Distributed Systems

(4th edition, version 01)

Chapter 02: Architectures

Architectural styles

Basic idea
A style is formulated in terms of

(replaceable) components with well-defined interfaces

¢ the way that components are connected to each other

¢ the data exchanged between components

* how these components and connectors are jointly configured into a
system.

Connector

A mechanism that mediates communication, coordination, or cooperation
among components. Example: facilities for (remote) procedure call,
messaging, or streaming.

2/46

Layered architecture

Different layered organizations

Request/Response

Upcall

downcall One-way call
— g
| Layer N | | Layer N | Layer N I
Layer N-1 | Layernt | Layer N-1 |
Handle
Layer N-2
(@) (b) (c)

Architectural styles

3/46

Architectural styles

Example: communication protocols

Protocol, service, interface

Party A Party B
(Layer N Layer N)
Interface Service
v Y v
- Layer N-1
\/ \/

4/46

Architectural styles

Two-party communication

Server
1 from socket import x
2
3 s = socket (AF_INET, SOCK_STREAM)
4 (conn, addr) = s.accept() # returns new socket and addr. client
5 while True: # forever
6 data = conn.recv(1024) # receive data from client
7 if not data: break # stop 1f client stopped
8 msg = data.decode()+"x" # process the incoming data into a response
9 conn.send (msg.encode()) # return the response
10 conn.close() # close the connection

Client

1 from socket import x

2

3 s = socket (AF_INET, SOCK_STREAM)

4 s.connect ((HOST, PORT)) # connect to server (block until accepted)
5 msg = "Hello World" # compose a message

6 s.send(msg.encode()) # send the message

7 data = s.recv(1024) # receive the response

8 print (data.decode()) # print the result

9 s.close() # close the connection

Application Layering

Traditional three-layered view

* Application-interface layer contains units for interfacing to users or
external applications

® Processing layer contains the functions of an application, i.e., without
specific data

* Data layer contains the data that a client wants to manipulate through the
application components

6/46

i
Application Layering

Traditional three-layered view

* Application-interface layer contains units for interfacing to users or
external applications

® Processing layer contains the functions of an application, i.e., without
specific data

* Data layer contains the data that a client wants to manipulate through the
application components

Observation

This layering is found in many distributed information systems, using traditional
database technology and accompanying applications.

Layered architectures 6/46

Architectural styles
Application Layering

Example: a simple search engine

User interface User-interface

WJ

level
HTML page
Descriptors containing list
HTML
generator Processing
Query % Ranked list level
generator of houses
Ranking
Database queries algorithm
Selected houses
Database with Data level

housing information

Architectural styles

Object-based style

Essence
Components are objects, connected to each other through procedure calls.

Objects may be placed on different machines; calls can thus execute across a
network.

State

Object

/ Object
Method
Object Method call .
Object
Interface

Encapsulation
Objects are said to encapsulate data and offer methods on that data without

revealing the internal implementation.

8/46

Architectures

Architectural styles

RESTful architectures

Essence

View a distributed system as a collection of resources, individually managed by
components. Resources may be added, removed, retrieved, and modified by

(remote) applications.

Resources are identified through a single naming scheme

. All services offer the same interface

Messages sent to or from a service are fully self-described

. After executing an operation at a service, that component forgets

A o=

everything about the caller

Basic operations

Operation | Description

PUT Create a new resource

GET Retrieve the state of a resource in some representation
DELETE Delete a resource

POST Modify a resource by transferring a new state

Service-oriented architectures

Architectures Architectural styles

Example: Amazon’s Simple Storage Service

Essence

Objects (i.e., files) are placed into buckets (i.e., directories). Buckets cannot be
placed into buckets. Operations on ObjectName in bucket BucketName
require the following identifier:

http://BucketName. s3.amazonaws . com/ObjectName

Typical operations
All operations are carried out by sending HTTP requests:

¢ Create a bucket/object: PUT, along with the URI
e Listing objects: GET on a bucket name
® Reading an object: GET on a full URI

Service-oriented architectures 10/ 46

Architectural styles

On interfaces

Issue

Many people like RESTful approaches because the interface to a service is so
simple. The catch is that much needs to be done in the parameter space.

