

1 class Client:

2 def run(self):

s = socket (AF_INET, SOCK_STREAM)

s.connect ((HOST, PORT)) # connect to server (block until accepted)
s.send(b"Hello, world") # send same data

data = s.recv(1024) # receive the response
print (data) # print what you received
s.send(b"") # tell the server to close
s.close() # close the connection

19/45 19/45

Message-oriented communication Message-oriented communication

Making sockets easier to work with

Observation

Sockets are rather low level and programming mistakes are easily made.
However, the way that they are used is often the same (such as in a
client-server setting).

Alternative: ZeroMQ

Provides a higher level of expression by pairing sockets: one for sending
messages at process P and a corresponding one at process Q for receiving
messages. All communication is asynchronous.

Three patterns

* Request-reply
® Publish-subscribe
* Pipeline

20/45 20/45

Message-oriented communication

Message-oriented communication

Request-reply

1 import zmg

2

3 def server():

4 context = zmg.Context ()

s socket = context.socket (zmq.REP) # create reply socket

6 socket.bind("tcp: //+:12345") # bind socket to address

7

8 while True:

9 message = socket.recv() # wait for incoming message
10 if not "STOP" in str(message) : # if not to stop...

11 reply = str(message.decode())+ ' # append "x" to message

12 socket.send(reply.encode()) # send it away (encoded)

13 else:

14 break # break out of loop and end

16 def client():
17 context = zmg.Context ()
18 socket = context.socket (zmg.REQ) # create request socket

20 socket.connect ("tcp: //localhost:12345") # block until connected

21 socket.send (b"Hello world") # send message
22 message = socket.recv() # block until response
23 socket.send (b"STOP") # tell server to stop
24 print (message.decode()) # print result

21/45 21/45

Message-oriented communication Message-oriented communication

Publish-subscribe

1 import multiprocessing
2 import zmg, time

3

4 def server():

5 context = zmg.Context ()

6 socket = context.socket (zmq.PUB) # create a publisher socket
7 socket.bind("tcp: //+:12345") # bind socket to the address
8 while True:

9 time.sleep(5) # wait every 5 seconds

10 t = "TIME " + time.asctime()

11 socket.send(t.encode()) # publish the current time

13 def client():

14 context = zmg.Context ()

15 socket = context.socket (zmg.SUB) # create a subscriber socket
16 socket .connect ("tcp: //localhost:12345") # connect to the server

17 socket.setsockopt (zmg.SUBSCRIBE, b"TIME") # subscribe to TIME messages
18

19 for i in range(5): # Five iterations
20 time = socket.recv() # receive a message related to subscription
21 print (time.decode()) # print the result

22/45

Message-oriented communication Message-oriented communication

Pipeline

1 def producer() :

2 context = zmg.Context ()

3 socket = context.socket (zmq.PUSH) # create a push socket

4 socket.bind("tcp: //127.0.0.1:12345") # bind socket to address

s

6 while True:

7 workload = random.randint (1, 100) # compute workload

8 socket.send (pickle.dumps (workload)) # send workload to worker

9 time.sleep (workload/NWORKERS) # balance production by waiting

10

11 def worker (id) :

12 context = zmq.Context ()

13 socket = context.socket (zmg.PULL) # create a pull socket

14 socket.connect ("tcp: //localhost:12345") # connect to the producer

15

16 while True:

17 work = pickle.loads (socket.recv()) # receive work from a source
18 time.sleep (work) # pretend to work

23/45 23/45

Message-oriented communication Message-oriented communication

MPI: When lots of flexibility is needed

Representative operations

Operation Description

MPI_BSEND Append outgoing message to a local send buffer

MPI_SEND Send a message and wait until copied to local or
remote buffer

MPI_SSEND Send a message and wait until transmission starts

MPI_SENDRECV | Send a message and wait for reply

MPI_ISEND Pass reference to outgoing message, and continue

MPI_ISSEND Pass reference to outgoing message, and wait until
receipt starts

MPI_RECV Receive a message; block if there is none

MPI_IRECV Check if there is an incoming message, but do not
block

24/45 24/45

Message-oriented communication Message-oriented communication

Queue-based messaging

Four possible combinations

Sender Sender Sender Sender
running running passive passive

-«

v v

Receiver Receiver Receiver Receiver
running passive running passive

25/45 25/45

Message-oriented communication Message-oriented communication

Message-oriented middleware

Essence
Asynchronous persistent communication through support of middleware-level
queues. Queues correspond to buffers at communication servers.

