Distributed Systems

(4th edition, version 01)

Chapter 05: Coordination

Physical clocks

Problem
Sometimes we simply need the exact time, not just an ordering.

Solution: Universal Coordinated Time (UTC)

® Based on the number of transitions per second of the cesium 133 atom

(pretty accurate).
* At present, the real time is taken as the average of some 50 cesium

clocks around the world.
* Introduces a leap second from time to time to compensate that days are

getting longer.

Note
UTC is broadcast through short-wave radio and satellite. Satellites can give an

accuracy of about +0.5 ms.

Physical clocks -

Clock synchronization

Precision
The goal is to keep the deviation between two clocks on any two machines
within a specified bound, known as the precision 7:

Vt»Vp,q : |Cp(t) - Cq(t)| <7
with Cp(t) the computed clock time of machine p at UTC time ¢.

Accuracy
In the case of accuracy, we aim to keep the clock bound to a value o:

Vt,Yp: |Co(t) — 1 <

Synchronization

¢ Internal synchronization: keep clocks precise
e External synchronization: keep clocks accurate

Clock drift

Clock specifications

® A clock comes specified with its maximum clock drift rate p.
® F(t) denotes oscillator frequency of the hardware clock at time ¢
® Fis the clock’s ideal (constant) frequency =- living up to specifications:

wt:(1-p) < E < (14p)

Observation Fast, perfect, slow clocks
By using hardware interrupts we couple 4c,(0)
a software clock to the hardware clock, Clock time, C d_}” 9Pt _,
and thus also its clock drift rate: & @o‘* «

8 %

1t dCo(t) F AR
Co(t) = £ /0 F(t)at = C‘;t() _ T(:t) e
dC(t o
SVt:1-p< 51‘() <14p
UTC, t

Clock synchronization

Detecting and adjusting incorrect times

Getting the current time from a timeserver

T2 T3

/ |

] I

I I

I I

I I

| |

T ! ! Ta
I I

u =

Computing the relative offset 6 and delay &
Assumption: 0 Treq=To—T1 =~ Ty — T3 =6 Tres

O=Ta+((To—T1)+(T4—T3))/2—Ta=((To—T1)+(T5— T4)) /2

§=((T4—T)—(Tz—-T2))/2

Clock synchronization

Detecting and adjusting incorrect times

Getting the current time from a timeserver

T2 T3

/ |

] I

I I

I I

I I

| |

T ! ! Ta
I I

u =

Computing the relative offset 6 and delay &
ASSUmptiOn: STreq = T2 — T1 ~ T4 — T3 = 6Tres

O=Ta+((To—T1)+(T4—T3))/2—Ta=((To—T1)+(T5— T4)) /2

§=((T4—T)—(Tz—-T2))/2

Network Time Protocol
Collect (8, 8) pairs. Choose 6 for which associated delay 6 was minimal.

Clock synchronization

Reference broadcast synchronization

Essence

* A node broadcasts a reference message m = each receiving node p
records the time Tp m that it received m.
® Note: Tp m is read from p’s local clock.

Problem: averaging will not capture RBS minimizes critical path
drift = use linear regression

Message preparation
Time spent in NIC

. Th (Tok—Tax) i > A
NO: Offsetip,q](t) = =="Hr—2% A ! Delivery time
to app.
YES: Offsetp, ql(t) = at+ B i

: N

> L—
Critical path RBS

Usual critical path

The Happened-before relationship

Issue

What usually matters is not that all processes agree on exactly what time it is,
but that they agree on the order in which events occur. Requires a notion of
ordering.

Coordination Logical clocks

The Happened-before relationship

Issue
What usually matters is not that all processes agree on exactly what time it is,
but that they agree on the order in which events occur. Requires a notion of

ordering.

The happened-before relation

¢ If aand b are two events in the same process, and a comes before b,

then a— b.
* |f ais the sending of a message, and b is the receipt of that message,

thena— b
e fa—wbandb—c,thena—c

Note

This introduces a partial ordering of events in a system with concurrently
operating processes.

BRI -

Logical clocks

Problem
How do we maintain a global view of the system’s behavior that is consistent
with the happened-before relation?

Logical clocks

Problem
How do we maintain a global view of the system’s behavior that is consistent
with the happened-before relation?

Attach a timestamp C(e) to each event e, satisfying the following
properties:

P1 If aand b are two events in the same process, and a — b, then we
demand that C(a) < C(b).

P2 If a corresponds to sending a message m, and b to the receipt of that
message, then also C(a) < C(b).

Logical clocks

Problem
How do we maintain a global view of the system’s behavior that is consistent
with the happened-before relation?

Attach a timestamp C(e) to each event e, satisfying the following
properties:

P1 If aand b are two events in the same process, and a — b, then we
demand that C(a) < C(b).

P2 If a corresponds to sending a message m, and b to the receipt of that
message, then also C(a) < C(b).

Problem
How to attach a timestamp to an event when there’s no global clock =
maintain a consistent set of logical clocks, one per process.

BRI -

Logical clocks: solution

Each process P; maintains a local counter C; and adjusts this counter

1. For each new event that takes place within P;, C; is incremented by 1.

2. Each time a message mis sent by process P;, the message receives a
timestamp ts(m) = C;.

3. Whenever a message m is received by a process P;, P; adjusts its local
counter C; to max{C;j,ts(m)}; then executes step 1 before passing m to
the application.

Notes

® Property P1 is satisfied by (1); Property P2 by (2) and (3).
¢ |t can still occur that two events happen at the same time. Avoid this by
breaking ties through process IDs.

