Distributed Systems

(4th edition, version 01)

Chapter 08: Fault Tolerance

Dependability

Basics

A component provides services to clients. To provide services, the component
may require the services from other components = a component may depend
on some other component.

Specifically
A component C depends on C* if the correctness of C’s behavior depends on
the correctness of C*’s behavior. (Components are processes or channels.)

2/77

Fault tolerance

Dependability

Basics

Introduction to fault tolerance

A component provides services to clients. To provide services, the component
may require the services from other components = a component may depend
on some other component.

Specifically

A component C depends on C* if the correctness of C’s behavior depends on
the correctness of C*’s behavior. (Components are processes or channels.)

Requirements related to dependability

Requirement

Description

Availability Readiness for usage
Reliability Continuity of service delivery
Safety Very low probability of catastrophes

Maintainability

How easy can a failed system be repaired

Basic concepts

2/77

Introduction to fault tolerance

Reliability versus availability

Reliability R(t) of component C
Conditional probability that C has been functioning correctly during [0, t) given
C was functioning correctly at time T = 0.

Traditional metrics

® Mean Time To Failure (MTTF): The average time until a component fails.
® Mean Time To Repair (MTTR): The average time needed to repair a

component.
® Mean Time Between Failures (MTBF): Simply MTTF + MTTR.

3/77

Introduction to fault tolerance

Reliability versus availability

Availability A(t) of component C
Average fraction of time that C has been up-and-running in interval [0, t).
® Long-term availability A: A(e)

MTTE _ MTTF
* Note! A= yrBF = MTTE-MTTR

Observation

Reliability and availability make sense only if we have an accurate notion of
what a failure actually is.

4/77

Terminology

Failure, error, fault

Term Description Example

Failure | A component is not living up to | Crashed program
its specifications

Error Part of a component that can Programming bug
lead to a failure

Fault Cause of an error Sloppy programmer

5/77

Fault tolerance

Terminology

Handling faults

Introduction to fault tolerance

Term Description Example
Fault Prevent the occurrence | Don't hire sloppy
prevention of a fault programmers

Fault tolerance

Build a component
such that it can mask

Build each component
by two independent

of a fault

the occurrence of a programmers
fault

Fault removal Reduce the presence, Get rid of sloppy
number, or seriousness | programmers

Fault
forecasting

Estimate current
presence, future
incidence, and
consequences of faults

Estimate how a
recruiter is doing when
it comes to hiring
sloppy programmers

Basic concepts

6/77

Fault tolerance

Failure models

Types of failures

Introduction to fault tolerance

Type

Description of server’s behavior

Crash failure

Halts, but is working correctly until it halts

Omission failure
Receive omission
Send omission

Fails to respond to incoming requests
Fails to receive incoming messages
Fails to send messages

Timing failure

Response lies outside a specified time interval

Response failure
Value failure
State-transition failure

Response is incorrect
The value of the response is wrong
Deviates from the correct flow of control

Arbitrary failure

May produce arbitrary responses at arbitrary
times

Failure models

7177

Dependability versus security

Omission versus commission
Arbitrary failures are sometimes qualified as malicious. It is better to make the
following distinction:

® Omission failures: a component fails to take an action that it should have
taken

e Commission failure: a component takes an action that it should not have
taken

8/77

Dependability versus security

Omission versus commission
Arbitrary failures are sometimes qualified as malicious. It is better to make the
following distinction:

® Omission failures: a component fails to take an action that it should have
taken

e Commission failure: a component takes an action that it should not have
taken

Observation

Note that deliberate failures, be they omission or commission failures, are
typically security problems. Distinguishing between deliberate failures and
unintentional ones is, in general, impossible.

Failure models 8/77

Halting failures

Scenario
C no longer perceives any activity from C* — a halting failure? Distinguishing
between a crash or omission/timing failure may be impossible.

Asynchronous versus synchronous systems

® Asynchronous system: no assumptions about process execution speeds
or message delivery times — cannot reliably detect crash failures.

® Synchronous system: process execution speeds and message delivery
times are bounded — we can reliably detect omission and timing failures.

® |n practice we have partially synchronous systems: most of the time, we
can assume the system to be synchronous, yet there is no bound on the
time that a system is asynchronous — can normally reliably detect crash
failures.

Failure models 9/77

Halting failures

Assumptions we can make

Halting type | Description

Fail-stop Crash failures, but reliably detectable
Fail-noisy Crash failures, eventually reliably detectable
Fail-silent Omission or crash failures: clients cannot tell

what went wrong

Fail-safe Arbitrary, yet benign failures (i.e., they cannot
do any harm)

Fail-arbitrary | Arbitrary, with malicious failures

Failure models 10/77

Fault tolerance Introduction to fault tolerance

Redundancy for failure masking

Types of redundancy

* [nformation redundancy: Add extra bits to data units so that errors can
recovered when bits are garbled.

e Time redundancy: Design a system such that an action can be performed
again if anything went wrong. Typically used when faults are transient or
intermittent.

® Physical redundancy: add equipment or processes in order to allow one
or more components to fail. This type is extensively used in distributed
systems.