Operations

Operation | Description

PUT Append a message to a specified queue

GET Block until the specified queue is nonempty, and
remove the first message

POLL Check a specified queue for messages, and remove
the first. Never block

NOTIFY Install a handler to be called when a message is put
into the specified queue

26/45 26/45

Message-oriented communication Message-oriented communication

General model

Queue managers

Queues are managed by queue managers. An application can put messages
only into a local queue. Getting a message is possible by extracting it from a
local queue only = queue managers need to route messages.

Routing
Look up
Source queue contact address Destination queue
manager [~ of destination manager

queue manager

= Logical
T queue-level =
address (name) | I\
Local 0OS T IAddress lookup [} (i 0s T
L _________________________ J I Contact
Network address

27/45

27/45

Message broker

Observation
Message queuing systems assume a common messaging protocol: all
applications agree on message format (i.e., structure and data representation)

Broker handles application heterogeneity in an MQ system

* Transforms incoming messages to target format

® \Very often acts as an application gateway

* May provide subject-based routing capabilities (i.e., publish-subscribe
capabilities)

28/45 28/45
Message-oriented communication Message-oriented communication
Message broker: general architecture
Source Message broker Destination
Application D D Application
Broker plugins Rules
- N
_ H Queuing || © =
= =| layer = |$_| =
Local 0S| Local 0S| T Localos
29/45 29/45

Example: AMQP

Lack of standardization

Advanced Message-Queuing Protocol was intended to play the same role as,
for example, TCP in networks: a protocol for high-level messaging with
different implementations.

Application Queue manager
AMQP
Message queuing
AMQP AMQP
stub communication stub
Local OS Local OS
|L TCP/IP jl
Network

Basic model

Client sets up a (stable) connection, which is a container for serveral (possibly
ephemeral) one-way channels. Two one-way channels can form a session. A
link is akin to a socket, and maintains state about message transfers.

30/45 30/45

Example: AMQP-based producer

@ a e W e

10
11
12
13
14
15
16
17
18
19
20
21

import rabbitpy

def producer() :
connection = rabbitpy.Connection() # Connect to RabbitM) server
channel = connection.channel() # Create new channel on the connection

exchange = rabbitpy.Exchange(channel, ’exchange’) # Create an exchange
exchange.declare()

queuel = rabbitpy.Queue(channel, ‘examplel’) # Create Ist queue
queuel.declare()

queue2 = rabbitpy.Queue(channel, ’‘example2’) # Create 2nd queue
queue2.declare()

queuel.bind(exchange, ’examplekey’) # Bind queuel to a single key
queue2.bind(exchange, ’example-key’) # Bind queue2 to the same key

message = rabbitpy. (channel, ’Test)

message.publish (exchange, ’example-key’) # Publish the message using the key

exchange.delete()

31/45

Message-oriented communication

Example: AMQP-based consumer

1
2
3
4

5
6
7
8
9

10

11

12

13

14

15

16

17

18

19
20

import rabbitpy

def consumer () :
connection = rabbitpy.Connection()
channel = connection.channel()

queue = rabbitpy.Queue(channel, ’examplel’)

While there are messages in the queue, fetch them using Basic.Get
while len(queue) > 0:

message = queue.get ()

print ('Message Q1: %s’ % message.body.decode())

message.ack ()

queue = rabbitpy.Queue(channel, ’example2’)

while len(queue) > 0:
message = queue.get ()
print (‘Message Q2: %s’ % message.body.decode())
message.ack ()

Application-level multicasting

Essence

32/45

Multicast communication

Organize nodes of a distributed system into an overlay network and use that

network to disseminate data:
* Oftentimes a tree, leading to unique paths

* Alternatively, also mesh networks, requiring a form of routing

31/45

Message-oriented communication

2/ 45

Multicast communication

33/45 33/45

Application-level multicasting in Chord

Basic approach

. Initiator generates a multicast identifier mid.
. Lookup succ(mid), the node responsible for mid.
. Request is routed to succ(mid), which will become the root.
. If P wants to join, it sends a join request to the root.
. When request arrives at Q:
® Q has not seen a join request before = it becomes forwarder; P
becomes child of Q. Join request continues to be forwarded.
* Qknows about tree = P becomes child of Q. No need to forward
join request anymore.

g~ wN =

34/45 34/45

ALM: Some costs

Different metrics

End host

Overlay network

e Link stress: How often does an ALM message cross the same physical
link? Example: message from Ato D needs to cross (Ra, Rb) twice.

e Stretch: Ratio in delay between ALM-level path and network-level path.
Example: messages B to C follow path of length 73 at ALM, but 47 at
network level = stretch = 73/47.

35/45 35/45

Flooding

Essence
P simply sends a message m to each of its neighbors. Each neighbor will
forward that message, except to P, and only if it had not seen m before.