BRI -

Logical clocks: example

Consider three processes with event counters operating at different

rates
Py Py Ps P Py Ps
0 0 0 0 0 0
Flem [E it Flem [E it
12 T 16 20 12 I 16 20
18 24 my 30 18 24 m 30
2 5| Mo 2% 1~
30 40 50, 30 403 dook |50,
36 48 60 36 . 48 60
------------------------ P, adjusts | —1
42 ol |70 o oot st Ta s |70
48 64 80 48 69 80
il |72 %0 0l |77 %0
60 80 100 |76 | 85 100

Logical clocks

Logical clocks: where implemented

Adjustments implemented in middleware

Application layer
Y Message is delivered
Application sends message N to application

. Adjust local clock Adjust local clock
and timestamp r ge

Middleware layer

Example: Totally ordered multicast

Concurrent updates on a replicated database are seen in the same
order everywhere

e P, adds $100 to an account (initial value: $1000)
® P, increments account by 1%
® There are two replicas

i Updatet Update 2_ i

Replicated database

Update 1 is Update 2 is
performed before performed before
update 2 update 1

Result
In absence of proper synchronization:
replica #1 + $1111, while replica #2 < $1110.

Logical clocks

Example: Totally ordered multicast

Solution
® Process P; sends timestamped message mj; to all others. The message

itself is put in a local queue queue;.
* Any incoming message at P; is queued in queue;, according to its
timestamp, and acknowledged to every other process.

Logical clocks

Example: Totally ordered multicast

Solution
® Process P; sends timestamped message mj; to all others. The message

itself is put in a local queue queue;.
® Any incoming message at P; is queued in queuey, according to its
timestamp, and acknowledged to every other process.

P; passes a message m; to its application if:

(1) mj is at the head of queue;
(2) for each process P, there is a message my in queue; with a larger
timestamp.

Logical clocks

Example: Totally ordered multicast

Solution
® Process P; sends timestamped message mj; to all others. The message

itself is put in a local queue queue;.
® Any incoming message at P; is queued in queuey, according to its
timestamp, and acknowledged to every other process.

P; passes a message m; to its application if:

(1) mj is at the head of queue;
(2) for each process P, there is a message my in queue; with a larger
timestamp.

Note
We are assuming that communication is reliable and FIFO ordered.

Logical clocks

Lamport’s clocks for mutual exclusion

class Process:
def __init (self, chanID, procID, procIDSet) :
self.chan.join (procID)

self.procID = int (procID)

self.otherProcs.remove (self.procID)

self.queue =[] # The request queue
self.clock =0 # The current logical clock

def requestToEnter(self) :

self.clock = self.clock + 1 # Increment clock value
self.queue.append((self.clock, self.procID, ENTER)) # Append request to g
self.cleanupQ() # Sort the queue

self.chan.sendTo(self.otherProcs, (self.clock, self.procID, ENTER)) # Send request
def ackToEnter(self, requester):

self.clock = self.clock + 1 # Increment clock value

self.chan.sendTo(requester, (self.clock, self.procID, ACK)) # Permit other

def release(self):

tmp = [r for r in self.queue[l:] if r[2] == ENTER] # Remove all ACKs
self.queue = tmp # and copy to new queue
self.clock = self.clock + 1 # Increment clock value

self.chan.sendTo(self.otherProcs, (self.clock, self.procID, RELEASE)) # Release

def allowedToEnter (self) :
commProcs = set([req[l] for req in self.queue[l:]]) # See who has sent a message
return (self.queue(0] [1] == self.procID and len(self.otherProcs) == len(commProcs))

Logical clocks

Lamport’s clocks for mutual exclusion

def receive(self) :

msg = self.chan.recvFrom(self.otherProcs) [1]

self.clock = max(self.clock, msg[0])

self.clock = self.clock + 1

if msg[2] == ENTER:
self.queue.append(msg)
self.ackToEnter (msg[1])

elif msg[2] == ACK:
self.queue.append (msg)

elif msg[2] == RELEASE:
del (self.queue(0])

self.cleanupQ()

Pick up any message
Adjust clock value. ..
...and increment

Append an ENTER request
and unconditionally allow

Append a received ACK

Just remove first message
And sort and cleanup

Logical clocks

Lamport’s clocks for mutual exclusion

Analogy with totally ordered multicast

¢ With totally ordered multicast, all processes build identical queues,
delivering messages in the same order

¢ Mutual exclusion is about agreeing in which order processes are allowed
to enter a critical region

Logical clocks

Vector clocks

Observation
Lamport’s clocks do not guarantee that if C(a) < C(b) that a causally
preceded b.
Concurrent message Observation
transmission using logical Event a: my is received at T = 16;
clocks Event b: my is sentat T = 20.
P4 Py Ps
0] [9] 0]
6l_m [8 70
2] e m {0
18 sile— 30

54 3l m, [40
30 w0 5

36 48 60
42 61 4{ 70

148 | 69 80,
70 4m/5 77 90

Vector clocks

Observation
Lamport’s clocks do not guarantee that if C(a) < C(b) that a causally
preceded b.
Concurrent message Observation
transmission using logical Event a: my is received at T = 16;
clocks Event b: my is sentat T = 20.
P1 P2 Ps Note
0 0
--3-- me & £ We cannot conclude that a causally
1
:ig\'{é’) precedes b.
18 Sile— |56

54 3l m, [40
30 w0 5

36 48 60
42 61 4{ 70

148 | 69 80,
70 4m/5 77 90

Logical clocks

Causal dependency
Definition
We say that b may causally depend on a if ts(a) < ts(b), with:
e for all k, ts(a)[k] < ts(b)[k] and

e there exists at least one index k' for which ts(a)[k’] < ts(b)[K']

Precedence vs. dependency

* We say that a causally precedes b.

