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Processes Threads

Introduction to threads

Basic idea
We build virtual processors in software, on top of physical processors:

Processor: Provides a set of instructions along with the capability of
automatically executing a series of those instructions.

Thread: A minimal software processor in whose context a series of
instructions can be executed. Saving a thread context implies
stopping the current execution and saving all the data needed
to continue the execution at a later stage.

Process: A software processor in whose context one or more threads
may be executed. Executing a thread, means executing a
series of instructions in the context of that thread.
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Context switching

Contexts
• Processor context: The minimal collection of values stored in the

registers of a processor used for the execution of a series of instructions
(e.g., stack pointer, addressing registers, program counter).

• Thread context: The minimal collection of values stored in registers and
memory, used for the execution of a series of instructions (i.e., processor
context, state).

• Process context: The minimal collection of values stored in registers and
memory, used for the execution of a thread (i.e., thread context, but now
also at least MMU register values).
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Context switching

Observations

1. Threads share the same address space. Thread context switching can be
done entirely independent of the operating system.

2. Process switching is generally (somewhat) more expensive as it involves
getting the OS in the loop, i.e., trapping to the kernel.

3. Creating and destroying threads is much cheaper than doing so for
processes.
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Why use threads

Some simple reasons

• Avoid needless blocking: a single-threaded process will block when doing
I/O; in a multithreaded process, the operating system can switch the CPU
to another thread in that process.

• Exploit parallelism: the threads in a multithreaded process can be
scheduled to run in parallel on a multiprocessor or multicore processor.

• Avoid process switching: structure large applications not as a collection of
processes, but through multiple threads.
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Avoid process switching

Avoid expensive context switching

Trade-offs
• Threads use the same address space: more prone to errors

• No support from OS/HW to protect threads using each other’s memory

• Thread context switching may be faster than process context switching
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The cost of a context switch

Consider a simple clock-interrupt handler

• direct costs: actual switch and executing code of the handler

• indirect costs: other costs, notably caused by messing up the cache

What a context switch may cause: indirect costs

(a) (b) (c)

(a) before the context switch

(b) after the context switch

(c) after accessing block D.
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A simple example in Python

1 from multiprocessing import Process
2 from time import *
3 from random import *
4

5 def sleeper(name):
6 t = gmtime()
7 s = randint(1,20)
8 txt = str(t.tm_min)+’:’+str(t.tm_sec)+’ ’+name+’ is going to sleep for ’+str(s)+’ seconds’
9 print(txt)

10 sleep(s)
11 t = gmtime()
12 txt = str(t.tm_min)+’:’+str(t.tm_sec)+’ ’+name+’ has woken up’
13 print(txt)
14

15 if __name__ == ’__main__’:
16 p = Process(target=sleeper, args=(’eve’,))
17 q = Process(target=sleeper, args=(’bob’,))
18 p.start(); q.start()
19 p.join(); q.join()

40:23 eve is going to sleep for 14 seconds

40:23 bob is going to sleep for 4 seconds

40:27 bob has woken up

40:37 eve has woken up
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A simple example in Python

1 from multiprocessing import Process
2 from threading import Thread
3

4 shared_x = randint(10,99)
5

6 def sleeping(name):
7 global shared_x
8 t = gmtime(); s = randint(1,20)
9 txt = str(t.tm_min)+’:’+str(t.tm_sec)+’ ’+name+’ is going to sleep for ’+str(s)+’ seconds’

10 print(txt)
11 sleep(s)
12 t = gmtime(); shared_x = shared_x + 1
13 txt = str(t.tm_min)+’:’+str(t.tm_sec)+’ ’+name+’ has woken up, seeing shared x being ’
14 print(txt+str(shared_x) )
15

16 def sleeper(name):
17 sleeplist = list()
18 print(name, ’sees shared x being’, shared_x)
19 for i in range(3):
20 subsleeper = Thread(target=sleeping, args=(name+’ ’+str(i),))
21 sleeplist.append(subsleeper)
22

23 for s in sleeplist: s.start(); for s in sleeplist: s.join()
24 print(name, ’sees shared x being’, shared_x)
25

26 if __name__ == ’__main__’:
27 p = Process(target=sleeper, args=(’eve’,))
28 q = Process(target=sleeper, args=(’bob’,))
29 p.start(); q.start()
30 p.join(); q.join()
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A simple example in Python
eve sees shared x being 71