Failure masking by redundancy 1/77

Process resilience

Process resilience

Basic idea
Protect against malfunctioning processes through process replication,

organizing multiple processes into a process group. Distinguish between flat

groups and hierarchical groups.

Coordinator

Hierarchical group

Flat group

Worker

12/77

Groups and failure masking

k-fault tolerant group

When a group can mask any k concurrent member failures (k is called degree
of fault tolerance).

13/77

Process resilience

Groups and failure masking

k-fault tolerant group
When a group can mask any k concurrent member failures (k is called degree
of fault tolerance).

How large does a k-fault tolerant group need to be?

¢ With halting failures (crash/omission/timing failures): we need a total of
k +1 members as no member will produce an incorrect result, so the
result of one member is good enough.

® With arbitrary failures: we need 2k + 1 members so that the correct result
can be obtained through a majority vote.

13/77

Fault tolerance Process resilience

Groups and failure masking

k-fault tolerant group

When a group can mask any k concurrent member failures (k is called degree
of fault tolerance).

How large does a k-fault tolerant group need to be?

¢ With halting failures (crash/omission/timing failures): we need a total of
k +1 members as no member will produce an incorrect result, so the
result of one member is good enough.

® With arbitrary failures: we need 2k + 1 members so that the correct result
can be obtained through a majority vote.
Important assumptions

* All members are identical
* All members process commands in the same order

Result: We can now be sure that all processes do exactly the same thing.

Failure masking and replication 13/77

Process resilience

Consensus

Prerequisite
In a fault-tolerant process group, each nonfaulty process executes the same
commands, and in the same order, as every other nonfaulty process.

Reformulation
Nonfaulty group members need to reach consensus on which command to

execute next.

14/77

Process resilience

Flooding-based consensus

System model
e Aprocess group P={Py,...,Pn}
® Fail-stop failure semantics, i.e., with reliable failure detection
® A client contacts a P; requesting it to execute a command

¢ Every P; maintains a list of proposed commands

15/77

Fault tolerance Process resilience

Flooding-based consensus

System model
e Aprocess group P={Py,...,Pn}
® Fail-stop failure semantics, i.e., with reliable failure detection
® A client contacts a P; requesting it to execute a command

® Every P; maintains a list of proposed commands

Basic algorithm (based on rounds)
1. Inround r, P; multicasts its known set of commands C7 to all others
2. Atthe end of r, each P; merges all received commands into a new Ci'+1.

3. Next command cmd; selected through a globally shared, deterministic
function: cmd} « select(C{*7).

Consensus in faulty systems with crash failures 15/77

Process resilience

Flooding-based consensus: Example

decide

P3
Py {3

decide

Observations
® P, received all proposed commands from all other processes = makes
decision.

* P3; may have detected that P; crashed, but does not know if P, received
anything, i.e., Ps cannot know if it has the same information as P, =
cannot make decision (same for Py).

16/77

Raft

Developed for understandability
® Uses a fairly straightforward leader-election algorithm (see Chp. 5). The
current leader operates during the current term.

* Every server (typically, five) keeps a log of operations, some of which
have been committed. A backup will not vote for a new leader if its own
log is more up to date.

¢ All committed operations have the same position in the log of each
respective server.

® The leader decides which pending operation is to be committed next = a
primary-backup approach.

Consensus in faulty systems with crash failures 17177

Raft

When submitting an operation

¢ A client submits a request for operation o.

The leader appends the request (o, t,n+ 1) to its own log (registering the
current term t and length n+ 1 of its log).

The log is (conceptually) broadcast to the other servers.

The others (conceptually) copy the log and acknowledge the receipt.
* When a majority of acks arrives, the leader commits o.

18/77

Raft

When submitting an operation

¢ A client submits a request for operation o.

The leader appends the request (o, t,n+ 1) to its own log (registering the
current term t and length n+ 1 of its log).

The log is (conceptually) broadcast to the other servers.

The others (conceptually) copy the log and acknowledge the receipt.

* When a majority of acks arrives, the leader commits o.

Note

In practice, only updates are broadcast. At the end, every server has the same
view and knows about the ¢ committed operations. Note that effectively, any
information at the backups is overwritten.

Consensus in faulty systems with crash failures 18/77

Process resilience

Raft: when a leader crashes

(o)

Cy \
S1

(ACK, 02)
—
] 01
S2 (APP o, 1 1) m——— - - - - - - -k >
LEADER /’ (ACK 02)
S3 \\ (4ck,0 / I7] /'_’01
Sa —r (aPP,0%,2,2) (HB,2) —>
(AcK, o) LEADER \‘ ol o2 \
Ss =
/ (ACK, 02) ol
°)

Crucial observations
® The new leader has the most committed operations in its log.

* Any missing commits will eventually be sent to the other backups.

19/77

Fault tolerance Process resilience

Realistic consensus: Paxos

Assumptions (rather weak ones, and realistic)

® A partially synchronous system (in fact, it may even be asynchronous).

e Communication between processes may be unreliable: messages may
be lost, duplicated, or reordered.