® b may causally depend on a, as there may be information from athat is
propagated into b.

Coordination Logical clocks

Capturing potential causality

Solution: each P; maintains a vector VC;

e VC;[i] is the local logical clock at process P;.
* If VGi[j] = k then P; knows that k events have occurred at P;.

Maintaining vector clocks

1. Before executing an event, P; executes VC;[i] < VC;[i]+1.

2. When process P; sends a message m to P;, it sets m’s (vector)
timestamp ts(m) equal to VC; after having executed step 1.

3. Upon the receipt of a message m, process P; sets
VC;[K] < max{ VC;[K], ts(m)[K]} for each k, after which it executes step 1
and then delivers the message to the application.

e -

Vector clocks: Example

Capturing potential causality when exchanging messages
(1,100 (21,0 (310 (4,10

(1,1,0) (21 0) (31 0) (41,0

N
m2

Py N
/ ma m3
my \ \ (4,3,0)
Py —=

0,1,0

\ 420 ms

W

(0,1,0) (22,0 \
Ps \

P3
1,1 (432 2,3,1) (4,3,2)
(a) (b)
Analysis
Situation | ts(my) | ts(my) | ts(mp) | ts(my) Conclusion
< >
ts(my) | ts(my)
(a) (2,1,0) | (4,3,0) Yes No my may causally precede my
(b) (4,1,0) | (2,3,0) No No my and my4 may conflict

Logical clocks

Causally ordered multicasting

Observation
We can now ensure that a message is delivered only if all causally preceding

messages have already been delivered.

Adjustment
P; increments VC;[i] only when sending a message, and P; “adjusts” VC;
when receiving a message (i.e., effectively does not change VC;[j]).

Logical clocks

Causally ordered multicasting

Observation
We can now ensure that a message is delivered only if all causally preceding

messages have already been delivered.

Adjustment
P; increments VC;[i] only when sending a message, and P; “adjusts” VC;
when receiving a message (i.e., effectively does not change VC;[j]).

P; postpones delivery of m until:

1. ts(m)[i] = VC;[i]+ 1
2. ts(m)[k] < VCj[k] for all k # i

Causally ordered multicasting

Enforcing causal communication

(1,0,0) (1,1,0
P1
P2
P3 N
(0,0,0 (1,0,0) (1,1,0
Postpone delivery Deliver

Causally ordered multicasting

Enforcing causal communication

(1,0,0) (1,1,0
P1
P2
P3 A
(0,0,0 (1,0,0) (1,1,0
Postpone delivery Deliver

Example
Take VC3 =10,2,2],ts(m) = [1,3,0] from P;. What information does P53 have,
and what will it do when receiving m (from P;)?

Mutual exclusion

Mutual exclusion

Problem
Several processes in a distributed system want exclusive access to some

resource.

Basic solutions
Permission-based: A process wanting to enter its critical region, or access a
resource, needs permission from other processes.

Token-based: A token is passed between processes. The one who has the
token may proceed in its critical region, or pass it on when not
interested.

Permission-based, centralized

Simply use a coordinator

Request | |OK A Release
’ No reply

e Queue is e
empty

Coordinator
(a) (c)

(a) Process P; asks the coordinator for permission to access a shared
resource. Permission is granted.

(b) Process P, then asks permission to access the same resource. The
coordinator does not reply.

(c) When Py releases the resource, it tells the coordinator, which then replies
to P2.

Mutual exclusion: Ricart & Agrawala

The same as Lamport except that acknowledgments are not sent
Return a response to a request only when:

® The receiving process has no interest in the shared resource; or
® The receiving process is waiting for the resource, but has lower priority
(known through comparison of timestamps).

In all other cases, reply is deferred, implying some more local administration.

Mutual exclusion

Mutual exclusion: Ricart & Agrawala

Example with three processes

Accesses
resource

oglN: s
Gz O B

resource

(b) ()

(a) Two processes want to access a shared resource at the same moment.
(b) Pp has the lowest timestamp, so it wins.
(c) When process Py is done, it sends an OK also, so P> can now go ahead.

Mutual exclusion

Mutual exclusion: Token ring algorithm

Essence
Organize processes in a logical ring, and let a token be passed between them.

The one that holds the token is allowed to enter the critical region (if it wants
to).

An overlay network constructed as a logical ring with a circulating token

W Token

Mutual exclusion

Decentralized mutual exclusion

Principle

Assume every resource is replicated N times, with each replica having its own
coordinator = access requires a majority vote from m > N/2 coordinators. A
coordinator always responds immediately to a request.

Assumption
When a coordinator crashes, it will recover quickly, but will have forgotten
about permissions it had granted.

Decentralized mutual exclusion

How robust is this system?

® Let p= At/ T be the probability that a coordinator resets during a time
interval At, while having a lifetime of T.

Mutual exclusion

Decentralized mutual exclusion

How robust is this system?
® Let p= At/ T be the probability that a coordinator resets during a time
interval At, while having a lifetime of T.

® The probability P[k] that k out of m coordinators reset during the same
interval is

el = ()1 -pm

Mutual exclusion

Decentralized mutual exclusion

How robust is this system?

® Let p= At/ T be the probability that a coordinator resets during a time
interval At, while having a lifetime of T.