53:21 eve 0 is going to sleep for 20 seconds

bob sees shared x being 84

53:21 eve 1 is going to sleep for 15 seconds

53:21 eve 2 is going to sleep for 3 seconds

53:21 bob 0 is going to sleep for 8 seconds

53:21 bob 1 is going to sleep for 16 seconds

53:21 bob 2 is going to sleep for 8 seconds

53:24 eve 2 has woken up, seeing shared x being 72

53:29 bob 0 has woken up, seeing shared x being 85

53:29 bob 2 has woken up, seeing shared x being 86

53:36 eve 1 has woken up, seeing shared x being 73

53:37 bob 1 has woken up, seeing shared x being 87

bob sees shared x being 87

53:41 eve 0 has woken up, seeing shared x being 74

eve sees shared x being 74
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Threads and operating systems

Main issue
Should an OS kernel provide threads, or should they be implemented as
user-level packages?

User-space solution

• All operations can be completely handled within a single process ⇒
implementations can be extremely efficient.

• All services provided by the kernel are done on behalf of the process in
which a thread resides ⇒ if the kernel decides to block a thread, the
entire process will be blocked.

• Threads are used when there are many external events: threads block on
a per-event basis ⇒ if the kernel can’t distinguish threads, how can it
support signaling events to them?
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Threads and operating systems

Kernel solution
The whole idea is to have the kernel contain the implementation of a thread
package. This means that all operations return as system calls:

• Operations that block a thread are no longer a problem: the kernel
schedules another available thread within the same process.

• handling external events is simple: the kernel (which catches all events)
schedules the thread associated with the event.

• The problem is (or used to be) the loss of efficiency because each thread
operation requires a trap to the kernel.

Conclusion – but
Try to mix user-level and kernel-level threads into a single concept, however,
performance gain has not turned out to generally outweigh the increased
complexity.
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Combining user-level and kernel-level threads

Basic idea
Introduce a two-level threading approach: kernel threads that can execute
user-level threads.
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User and kernel threads combined

Principle operation

• User thread does system call ⇒ the kernel thread that is executing that
user thread, blocks. The user thread remains bound to the kernel thread.

• The kernel can schedule another kernel thread having a runnable user
thread bound to it. Note: this user thread can switch to any other
runnable user thread currently in user space.

• A user thread calls a blocking user-level operation ⇒ do context switch to
a runnable user thread, (then bound to the same kernel thread).

• When there are no user threads to schedule, a kernel thread may remain
idle, and may even be removed (destroyed) by the kernel.
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Using threads at the client side

Multithreaded web client
Hiding network latencies:

• Web browser scans an incoming HTML page, and finds that more files
need to be fetched.

• Each file is fetched by a separate thread, each doing a (blocking) HTTP
request.

• As files come in, the browser displays them.

Multiple request-response calls to other machines (RPC)

• A client does several calls at the same time, each one by a different
thread.

• It then waits until all results have been returned.
• Note: if calls are to different servers, we may have a linear speed-up.
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Multithreaded clients: does it help?

Thread-level parallelism: TLP
Let ci denote the fraction of time that exactly i threads are being executed
simultaneously.

TLP =
∑

N
i=1 i ·ci
1−c0

with N the maximum number of threads that (can) execute at the same time.

Practical measurements
A typical Web browser has a TLP value between 1.5 and 2.5 ⇒ threads are
primarily used for logically organizing browsers.
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Using threads at the server side

Improve performance

• Starting a thread is cheaper than starting a new process.
• Having a single-threaded server prohibits simple scale-up to a

multiprocessor system.
• As with clients: hide network latency by reacting to next request while

previous one is being replied.

Better structure
• Most servers have high I/O demands. Using simple, well-understood

blocking calls simplifies the structure.
• Multithreaded programs tend to be smaller and easier to understand due

to simplified flow of control.
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Why multithreading is popular: organization

Dispatcher/worker model

Overview

Model Characteristics

Multithreading Parallelism, blocking system calls

Single-threaded process No parallelism, blocking system calls

Finite-state machine Parallelism, nonblocking system calls
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Virtualization

Observation
Virtualization is important:

• Hardware changes faster than software
• Ease of portability and code migration
• Isolation of failing or attacked components

Principle: mimicking interfaces

Principle of virtualization 19 / 54
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Mimicking interfaces

Four types of interfaces at three different levels

1. Instruction set architecture: the set of machine instructions, with two
subsets:

• Privileged instructions: allowed to be executed only by the operating
system.