Amazon S3 SOAP interface

11/46

Bucket operations

Object operations

ListAllMyBuckets
CreateBucket

DeleteBucket

ListBucket
GetBucketAccessControlPolicy
SetBucketAccessControlPolicy
GetBucketLoggingStatus
SetBucketLoggingStatus

PutObjectInline

PutObject

CopyObject

GetObject

GetObjectExtended
DeleteObject
GetObjectAccessControlPolicy
SetObjectAccessControlPolicy

On interfaces

Simplifications

Assume an interface bucket offering an operation create, requiring an input
string such as mybucket, for creating a bucket “mybucket.”

12/46

On interfaces

Simplifications
Assume an interface bucket offering an operation create, requiring an input
string such as mybucket, for creating a bucket “mybucket.”

SOAP
import bucket
bucket . create ("mybucket")

12/46

Architectural styles

On interfaces

Simplifications
Assume an interface bucket offering an operation create, requiring an input
string such as mybucket, for creating a bucket “mybucket.”

SOAP
import bucket
bucket . create ("mybucket")

RESTful
PUT "https://mybucket.s3.amazonsws.com/"

12/46

On interfaces

Simplifications
Assume an interface bucket offering an operation create, requiring an input
string such as mybucket, for creating a bucket “mybucket.”

SOAP
import bucket
bucket . create ("mybucket")

RESTful
PUT "https://mybucket.s3.amazonsws.com/"

Conclusions
Are there any to draw?

12/46

Coordination

Temporal and referential coupling

Temporally coupled | Temporally coupled
Referentially coupled Direct Mailbox
Referentially decoupled Event-based Shared data space

Event-based and Shared data space

‘ Component ‘ ‘ Component ‘ ‘ Component ‘ ‘ Component ‘
. i A Notification :
Subscribe | | i Publish Subscribe ! Data
\ 4 y | delivery Lol v + delivery
< Event bus > —
[T
Publish

Component

Shared (persistent) data space

13/46

Example: Linda tuple space

Three simple operations

® in(t): remove a tuple matching template t
® rd(t): obtain copy of a tuple matching template t
® out (t): add tuple t to the tuple space

More details

¢ Calling out (t) twice in a row, leads to storing two copies of tuple t = a
tuple space is modeled as a multiset.

® Both inand rd are blocking operations: the caller will be blocked until a
matching tuple is found, or has become available.

14/46

Example: Linda tuple space

import linda
linda.connect ()

1
2
3
4 blog = linda.TupleSpace()

5 linda.universe._out (("MicroBlog",blog))
6

5

8

9

Bob:
blog = linda.universe._rd(("MicroBlog",linda.TupleSpace)) [1]
blog._out (("bob", "distsys", "I am studying chap 2"))
10 blog._out(("bob", "distsys", "The linda example’s pretty simple"))
11 blog._out (("bob", "gtcn", "Cool book!"))
1 import linda
2 linda.connect ()
X 3
Alice: 4 Dblog = linda.universe._rd(("MicroBlog",linda.TupleSpace)) [1]
5
6 blog._out(("alice","gtcn", "This graph theory stuff is not easy"))
7 blog._out(("alice","distsys","I like systems more than graphs"))
1 import linda
2 linda.connect ()
3
14 Dblog = linda.universe._rd(("MicroBlog",linda.TupleSpace)) [1]
5
. 6 tl = blog._rd(("bob","distsys",str))
ChUCk' 7 t2 = blog._rd(("alice","gtcn",str))
8 t3 = blog._rd(("bob", "gtcn",str))
9
10 print tl
11 print t2
12 print t3

15/46

Architectural styles

Publish and subscribe

Issue: how to match events?

® Assume events are described by (attribute,value) pairs
® topic-based subscription: specify a “attribute = value” series
e content-based subscription: specify a “attribute € range” series

Publisher Subscriber Subscriber

Read/Deliver:
Data item @ Subscription O Y

N
Notification °

A

Cep® ¢ ©C g ®0/eC o

Publish/subscribe middleware Maltch
Observation
Content-based subscriptions may easily have serious scalability problems
(why?)

