class Process:

1
2 def __init__(self, chanID, procID, procIDSet, initTX):

3 self.txID = initTX # Your own most recent transaction

4 self.leader = self.procID # Who you believe may become leader

5 self.lastTX = self.txID # What is the most recent transaction

6 self.noleader = False # Are you still in the race for leader?

7

8 def receive(self):

9 while True:

10 msg = self.chan.recvFrom(self.otherProcs)

1 sender, payload = msg[@], msg[1]

12 if payload[@] == ELECTION: # A process started an election

13 votelD, voteTX = payload[1], payload[2]

14

15 if self.lastTX < voteTX: # You’re not up to date on most recent transaction
16 self.leader = voteID # Record the suspected leader

17 self.lastTX = voteTX # As well as the likely most recent transaction

18

19 elif (self.lastTX == voteTX) and (self.leader < votelD): # Wrong leader

20 self.leader = voteID # Update your suspected leader

21

22 elif (self.procID > voteID) and (self.txID >= voteTX) and (not self.noleader):
23 # At this point, you may very well be the new leader (having a sufficiently
24 # high process identifier as well as perhaps the most recent transaction).
25 # No one has told you so far that you could not be leader. Tell the others.
26 self.chan.sendTo(self.otherProcs, (LEADER, self.procID, self.txID))

27

28 if payload[@] == LEADER:

29 # Check if the sender should indeed be leader

30 if ((self.lastTX < payload[2]) or

31 ((self.lastTX == payload[2]) and (self.leader <= payload[1]))):

32 # The sender is more up-to-date than you, or is equally up-to-date but

33 # has a higher process identifier. Declare yourself follower.

34 self.chan.sendTo(sender, (FOLLOWER, self.procID))

35 else:

36 # Sender is wrong: you have information that the sender based its decision
37 # on outdated information

38 self.chan.sendTo(sender, (NOLEADER))