• General instructions: can be executed by any program.

2. System calls as offered by an operating system.
3. Library calls, known as an application programming interface (API)
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Ways of virtualization

(a) Process VM (b) Native VMM (c) Hosted VMM

Differences

(a) Separate set of instructions, an interpreter/emulator, running atop an OS.
(b) Low-level instructions, along with bare-bones minimal operating system
(c) Low-level instructions, but delegating most work to a full-fledged OS.
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Zooming into VMs: performance

Refining the organization

• Privileged instruction: if
and only if executed in
user mode, it causes a
trap to the operating
system

• Nonpriviliged instruction:
the rest

Special instructions

• Control-sensitive instruction: may affect configuration of a machine (e.g.,
one affecting relocation register or interrupt table).

• Behavior-sensitive instruction: effect is partially determined by context
(e.g., POPF sets an interrupt-enabled flag, but only in system mode).
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Condition for virtualization

Necessary condition
For any conventional computer, a virtual machine monitor may be constructed
if the set of sensitive instructions for that computer is a subset of the set of
privileged instructions.

Problem: condition is not always satisfied
There may be sensitive instructions that are executed in user mode without
causing a trap to the operating system.

Solutions
• Emulate all instructions

• Wrap nonprivileged sensitive instructions to divert control to VMM

• Paravirtualization: modify guest OS, either by preventing nonprivileged
sensitive instructions, or making them nonsensitive (i.e., changing the
context).
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Containers

• Namespaces: a collection of processes in a container is given their own
view of identifiers

• Union file system: combine several file systems into a layered fashion
with only the highest layer allowing for write operations (and the one
being part of a container).

• Control groups: resource restrictions can be imposed upon a collection of
processes.
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Example: PlanetLab

Essence
Different organizations contribute machines, which they subsequently share for
various experiments.

Problem
We need to ensure that different distributed applications do not get into each
other’s way ⇒ virtualization
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PlanetLab basic organization

Vserver
Independent and protected environment with its own libraries, server versions,
and so on. Distributed applications are assigned a collection of vservers
distributed across multiple machines
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PlanetLab Vservers and slices

Essence
• Each Vserver operates in its own environment (cf. chroot).
• Linux enhancements include proper adjustment of process IDs (e.g.,
init having ID 0).

• Two processes in different Vservers may have same user ID, but does not
imply the same user.

Separation leads to slices
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VMs and cloud computing

Three types of cloud services

• Infrastructure-as-a-Service covering the basic infrastructure
• Platform-as-a-Service covering system-level services
• Software-as-a-Service containing actual applications

IaaS
Instead of renting out a physical machine, a cloud provider will rent out a VM
(or VMM) that may be sharing a physical machine with other customers ⇒
almost complete isolation between customers (although performance isolation
may not be reached).

Application of virtual machines to distributed systems 28 / 54
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Client-server interaction

Distinguish application-level and middleware-level solutions

Networked user interfaces 29 / 54
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Example: The X Window system

Basic organization

X client and server
The application acts as a client to the X-kernel, the latter running as a server
on the client’s machine.

Networked user interfaces 30 / 54
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Improving X

Practical observations
• There is often no clear separation between application logic and

user-interface commands
• Applications tend to operate in a tightly synchronous manner with an X

kernel

Alternative approaches

• Let applications control the display completely, up to the pixel level (e.g.,
VNC)

• Provide only a few high-level display operations (dependent on local
video drivers), allowing more efficient display operations.
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Virtual desktop environment

Logical development
With an increasing number of cloud-based applications, the question is how to
use those applications from a user’s premise?

• Issue: develop the ultimate networked user interface
• Answer: use a Web browser to establish a seamless experience

The Google Chromebook
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The anatomy of a Web browser
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Client-side software

Generally tailored for distribution transparency

• Access transparency: client-side stubs for RPCs
• Location/migration transparency: let client-side software keep track of

actual location
• Replication transparency: multiple invocations handled by client stub:

• Failure transparency: can often be placed only at client (we’re trying to
mask server and communication failures).