16/46

Middleware: the OS of distributed systems

Same interface everywhere

Computer 1 Computer 2 Computer 3 Computer 4
1 [

Appl. A Application B Appl. C

pr— | — i ye— —1

Distributed-system layer (middleware)

’Local 0Ss 1 l ‘ Local OS 2 ‘ ’ Local OS 3 | | Local OS 4 |

Network

What does it contain?
Commonly used components and functions that need not be implemented by
applications separately.

17 /46

Middleware and distributed systems

Using legacy to build middleware

Problem
The interfaces offered by a legacy component are most likely not suitable for all

applications.

Solution
A wrapper or adapter offers an interface acceptable to a client application. Its
functions are transformed into those available at the component.

18/46

Middleware and distributed systems
Organizing wrappers

Two solutions: 1-on-1 or through a broker

Wrapper

Application Broker

Complexity with N applications

* 1-on-1: requires N x (N —1) = ¢(N?) wrappers
® broker: requires 2N = &(N) wrappers

19/46

Middleware and distributed systems

Developing adaptable middleware
Problem

Middleware contains solutions that are good for most applications = you may
want to adapt its behavior for specific applications.

20/46

Intercept the usual flow of control

Client application

Application stub

Intercepted call

Request-level interceptor — Nonintercepted call

Object middleware

Message-level interceptor

L J send (B, “doit

Local OS

(....... acaad

7, val)

Y ToobjectB

PANE

Layered-system architectures

Centralized system architectures

Basic Client—Server Model
Characteristics:

There are processes offering services (servers)

® There are processes that use services (clients)

¢ Clients and servers can be on different machines

¢ Clients follow request/reply model regarding using services

operation response

C T ——————— wait for reply - - - - - - - 7—»
S

22/46

Layered-system architectures

Multi-tiered centralized system architectures

Some traditional organizations

¢ Single-tiered: dumb terminal/mainframe configuration
® Two-tiered: client/single server configuration
® Three-tiered: each layer on separate machine

Traditional two-tiered configurations

Client machine

User interfa_gg

User interface

J I User interfacel

| User interface |

I User interfacel |

User interface

Application_‘J

I Application I

Application

Database_

Application Application ~Application Y
Database Database Database I Database I r~ -‘I’Database
Server machine
(a) (b) (c) (d) (e)

23/46

Being client and server at the same time

Three-tiered architecture

operation

data

AS - - - - wait for reply - - -

DS

24/46

Example: The Network File System

Foundations

Each NFS server provides a standardized view of its local file system: each
server supports the same model, regardless the implementation of the file
system.

The NFS remote access model
1. File moved to client

Client Server Client Server
< Old file

— | [T s

Y

Requests from 5 A /
client to access File stays . Accesses are Wh lient i
remote file on server done on client > file 16 retured ?c? "
server
Remote access Upload/download

Note
FTP is a typical upload/download model. The same can be said for systems
like Dropbox.

25/46

Example: The Network File System

NFS

architecture
Client

System call layer

7

(VFS) layer

Virtual file system

v

v

Layered-system architectures

Server

Local file
system interface

NFS client

System call layer

v

Virtual file system
(VFS) layer

)

v

v

NFS server

Local file
system interface

RPC client
stub

A

RPC server
stub

L

A

J)

Network

26/46

Layered-system architectures

Example: Simple Web servers

Back in the old days...

2. Server fetches

Client machine Server machine document from
local file
Browser Web server / 8
A A
0S
I 3. Response |

1. Get document request (HTTP)
...life was simple:

* A website consisted as a collection of HTML files

e HTML files could be referred to each other by a hyperlink

* A Web server essentially needed only a hyperlink to fetch a file
* A browser took care of properly rendering the content of a file

27/46

Architectures

Layered-system architectures

Example (cnt'd): Less simple Web servers

Still back in the old days...

2. Start process to fetch document

1. Get request HTTP \ cal 3. Database interaction
request program
5. Return result handler \
4. HTML document
crealted
Web server CGl process Database server

...life became a bit more complicated:

* A website was built around a database with content

* A Webpage could still be referred to by a hyperlink

* A Web server essentially needed only a hyperlink to fetch a file

® A separate program (Common Gateway Interface) composed a page
* A browser took care of properly rendering the content of a file

Alternative organizations

Vertical distribution
Comes from dividing distributed applications into three logical layers, and
running the components from each layer on a different server (machine).