® The probability P[k] that k out of m coordinators reset during the same
interval is

el = ()1 -pm

® f coordinators reset = correctness is violated when there is only a
minority of nonfaulty coordinators: when N—(m—f) > m, or, f >2m— N.

Mutual exclusion

Decentralized mutual exclusion

How robust is this system?
® Let p= At/ T be the probability that a coordinator resets during a time
interval At, while having a lifetime of T.

® The probability P[k] that k out of m coordinators reset during the same
interval is

i = ()1 -

® f coordinators reset = correctness is violated when there is only a
minority of nonfaulty coordinators: when N—(m—f) > m, or, f >2m— N.

* The probability of a violation is Yi" ,,_nP[K].

Decentralized mutual exclusion

Violation probabilities for various parameter values

N | m p Violation N | m p Violation
8 | 5 | 3secthour | <1075 8 | 5 | 30secthour | <1078
8 | 6 | 3secthour | <101 8 | 6 | 30secthour | <1077
16 | 9 | 3secthour | <1074 16 | 9 | 30sec/hour | <1072
16 | 12 | 3sec/hour | <102 16 | 12 | 30 sec/hour | <1013
32 | 17 | 3secthour | <1074 32 | 17 | 30 sec/hour | <1072
32 | 24 | 3sec/hour | < 10~43 32 | 24 | 30 sec/hour | <1027

Decentralized mutual exclusion

Violation probabilities for various parameter values

N | m p Violation N | m p Violation
8 | 5 | 3secthour | <1075 8 | 5 | 30secthour | <1078
8 | 6 | 3secthour | <101 8 | 6 | 30sechour | <1077
16 | 9 | 3secthour | <1074 16 | 9 | 30sec/hour | <1072
16 | 12 | 3sec/hour | <102 16 | 12 | 30 sec/hour | <1013
32 | 17 | 3secthour | <1074 32 | 17 | 30 sec/hour | <1072
32 | 24 | 3sec/hour | < 10~43 32 | 24 | 30 sec/hour | <1027

So....
What can we conclude?

Mutual exclusion

Mutual exclusion: comparison

Messages per Delay before entry
Algorithm entry/exit (in message times)
Centralized 3 2
Distributed 2(N-1) 2(N-1)
Token ring 1,...,00 0,....N—1
Decentralized | 2kN+(k—1)N/2+N,k=1,2,... | 2kN+(k—1)N/2

Mutual exclusion

Example: ZooKeeper

Basics (and keeping it simple)

¢ Centralized server setup

® All client-server communication is nonblocking: a client immediately gets
a response

® ZooKeeper maintains a tree-based namespace, akin to that of a
filesystem

¢ Clients can create, delete, or update nodes, as well as check existence.

ZooKeeper race condition

Note
ZooKeeper allows a client to be notified when a node, or a branch in the tree,
changes. This may easily lead to race conditions.

Consider a simple locking mechanism

1. Aclient C; creates a node /lock.

2. Aclient C» wants to acquire the lock but is notified that the associated
node already exists.

3. Before C» subscribes to a notification, C; releases the lock, i.e., deletes
/lock.

4. Client C» subscribes to changes to /lock and blocks locally.

Solution
Use version numbers

Example: Simple locking with ZooKeeper -

Mutual exclusion

ZooKeeper versioning

N/
VANIVAN

R(n) R(n2)a W(n2)b R(n,3)

W(n,2)c Failed

Notations
W(n, k)a: request to write a to node n, assuming current version is K.

R(n, k): current version of node nis k.
R(n): client wants to know the current value of node n
R(n,k)a: value a from node n is returned with its current version k.

ZooKeeper locking protocol

It is now very simple

1. lock: A client C; creates a node /lock.

2. lock: A client C» wants to acquire the lock but is notified that the
associated node already exists = C» subscribes to notification on
changes of /lock.

3. unlock: Client C; deletes node /lock = all subscribers to changes are
notified.

Election algorithms

Election algorithms

Principle
An algorithm requires that some process acts as a coordinator. The question is
how to select this special process dynamically.

Note
In many systems, the coordinator is chosen manually (e.g., file servers). This
leads to centralized solutions = single point of failure.

Election algorithms

Principle
An algorithm requires that some process acts as a coordinator. The question is
how to select this special process dynamically.

Note
In many systems, the coordinator is chosen manually (e.g., file servers). This
leads to centralized solutions = single point of failure.

Teasers

1. If a coordinator is chosen dynamically, to what extent can we speak about
a centralized or distributed solution?

2. Is a fully distributed solution, i.e. one without a coordinator, always more
robust than any centralized/coordinated solution?

Election algorithms

Basic assumptions

® All processes have unique id’s

® All processes know id’s of all processes in the system (but not if they are
up or down)

® Election means identifying the process with the highest id that is up

Election by bullying

Principle
Consider N processes {Py,...,Pny_1} and let id(Px) = k. When a process Py
notices that the coordinator is no longer responding to requests, it initiates an
election:
1. Pk sends an ELECTION message to all processes with higher identifiers:
Pi+1:Pri2y- - PN-1-
2. If no one responds, Py wins the election and becomes coordinator.

3. If one of the higher-ups answers, it takes over and Py’s job is done.

Election algorithms

Election by bullying

The bully election algorithm

Coordination Election algorithms

Election in a ring

Principle
Process priority is obtained by organizing processes into a (logical) ring. The
process with the highest priority should be elected as coordinator.

® Any process can start an election by sending an election message to its
successor. If a successor is down, the message is passed on to the next
successor.