Client-side software for distribution transparency 34 / 54
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Servers: General organization

Basic model
A process implementing a specific service on behalf of a collection of clients. It
waits for an incoming request from a client and subsequently ensures that the
request is taken care of, after which it waits for the next incoming request.

Two basic types

• Iterative server: Server handles the request before attending a next
request.

• Concurrent server: Uses a dispatcher, which picks up an incoming
request that is then passed on to a separate thread/process.

Observation
Concurrent servers are the norm: they can easily handle multiple requests,
notably in the presence of blocking operations (to disks or other servers).

General design issues 35 / 54
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Contacting a server

Observation: most services are tied to a specific port

ftp-data 20 File Transfer [Default Data]
ftp 21 File Transfer [Control]
telnet 23 Telnet
smtp 25 Simple Mail Transfer
www 80 Web (HTTP)

Dynamically assigning an end point: two approaches
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Out-of-band communication

Issue
Is it possible to interrupt a server once it has accepted (or is in the process of
accepting) a service request?

Solution 1: Use a separate port for urgent data

• Server has a separate thread/process for urgent messages
• Urgent message comes in ⇒ associated request is put on hold
• Note: we require OS supports priority-based scheduling

Solution 2: Use facilities of the transport layer

• Example: TCP allows for urgent messages in same connection
• Urgent messages can be caught using OS signaling techniques

General design issues 37 / 54
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Servers and state

Stateless servers
Never keep accurate information about the status of a client after having
handled a request:

• Don’t record whether a file has been opened (simply close it again after
access)

• Don’t promise to invalidate a client’s cache
• Don’t keep track of your clients

Consequences

• Clients and servers are completely independent
• State inconsistencies due to client or server crashes are reduced
• Possible loss of performance because, e.g., a server cannot anticipate

client behavior (think of prefetching file blocks)

Question
Does connection-oriented communication fit into a stateless design?

General design issues 38 / 54



Processes Servers

Servers and state

Stateless servers
Never keep accurate information about the status of a client after having
handled a request:

• Don’t record whether a file has been opened (simply close it again after
access)

• Don’t promise to invalidate a client’s cache
• Don’t keep track of your clients

Consequences

• Clients and servers are completely independent
• State inconsistencies due to client or server crashes are reduced
• Possible loss of performance because, e.g., a server cannot anticipate

client behavior (think of prefetching file blocks)

Question
Does connection-oriented communication fit into a stateless design?

General design issues 38 / 54



Processes Servers

Servers and state

Stateless servers
Never keep accurate information about the status of a client after having
handled a request:

• Don’t record whether a file has been opened (simply close it again after
access)

• Don’t promise to invalidate a client’s cache
• Don’t keep track of your clients

Consequences

• Clients and servers are completely independent
• State inconsistencies due to client or server crashes are reduced
• Possible loss of performance because, e.g., a server cannot anticipate

client behavior (think of prefetching file blocks)

Question
Does connection-oriented communication fit into a stateless design?

General design issues 38 / 54



Processes Servers

Servers and state

Stateful servers
Keeps track of the status of its clients:

• Record that a file has been opened, so that prefetching can be done
• Knows which data a client has cached, and allows clients to keep local

copies of shared data

Observation
The performance of stateful servers can be extremely high, provided clients
are allowed to keep local copies. As it turns out, reliability is often not a major
problem.

General design issues 39 / 54
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Object servers

• Activation policy: which actions to take
when an invocation request comes in:

• Where are code and data of the
object?

• Which threading model to use?
• Keep modified state of object, if any?