Horizontal distribution
A client or server may be physically split up into logically equivalent parts, but
each part is operating on its own share of the complete data set.

Peer-to-peer architectures

Processes are all equal: the functions that need to be carried out are
represented by every process = each process will act as a client and a server
at the same time (i.e., acting as a servant).

Structured P2P

Essence
Make use of a semantic-free index: each data item is uniquely associated with
a key, in turn used as an index. Common practice: use a hash function

key(data item) = hash(data item’s value).
P2P system now responsible for storing (key,value) pairs.

Simple example: hypercube

Looking up d with key k € {0,1,2,...,2* — 1} means routing request to node
with identifier k.

30/46

Example: Chord

Principle

* Nodes are logically organized in a ring. Each node has an m-bit identifier.

® Each data item is hashed to an m-bit key.

* Data item with key k is stored at node with smallest identifier id > k,
called the successor of key k.

* The ring is extended with various shortcut links to other nodes.

31/46

Example: Chord

lookup(3)@9:28 -1 — 4

Unstructured P2P

Essence

Each node maintains an ad hoc list of neighbors. The resulting overlay
resembles a random graph: an edge (u, v) exists only with a certain probability
P[{u, v)].

Searching

* Flooding: issuing node u passes request for d to all neighbors. Request
is ignored when receiving node had seen it before. Otherwise, v
searches locally for d (recursively). May be limited by a Time-To-Live: a
maximum number of hops.

® Random walk: issuing node u passes request for d to randomly chosen
neighbor, v. If v does not have d, it forwards request to one of its
randomly chosen neighbors, and so on.

Unstructured peer-to-peer systems 33/46

Symmetrically distributed system architectures

Flooding versus random walk

Model
Assume N nodes and that each data item is replicated across r randomly
chosen nodes.

Random walk
IP[k] probability that item is found after k attempts:

Pl = (1— 7).

S (“search size”) is expected number of nodes that need to be probed:

N N
r r
S=Y kPkl=Y k-—(1— -)Y TxN/rfor1<r<N.
k§1 [] k§1 N(N) / N

34/46

Architectures Symmetrically distributed system architectures

Flooding versus random walk

Flooding

* Flood to d randomly chosen neighbors
e After k steps, some R(k) = d-(d — 1)k~ will have been reached

(assuming k is small).
* With fraction r/N nodes having data, if ;- R(k) > 1, we will have found

the data item.

Comparison
e If r/N =0.001, then S~ 1000
¢ With flooding and d = 10, k = 4, we contact 7290 nodes.

¢ Random walks are more communication efficient, but might take longer
before they find the result.

Unstructured peer-to-peer systems 35/46

Super-peer networks

Essence
It is sometimes sensible to break the symmetry in pure peer-to-peer networks:

® When searching in unstructured P2P systems, having index servers
improves performance

® Deciding where to store data can often be done more efficiently through
brokers.

Overlay network of super peers
G ‘

36/46

Symmetrically distributed system architectures

Collaboration: The BitTorrent case

Principle: search for a file F

® Lookup file at a global directory = returns a torrent file
* Torrent file contains reference to tracker: a server keeping an accurate

account of active nodes that have (chunks of) F.
® P can join swarm, get a chunk for free, and then trade a copy of that
chunk for another one with a peer Q also in the swarm.

Client node
P K out of N nodes
<
Lookup(F) Node 1
A BitTorrent List of nodes | Node 2
Web page or » t(;‘;rrefﬂtef;lze »| with (chunks of) .
search engine file F .
Web server File server Tracker
Node N

37/46

Cloud computing

Google docs
Gmail
YouTube, Flickr

Web services, multimedia, business apps

Software
aa Svc

| Application
MS Azure

--------------- Software framework (Java/Python/.Net) Google App engine

£ o Storage (databases,

S & Platforms

s s Amazon S3
............... Amazon EC2

Datacenters

Infrastructure
aa Svc

38/46

Architectures Hybrid system architectures

Cloud computing

Make a distinction between four layers

® Hardware: Processors, routers, power and cooling systems. Customers
normally never get to see these.

e Infrastructure: Deploys virtualization techniques. Evolves around
allocating and managing virtual storage devices and virtual servers.