* |f a message is passed on, the sender adds itself to the list. When it gets
back to the initiator, everyone had a chance to make its presence known.

® The initiator sends a coordinator message around the ring containing a
list of all living processes. The one with the highest priority is elected as
coordinator.

A ting algoritim -

Election algorithms

Election in a ring

Election algorithm using a ring

[6,0,1] [6,0,1,2] [6,0,1,2,3]

1601 6.0,123,4]

6] [6,0,1,2,3,4,5]

® The solid line shows the election messages initiated by Pg

® The dashed one, the messages by P3

Example: Leader election in ZooKeeper server group

Basics
® Each server s in the server group has an identifier id(s)
® Each server has a monotonically increasing counter tx(s) of the latest
transaction it handled (i.e., series of operations on the namespace).
¢ When follower s suspects leader crashed, it broadcasts an ELECTION
message, along with the pair (votelD,voteTX). Initially,
* votelD + id(s)
® voteTX «+ tx(s)
® Each server s maintains two variables:

® Jeader(s): records the server that s believes may be final leader.
Initially, leader(s) « id(s).

® JastTX(s): what s knows to be the most recent transaction.
Initially, lastTX(s) < tx(s).

Example: Leader election in ZooKeeper -

Coordination Election algorithms

Example: Leader election in ZooKeeper server group

When s* receives (votelD,vote TX)

e If lastTX(s*) < voteTX, then s* just received more up-to-date information
on the most recent transaction, and sets
® Jeader(s*) + votelD
® JastTX(s*) < voteTX

e |f lastTX(s*) = voteTX and leader(s*) < votelD, then s* knows as much
about the most recent transaction as what it was just sent, but its
perspective on which server will be the next leader needs to be updated:

® Jeader(s*) + votelD

Note
When s* believes it should be the leader, it broadcasts (id(s*), tx(s*)).
Essentially, we're bullying.

Example: Leader election in ZooKeeper -

Example: Leader election in Raft
Basics

* We have a (relatively small) group of servers

® A server is in one of three states: follower, candidate, or leader

The protocol works in terms, starting with term 0
e Each server starts in the follower state.

A leader is to regularly broadcast messages (perhaps just a simple
heartbeat)

Example: Leader election in Raft

Selecting a new leader
When follower s* hasn'’t received anything from the alleged leader s for some
time, s* broadcasts that it volunteers to be the next leader, increasing the term
by 1. s* enters the candidate state. Then:
* |f leader s receives the message, it responds by acknowledging that it is
still the leader. s* returns to the follower state.
¢ [f another follower s** gets the election message from s*, and it is the first
election message during the current term, s** votes for s*. Otherwise, it

simply ignores the election message from s*. When s* has collected a
majority of votes, a new term starts with a new leader.

Example: Leader election in Raft -

Coordination Election algorithms

Example: Leader election in Raft

Selecting a new leader

When follower s* hasn'’t received anything from the alleged leader s for some
time, s* broadcasts that it volunteers to be the next leader, increasing the term
by 1. s* enters the candidate state. Then:

* |f leader s receives the message, it responds by acknowledging that it is
still the leader. s* returns to the follower state.

¢ [f another follower s** gets the election message from s*, and it is the first
election message during the current term, s** votes for s*. Otherwise, it
simply ignores the election message from s*. When s* has collected a
majority of votes, a new term starts with a new leader.

Observation

By slightly differing the timeout values per follower for deciding when to start
an election, we can avoid concurrent elections, and the election will rapidly
converge.

Example: Leader election in Raft -

Coordination Election algorithms

Elections by proof of work

Basics
® Consider a potentially large group of processes
® Each process is required to solve a computational puzzle
* When a process solves the puzzle, it broadcasts its victory to the group

* We assume there is a conflict resolution procedure when more than one
process claims victory

Solving a computational puzzle

* Make use of a secure hashing function H(m):

* mis some data; H(m) returns a fixed-length bit string

® computing h= H(m) is computationally efficient

* finding a function H~' such that m = H~'(H(m)) is computationally
extremely difficult

e Practice: finding H~" boils down to an extensive trial-and-error procedure

Elections in large-scale systems -

Election algorithms

Elections by proof of work

Controlled race

® Assume a globally known secure hash function H*. Let H; be the hash
function used by process P;.

* Task: given a bit string h= H;(m), find a bit string A such that
h* = H*(H;(h® h)) where:
® h*is a bit string with K leading zeroes
* h® hdenotes some predetermined bitwise operation on hand h

Coordination

Election algorithms

Elections by proof of work

Controlled race

® Assume a globally known secure hash function H*. Let H; be the hash
function used by process P;.

* Task: given a bit string h= H;(m), find a bit string A such that
h* = H*(H;(h® h)) where:

® h*is a bit string with K leading zeroes
®* h® hdenotes some predetermined bitwise operation on hand h

Observation

By controlling K, we control the difficulty of finding h. If p is the probability that
a random guess for h will suffice: p = (1/2)X.

Elections in large-scale systems -

Elections by proof of work

Controlled race

® Assume a globally known secure hash function H*. Let H; be the hash
function used by process P;.

* Task: given a bit string h= H;(m), find a bit string A such that
h* = H*(H;(h® h)) where:

® h*is a bit string with K leading zeroes
®* h® hdenotes some predetermined bitwise operation on hand h

Observation

By controlling K, we control the difficulty of finding h. If p is the probability that
a random guess for h will suffice: p = (1/2)X.