M { == Pegge =0.2
8 M —— Pegge =0.4
€ 5M o o Pegge = 0.6
'§ 4M +
3 3M
£ 2w
z
1M A
04
T T T T T T
[1000 2000 3000 4000 5000
Number of nodes

Variation

Let Q forward a message with a certain probability pse0q, Possibly even
dependent on its own number of neighbors (i.e., node degree) or the degree of
its neighbors.

36/45 36/45

Epidemic protocols

Assume there are no write—write conflicts

Update operations are performed at a single server

A replica passes updated state to only a few neighbors
Update propagation is lazy, i.e., not immediate
Eventually, each update should reach every replica

Two forms of epidemics

* Anti-entropy: Each replica regularly chooses another replica at random,
and exchanges state differences, leading to identical states at both
afterwards

* Rumor spreading: A replica which has just been updated (i.e., has been
contaminated), tells several other replicas about its update (contaminating
them as well).

37/45 745

Multicast communication Multicast communication

Anti-entropy

Principle operations

A node P selects another node Q from the system at random.
Pull: P only pulls in new updates from Q

Push: P only pushes its own updates to Q

Push-pull: P and Q send updates to each other

Observation
For push-pull it takes ¢'(log(N)) rounds to disseminate updates to all N nodes
(round = when every node has taken the initiative to start an exchange).

38/45 38/45

Multicast communication Multicast communication

Anti-entropy: analysis

Basics
Consider a single source, propagating its update. Let p; be the probability that
a node has not received the update after the i round.

Analysis: staying ignorant

e With pull, pj 1 = (p;)?: the node was not updated during the i round
and should contact another ignorant node during the next round.

e With push, pi1 = pi(1 — 5i5)N"10-P) ~ pe" (for small p; and large
N): the node was ignorant during the i" round and no updated node
chooses to contact it during the next round.

o With push-pull: (p;)2- (pie™")

39/45 39/45

Anti-entropy performance

10000
@
£ 8000 4
2
2 6000
2
s
Z 4000
8 == pull
s 4 —
- 2000 pus: ;
...... ushpul
0 pushp
T T T T T T
0 5 10 15 20 25
Number of rounds
10000
8
8 1000 o
2
3
2 100 A
2
5 === pull 3
S 10 |
5 —— push i
#= | pushpull H :
T T + T T + T
12 14 16 18 20 22 24

Number of rounds (detailed)

40/45 40/ 45

Multicast communication Multicast communication

Rumor spreading

Basic model

A server S having an update to report, contacts other servers. If a server is
contacted to which the update has already propagated, S stops contacting
other servers with probability pstop-

Observation
If s is the fraction of ignorant servers (i.e., which are unaware of the update), it
can be shown that with many servers

s — o~ (1/Psiop1)(1-9)

41745 41745

Multicast communication Multicast communication

Formal analysis

Notations

Let s denote fraction of nodes that have not yet been updated (i.e., susceptible;
i the fraction of updated (infected) and active nodes; and r the fraction of
updated nodes that gave up (removed).

From theory of epidemics

(1) ds/dt = -—s-i

(2) di/dt = s-i—psip-(1—8)-i

= difds = —(1+Ppsiop)+ 222

= i(s) = —(1+pstop) - S+ Pstop-In(s) +C

Wrap up
i(1)=0= C=1+4psiop = i(s) = (1+ Pstop) - (1 = 5) + Pstop - In(s). We are
looking for the case i(s) = 0, which leads to s = e~ (/Pstopt1)(1-5)

42/45 42/45

Multicast communication Multicast communication

Rumor spreading

The effect of stopping
2 0.20 Consider 10,000 nodes
3
4 0.15 1/Pstop s Ns
2 1 0.203188 2032
5 0.10
< 2 0.059520 595
g 0.05 3 0.019827 198
2 0,001 4 0.006977 70
02 04 06 08 10 5 0.002516 25
Probability that a node stops spreading a rumor 6 0.000918 9
7 0.000336 3

Note
If we really have to ensure that all servers are eventually updated, rumor
spreading alone is not enough

43/45 43145
Multicast communication Multicast communication

Deleting values

Fundamental problem

We cannot remove an old value from a server and expect the removal to
propagate. Instead, mere removal will be undone in due time using epidemic
algorithms

Solution
Removal has to be registered as a special update by inserting a death
certificate

4445 44145

Multicast communication Multicast communication

Deleting values

When to remove a death certificate (it is not allowed to stay for ever)

* Run a global algorithm to detect whether the removal is known
everywhere, and then collect the death certificates (looks like garbage
collection)

* Assume death certificates propagate in finite time, and associate a
maximum lifetime for a certificate (can be done at risk of not reaching all
servers)

Note
It is necessary that a removal actually reaches all servers.

45/45 45/45