¢ Platform: Provides higher-level abstractions for storage and such.
Example: Amazon S3 storage system offers an API for (locally created)
files to be organized and stored in so-called buckets.

e Application: Actual applications, such as office suites (text processors,
spreadsheet applications, presentation applications). Comparable to the
suite of apps shipped with OSes.

Cloud computing 39/46

Hybrid system architectures

Edge-server architecture

Essence
Systems deployed on the Internet where servers are placed at the edge of the
network: the boundary between enterprise networks and the actual Internet.

L1 Edge server

Enterprise network

Cloud network

L1 Edge server

Enterprise network

40/46

Reasons for having an edge infrastructure

Commonly (and often misconceived) arguments

e Latency and bandwidth: Especially important for certain real-time
applications, such as augmented/virtual reality applications. Many people
underestimate the latency and bandwidth to the cloud.

¢ Reliability: The connection to the cloud is often assumed to be unreliable,
which is often a false assumption. There may be critical situations in
which extremely high connectivity guarantees are needed.

e Security and privacy: The implicit assumption is often that when assets
are nearby, they can be made better protected. Practice shows that this
assumption is generally false. However, securely handling data
operations in the cloud may be trickier than within your own organization.

The edge-cloud architecture 41/46

Architectures Hybrid system architectures

Edge orchestration

Managing resources at the edge may be trickier than in the cloud

* Resource allocation: we need to guarantee the availability of the
resources required to perform a service.

e Service placement: we need to decide when and where to place a
service. This is notably relevant for mobile applications.

* Edge selection: we need to decide which edge infrastructure should be
used when a service needs to be offered. The closest one may not be the
best one.

Observation

There is still a lot of buzz about edge infrastructures and computing, yet
whether all that buzz makes any sense remains to be seen.

The edge-cloud architecture 42/46

Hybrid system architectures

Blockchains

Principle working of a blockchain system

A node broadcasts A validator collects
a transaction request transactions into a block

A single validated block is
broadcast to all the nodes

43/46

Architectures Hybrid system architectures

Blockchains

Principle working of a blockchain system

A node broadcasts A validator collects
a transaction request transactions into a block

A single validated block is
broadcast to all the nodes

Observations
* Blocks are organized into an unforgeable append-only chain
e Each block in the blockchain is immutable = massive replication
® The real snag lies in who is allowed to append a block to a chain

Blockchain architectures 43/46

Appending a block: distributed consensus

Centralized solution

Observation
A single entity decides on which validator can go ahead and append a block.
Does not fit the design goals of blockchains.

44/ 46

Hybrid system architectures

Appending a block: distributed consensus

Distributed solution (permissioned)

Observation

® A selected, relatively small group of servers jointly reach consensus on
which validator can go ahead.

* None of these servers needs to be trusted, as long as roughly two-thirds
behave according to their specifications.

* In practice, only a few tens of servers can be accommodated.

45/46

Hybrid system architectures

Appending a block: distributed consensus

Decentralized solution (permisionless)

Observation

* Participants collectively engage in a leader election. Only the elected
leader is allowed to append a block of validated transactions.

® Large-scale, decentralized leader election that is fair, robust, secure, and
S0 on, is far from ftrivial.

46/46

	Architectures
	Architectural styles
	Layered architectures
	Service-oriented architectures
	Publish-subscribe architectures

	Middleware and distributed systems
	Middleware organization
	Modifiable middleware

	Layered-system architectures
	Simple client-server architecture
	Multitiered Architectures
	Example: The Network File System
	Example: The Web

	Symmetrically distributed system architectures
	Structured peer-to-peer systems
	Unstructured peer-to-peer systems
	Hierarchically organized peer-to-peer networks
	Example: BitTorrent

	Hybrid system architectures
	Cloud computing
	The edge-cloud architecture
	Blockchain architectures