Current practice
In many PoW-based blockchain systems, K = 64
* With K = 64, it takes about 10 minutes on a supercomputer to find h

* With K = 64, it takes about 100 years on a laptop to find h

Elections in large-scale systems -

Elections by proof of stake

Basics
We assume a blockchain system in which N secure tokens are used:

e Each token has a unique owner
® Each token has a uniquely associated index 1 <k < N

® A token cannot be modified or copied without this going unnoticed

Principle
® Draw a random number k € {1,...,N}

® Look up the process P that owns the token with index k. P is the next
leader.

Observation

The more tokens a process owns, the higher the probability it will be selected
as leader.

Elections in large-scale systems -

Election algorithms

A solution for wireless networks

A sample network

Capacity

Essence
Find the node with the highest capacity to select as the next leader.

Election algorithms

A solution for wireless networks

A sample network

g receives
@ broadcast
from b first

Election algorithms

A solution for wireless networks

A sample network

broadcast

from e first

Essence
A node reports back only the node that it found to have the highest capacity.

Gossip-based coordination: aggregation

Typical apps

¢ Data dissemination: Perhaps the most important one. Note that there are
many variants of dissemination.

® Aggregation: Let every node P; maintain a variable v;. When two nodes
gossip, they each reset their variable to

Vi, v = (Vi+v))/2

Result: in the end each node will have computed the average v =Y, v;/N.

Gossip-based coordination

Gossip-based coordination: aggregation

Typical apps

¢ Data dissemination: Perhaps the most important one. Note that there are
many variants of dissemination.

® Aggregation: Let every node P; maintain a variable v;. When two nodes
gossip, they each reset their variable to

Vi, Vi = (vi+Vv))/2
Result: in the end each node will have computed the average v =Y, v;/N.

® What happens in the case that initially v; =1 and v; = 0,j # i?

Gossip-based coordination: peer sampling

Problem

For many gossip-based applications, you need to select a peer uniformly at
random from the entire network. In principle, this means you need to know all
other peers. Impossible?

Basics

e Each node maintains a list of ¢ references to other nodes

® Regularly, pick another node at random (from the list), and exchange
roughly c/2 references

* When the application needs to select a node at random, it also picks a
random one from from its local list.

Observation

Statistically, it turns out that the selection of a peer from the local list is
indistinguishable from selecting uniformly at random peer from the entire
network

AT -

Gossip-based overlay construction

Essence

Maintain two local lists of neighbors. The lowest is used for providing a
peer-sampling service; the highest list is used to carefully select
application-dependent neighbors.

Structured
overlay

Random
overlay

Protocol for
specific
overlay

Rando

Protocol for
randomized
view

Links to topology-
specific other nodes

Links to randomly
chosen other nodes

Coordination Gossip-based coordination

Gossip-based overlay construction: a 2D torus

Consider a logical N x N grid, with a node on each point of the grid.
® Every node must maintain a list of ¢ nearest neighbors

¢ Distance between node at (ay,a») and (by, bo) is di + db, with
d; = min(N —[a; — bjl,|a; — bj])

® Every node picks a random other node from its lowest-level list, and
keeps only the closest one in its top-level list.

* Once every node has picked and selected a random node, we move to
the next round

start (N = 50) after 5 rounds after 20 rounds

A gossip-based 2D torus in Python (outline)

1
2
3
4
5
6
7
8

9
10
11
12

def maintainViews() :
for viewType in [viewOverlay, viewPSS]: # For each view, do the same

peer[viewType] = None

if time to maintain viewType: # This viewType needs to be updated
peer[viewType] = selectPeer (viewType) # Select a peer
links = selectLinks (viewType, peer[viewType]) # Select links
sendTo (peer[viewType], Request[viewType], links) # Send links asynchronously

while True:

block = (peer[viewOverlay] != None) or (peer[viewPSS] != None)
sender, msgType, msgData = recvFromAny(block) # Block if expecting something

if msg == None: # All work has been done, simply return from the call
return

for viewIype in [viewOverlay, viewPSS]: # For each view, do the same
if msgType == Response[viewType]: # Response to previously sent links
updateOwnView (viewType, msgData) # Just update the own view

elif msgType == Request[viewlype] : # Request for exchanging links

if peer[viewType] == None: # No outstanding exchange request
links = selectLinks (viewType, sender) # Select links
sendTo (sender, Response[viewType], links) # Send them asynchronously
updateOwnView (viewType, msgData) # Update own view

else: # This node already has a pending exchange request, ignore this one
sendTo (sender, IgnoreRequest [viewType])

elif msgType == IgnoreRequest[viewType] : # Request has been denied, give up
peer[viewType] = None

Secure gossiping

Dramatic attack
Consider when exchanging references, a set of colluding nodes systematically
returns links only to each other = we are dealing with hub attack.

100000

75000

50000 -

25000 A

Number of affected nodes

o_

T T T T
50 100 150 200 250
Number of rounds

o 4

Situation

A network with 100,000 nodes, a local list size ¢ = 30, and only 30 attackers.
The y-axis shows the number of nodes with links only to the attackers. After
less than 300 rounds, the attackers have full control.

A solution: gathering statistics

Gossip-based coordination

This is what measuring indegree distributions tells us: which fraction of nodes

(y-axis) have how many other nodes pointing to them (x-axis)?

0.06

0.04

0.02

0.00

The initial situation

Basic approach
When a benign node initiates an exchange, it may either use the result for
gathering statistics, or for updating its local list. An attacker is in limbo: will its
response be used for statistical purposes or for functional purposes?