• Object adapter: implements a specific
activation policy

Object servers 40 / 54



Processes Servers

Example: Ice runtime system – a server

1 import sys, Ice
2 import Demo
3

4 class PrinterI(Demo.Printer):
5 def __init__(self, t):
6 self.t = t
7

8 def printString(self, s, current=None):
9 print(self.t, s)

10

11 communicator = Ice.initialize(sys.argv)
12

13 adapter = communicator.createObjectAdapterWithEndpoints("SimpleAdapter", "default -p 11000")
14 object1 = PrinterI("Object1 says:")
15 object2 = PrinterI("Object2 says:")
16 adapter.add(object1, communicator.stringToIdentity("SimplePrinter1"))
17 adapter.add(object2, communicator.stringToIdentity("SimplePrinter2"))
18 adapter.activate()
19

20 communicator.waitForShutdown()
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Example: Ice runtime system – a client

1 import sys, Ice
2 import Demo
3

4 communicator = Ice.initialize(sys.argv)
5

6 base1 = communicator.stringToProxy("SimplePrinter1:default -p 11000")
7 base2 = communicator.stringToProxy("SimplePrinter2:default -p 11000")
8 printer1 = Demo.PrinterPrx.checkedCast(base1)
9 printer2 = Demo.PrinterPrx.checkedCast(base2)

10 if (not printer1) or (not printer2):
11 raise RuntimeError("Invalid proxy")
12

13 printer1.printString("Hello World from printer1!")
14 printer2.printString("Hello World from printer2!")
15

16 communicator.waitForShutdown()

Object1 says: Hello World from printer1!
Object2 says: Hello World from printer2!

Object servers 42 / 54
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Example: the Apache Web server

Example: The Apache Web server 43 / 54
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Three different tiers

Common organization

Crucial element
The first tier is generally responsible for passing requests to an appropriate
server: request dispatching

Server clusters 44 / 54
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Request Handling

Observation
Having the first tier handle all communication from/to the cluster may lead to a
bottleneck.

A solution: TCP handoff

Server clusters 45 / 54
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When servers are spread across the Internet

Observation
Spreading servers across the Internet may introduce administrative problems.
These can be largely circumvented by using data centers from a single cloud
provider.

Request dispatching: if locality is important
Common approach: use DNS:

1. Client looks up specific service through DNS - client’s IP address is part
of request

2. DNS server keeps track of replica servers for the requested service, and
returns address of most local server.

Client transparency
To keep client unaware of distribution, let DNS resolver act on behalf of client.
Problem is that the resolver may actually be far from local to the actual client.

Server clusters 46 / 54
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A simplified version of the Akamai CDN

Important note
The cache is often sophisticated enough to hold more than just passive data.
Much of the application code of the origin server can be moved to the cache as
well.

Server clusters 47 / 54
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Reasons to migrate code

Load distribution
• Ensuring that servers in a data center are sufficiently loaded (e.g., to

prevent waste of energy)
• Minimizing communication by ensuring that computations are close to

where the data is (think of mobile computing).

Flexibility: moving code to a client when needed

Avoids pre-installing software and increases dynamic configuration.
Reasons for migrating code 48 / 54
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Reasons to migrate code

Privacy and security
In many cases, one cannot move data to another location, for whatever reason
(often legal ones). Solution: move the code to the data.

Example: federated machine learning
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Paradigms for code mobility

Models for code migration 50 / 54



Processes Code migration

Strong and weak mobility

Object components

• Code segment: contains the actual code

• Data segment: contains the state

• Execution state: contains context of thread executing the object’s code

Weak mobility: Move only code and data segment (and reboot
execution)

• Relatively simple, especially if code is portable

• Distinguish code shipping (push) from code fetching (pull)

Strong mobility: Move component, including execution state

• Migration: move entire object from one machine to the other

• Cloning: start a clone, and set it in the same execution state.
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Migration in heterogeneous systems

Main problem

• The target machine may not be suitable to execute the migrated code

• The definition of process/thread/processor context is highly dependent on
local hardware, operating system and runtime system

Only solution: abstract machine implemented on different platforms

• Interpreted languages, effectively having their own VM

• Virtual machine monitors

Observation
As containers are directly dependent on the underlying operating system, their
migration in heterogeneous environments is far from trivial, to simply
impractical, just as process migration is.
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Migrating a virtual machine

Migrating images: three alternatives

1. Pushing memory pages to the new machine and resending the ones that
are later modified during the migration process.

2. Stopping the current virtual machine; migrate memory, and start the new
virtual machine.

3. Letting the new virtual machine pull in new pages as needed: processes
start on the new virtual machine immediately and copy memory pages on
demand.
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Performance of migrating virtual machines

Problem
A complete migration may actually take tens of seconds. We also need to
realize that during the migration, a service will be completely unavailable for
multiple seconds.

Measurements regarding response times during VM migration
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