After 20 rounds

0.15

0.10

0.05

0.00

After 40 rounds

Gossip-based coordination

Coordination

A solution: gathering statistics

This is what measuring indegree distributions tells us: which fraction of nodes
(y-axis) have how many other nodes pointing to them (x-axis)?

The initial situation

After 20 rounds

0.15
0.06
0.02 0.10
0.04
0.01
0.02 0.05
0.00 0.00 0.00

50

100

After 40 rounds

100

Basic approach

When a benign node initiates an exchange, it may either use the result for
gathering statistics, or for updating its local list. An attacker is in limbo: will its
response be used for statistical purposes or for functional purposes?

Observation
When gathering statistics may reveal colluders, a colluding node will be forced
to behave according to the protocol.

Secure gossiping

Distributed event matching

Distributed event matching

Publisher Subscriber Subscriber
* ¥ Read/Delivery
Data item @ Subscription O :\
i D Notification ©
OCg® o 95 ®0/ 00 @

Publish/subscribe middleware Match
Principle

® A process specifies in which events it is interested (subscription S)

* When a process publishes a notification N we need to see whether S
matches N.

Distributed event matching

Distributed event matching

Publisher Subscriber Subscriber
* ¥ Read/Delivery
Data item @ Subscription O iy °
E Notification
OCg® o 95 ®0/ 00 @

Publish/subscribe middleware Match
Principle

® A process specifies in which events it is interested (subscription S)

® When a process publishes a notification N we need to see whether S
matches N.

Hard part

Implementing the match function in a scalable manner.

General approach

What is needed
® sub2node(S): map a subscription S to a nonempty subset S of servers
® not2node(N): map a notification N to a nonempty subset N of servers
Make sure that SNN # 0.

Observations
¢ Centralized solution is simple: S = N = {s}, i.e. a single server.

* Topic-based publish-subscribe is also simple: each S and N is tagged
with a single topic; each topic is handled by a single server (a
rendezevous node). Several topics may be handled by same server).

® Content-based publish-subscribe is tough: a subscription takes the form
(attribute, value) pair, with example values:

® range: “1 <x<10”
¢ containment: “x € {red, blue}”
e prefix and suffix expressions: “url.startswith ("https")”

Selective routing

Send
notification
—>

Broadcast
subscriptions
—>

(a) (b)
(a) first broadcast subscriptions

(b) forward notifications only to relevant rendezvous nodes

Selective routing

Send
notification
—>

Broadcast
subscriptions
—>

(a) (b)
(a) first broadcast subscriptions
(b) forward notifications only to relevant rendezvous nodes

Example of a (partially filled) routing table

Interface Filter

To node 3 ae|0,3]

To node 4 ae[2,5]
Toward router R; | (unspecified)

Gossiping: Sub-2-Sub

Basics

® Goal: To realize scalability, make sure that subscribers with the same
interests form just a single group

® Model: There are N attributes ay,...,ay. An attribute value is always
(mappable to) a floating-point number.

® Subscription: Takes forms such as S= (a; — 3.0,a4 — [0.0, 0.5)): a;
should be 3.0; a4 should lie between 0.0 and 0.5; other attribute values
don’t matter.

Observations

® A subscription S; specifies a subset S; in a N-dimensional space.
* We are interested only in notifications that fall into S = US;.

Gossiping: Sub-2-Sub

Basics

® Goal: To realize scalability, make sure that subscribers with the same
interests form just a single group

® Model: There are N attributes ay,...,ay. An attribute value is always
(mappable to) a floating-point number.

® Subscription: Takes forms such as S= (a; — 3.0,a4 — [0.0, 0.5)): a;
should be 3.0; a4 should lie between 0.0 and 0.5; other attribute values
don’t matter.

Observations

® A subscription S; specifies a subset S; in a N-dimensional space.
* We are interested only in notifications that fall into S = US;.

Goal
Partition S into M disjoint subspaces Sy, ...,Sy such that

e Partitioning: Yk #m:SkNSm =0 and UynSm =S
e Subscription coverage: (SmNS; # 0) = (Sm C Sj)

Gossiping: Sub-2-Sub

Bidirectional ring

12

! Lo PN

ol b , N I A
Node IDs 8 ! L | | S TR :
o I , S A |
. b | Do o :
aft b) G e B |
2 Y Lo ' |
' 1 1 ' 1 T Ll 1

5 10 15 1 20 1 25 30 35

N .

Group of four nodes for interval [16.5, 21.0] Attribute value

Consider a single attribute
* Nodes regularly exchange their subscriptions through gossiping
* An intersection between two nodes leads to a mutual reference
* If S = SiNS;NSk # 0 and S;; — Sjjk # 0, then:

° nodes /, j, k are grouped into a single overlay network (for S;j)
® nodes /, j are grouped into a single overlay network (for Sj; — Sjjk)

Distributed event matching

Secure publish-subscribe

We are facing nasty dilemma’s

¢ Referential decoupling: messages should be able to flow from a publisher
to subscribers while guaranteeing mutual anonymity = we cannot set up
a secure channel.

* Not knowing where messages come from imposes integrity problems.

* Assuming a trusted broker may easily be practically impossible, certainly
when dealing with sensitive information = we now have a routing
problem.

Secure publish-subscribe

We are facing nasty dilemma’s

¢ Referential decoupling: messages should be able to flow from a publisher
to subscribers while guaranteeing mutual anonymity = we cannot set up
a secure channel.

* Not knowing where messages come from imposes integrity problems.

* Assuming a trusted broker may easily be practically impossible, certainly
when dealing with sensitive information = we now have a routing
problem.

Solution
* Allow for searching (and matching) on encrypted data, without the need
for decryption.

® PEKS: accompany encryptyed messages with a collection of (again
encrypted) keywords and search for matches on keywords.

Coordination Distributed event matching

Public-Key Encryption with Keyword Search (PEKS)

Basics
® Use a public key PK, message m and its n keywords KWy, ..., KW, are

stored at a server as the message m*:

m* = [PK(m)|PEKS(PK, KW;)|PEKS(PK,KW5)|---|PEKS(PK, KW;,)]

* A subscriber gets the accompanying secret key.
* For each keyword KW, a trapdoor Tk, is generated: Ty (m*) will return
true iff W e {KWy,...,KWy}.

— [|
<
[2] * "
= 5 ——1 PK(m) [KW; | .. [KW —>]
S a =
£ g
8]
Ng = [
) [0
X Q2 Tw >
—
| E +PK(m) L

KW; = PEKS(PK,KW;)

Secure publish-subscribe solutions

Positioning nodes

Issue

In large-scale distributed systems in which nodes are dispersed across a
wide-area network, we often need to take some notion of proximity or distance
into account = it starts with determining a (relative) location of a node.

Location systems
Computing position

Observation
A node P needs d+ 1 landmarks to compute its own position in a
d-dimensional space. Consider two-dimensional case.

Computing a position in 2D Solution
P needs to solve three equations in
two unknowns (xp,yp):

dj= \/(Xi —xp)2+(yi—yp)?

Global Positioning System

Assuming that the clocks of the satellites are accurate and
synchronized

* |t takes a while before a signal reaches the receiver
® The receiver’s clock is definitely out of sync with the satellite

Basics

* A,: unknown deviation of the receiver’s clock.

® X, yr, Zr: unknown coordinates of the receiver.

e T;: timestamp on a message from satellite /

Aj=(Thow — Tj)+ Ar: measured delay of the message sent by satellite /.
Measured distance to satellite i: ¢ x A; (c is speed of light)

Real distance: d; = cA;—cAr = /(X — X)2+ (Vi — yr)2 + (zi — 2r)?

Observation
4 satellites = 4 equations in 4 unknowns (with A, as one of them)

WiFi-based location services

Basic idea

* Assume we have a database of known access points (APs) with
coordinates

® Assume we can estimate distance to an AP

* Then: with 3 detected access points, we can compute a position.

War driving: locating access points

¢ Use a WiFi-enabled device along with a GPS receiver, and move through
an area while recording observed access points.

e Compute the centroid: assume an access point AP has been detected at
N different locations {Xj,%s, ..., Xy}, with known GPS location.

e Compute location of AP as Xap = %

Problems
e Limited accuracy of each GPS detection point X;

® An access point has a nonuniform transmission range
* Number of sampled detection points N may be too low.

When GPS is not an option -

Computing position

Problems Inconsistent distances in 1D space
* Measured latencies to > 2.8 X
landmarks fluctuate i 10 0 i
¢ Computed distances will not : ! ;
even be consistent ‘ ' ‘
1 2 3 4
P Q R

Solution: minimize errors

® Use N special landmark nodes Ly,...,Ly.
* Landmarks measure their pairwise latencies d(L;,L;)
* A central node computes the coordinates for each landmark, minimizing:

Z % (d(L,,L a(L,-,L,)>2

i=1j=i+1 d(L,,L)

where a(L,-,Lj) is distance after nodes L; and L; have been positioned.

Logical positioning of nodes -

Computing position

Choosing the dimension m

The hidden parameter is the dimension m with N > m. A node P measures its
distance to each of the N landmarks and computes its coordinates by
minimizing

I

N <8(L,-,P) - 8(L,-,P)>2
—1 a(LHP)

Observation
Practice shows that m can be as small as 6 or 7 to achieve latency estimations
within a factor 2 of the actual value.

Coordination
Vivaldi

Principle: network of springs exerting forces

Consider a collection of N nodes Py, ..., Py, each P; having coordinates X;.
Two nodes exert a mutual force:

Fi= (d(P..P) —d(Py.P))) x u(%; — %)
with u(X; — X;) is the unit vector in the direction of X; — X;

Node P; repeatedly executes steps

Measure the latency 5’,-/ to node P}, and also receive P;’s coordinates X;.
Compute the error e = d(P;, Pj) — d(P;, P;)

Compute the direction U = u(X; — X;).

Compute the force vector Fjj = e-U

Adjust own position by moving along the force vector: X; «+ X; + 6 - U.

o krowp -~

Logical positioning of nodes -

	Coordination
	Clock synchronization
	Physical clocks
	Clock synchronization algorithms

	Logical clocks
	Lamport's logical clocks
	Vector clocks

	Mutual exclusion
	Overview
	A centralized algorithm
	A distributed algorithm
	A token-ring algorithm
	A decentralized algorithm
	Example: Simple locking with ZooKeeper

	Election algorithms
	The bully algorithm
	A ring algorithm
	Example: Leader election in ZooKeeper
	Example: Leader election in Raft
	Elections in large-scale systems
	Elections in wireless environments

	Gossip-based coordination
	Aggregation
	A peer-sampling service
	Gossip-based overlay construction
	Secure gossiping

	Distributed event matching
	Centralized implementations
	Secure publish-subscribe solutions

	Location systems
	GPS: Global Positioning System
	When GPS is not an option
	Logical positioning of nodes