® Corrupted message can be detected (and thus subsequently ignored).

* All operations are deterministic: once an execution is started, it is known
exactly what it will do.

® Processes may exhibit crash failures, but not arbitrary failures.

® Processes do not collude.

Understanding Paxos

We will build up Paxos from scratch to understand where many consensus
algorithms actually come from.

Example: Paxos 20/77

Paxos essentials

Starting point

* We assume a client-server configuration, with initially one primary server.
* To make the server more robust, we start with adding a backup server.

® To ensure that all commands are executed in the same order at both
servers, the primary assigns unique sequence numbers to all commands.
In Paxos, the primary is called the leader.

® Assume that actual commands can always be restored (either from
clients or servers) = we consider only control messages.

Example: Paxos 21/77

Process resilience

Two-server situation

01> < ‘721

x ACC, 02,1) (Acc, 0!, 2) / /
S | =
LEADER[\ /

(0?) (03) (o)

QN. QN.
/
—
o =

22/77

Handling lost messages

Some Paxos terminology

* The leader sends an accept message ACCEPT(o,t) to backups when
assigning a timestamp t to command o.

® A backup responds by sending a learn message: LEARN(o0, t)

* When the leader notices that operation o has not yet been learned, it
retransmits ACCEPT(o, t) with the original timestamp.

23/77

Process resilience

Two servers and one crash: problem

¢ ()

S i - >

LEADER

> LE./.\:DER (ACC,oz,l)o-z \

C (0?) (02)
Problem

Primary crashes after executing an operation, but the backup never received
the accept message.

24/77

Process resilience

Two servers and one crash: solution
(o1) (03) (o)

ke Tl
A 8
e

(LRN, 0! Leaper (ACC, 02,2) o2

C

(0%) (%)

Solution
Never execute an operation before it is clear that is has been learned.

25/77

Process resilience

Three servers and two crashes: still a problem?

L T P)
TN g

Ss k
W Leaber (ACC,02,1)
C

26/77

Process resilience

Three servers and two crashes: still a problem?
(o1 (@) (ef)

N S 4 PR

LEADER f \\ K / 01
A L i
W LEA})ER (Acc,02,1)
Co

(0%) (3)

o
e

Scenario
What happens when LEARN(0) as sent by S, to Sy is lost?

26/77

Process resilience

Three servers and two crashes: still a problem?

(‘72> (0 >

N e

LEADER] \\ K / ol |
P e :
W LEA})ER (Acc,02,1)

(0%) (3)

e

Scenario
What happens when LEARN(0) as sent by S, to Sy is lost?

Solution
S, will also have to wait until it knows that S has learned o’.

26/77

Process resilience

Paxos: fundamental rule
General rule

In Paxos, a server S cannot execute an operation o until it has received a
LEARN(0) from all other nonfaulty servers.

27177

Process resilience

Failure detection
Practice

Reliable failure detection is practically impossible. A solution is to set timeouts,
but take into account that a detected failure may be false.

28/77

Failure detection

Practice
Reliable failure detection is practically impossible. A solution is to set timeouts,
but take into account that a detected failure may be false.

c (oh) (o)

X (Acc, 01, 1) /
51 I] \ -1
LEADER 0
/ - [{7}
V (ALIVE, o) leaoen (ACC,0%1) 2

(0% (@3)

28/77

Process resilience

Required number of servers

Observation
Paxos needs at least three servers

29/77

Process resilience

Required number of servers

Observation
Paxos needs at least three servers

Adapted fundamental rule

In Paxos with three servers, a server S cannot execute an operation o until it
has received at least one (other) LEARN(0) message, so that it knows that a
majority of servers will execute o.

29/77

Process resilience

Required number of servers

Assumptions before taking the next steps

e |[nitially, Sy is the leader.
® A server can reliably detect it has missed a message, and recover from

that miss.

* When a new leader needs to be elected, the remaining servers follow a
strictly deterministic algorithm, such as S; — So — Ss.

® A client cannot be asked to help the servers to resolve a situation.

30/77

Fault tolerance Process resilience

Required number of servers

Assumptions before taking the next steps

e |[nitially, Sy is the leader.

® A server can reliably detect it has missed a message, and recover from
that miss.

* When a new leader needs to be elected, the remaining servers follow a
strictly deterministic algorithm, such as S; — So — Ss.

® A client cannot be asked to help the servers to resolve a situation.

Observation
If either one of the backups (S» or S3) crashes, Paxos will behave correctly:
operations at nonfaulty servers are executed in the same order.

Example: Paxos 30/77

Leader crashes after executing o’

Leader crashes after executing o’
Sz is completely ignorant of any activity by Sy

® S, received ACCEPT(0, 1), detects crash, and becomes leader.

® Sj even never received ACCEPT(0,1).

If S, sends ACCEPT(0?,2) = S3 sees unexpected timestamp and tells
S, that it missed o’.

e S, retransmits ACCEPT(0’,1), allowing Sj to catch up.

31/77

Leader crashes after executing o’

Sz is completely ignorant of any activity by Sy
® S, received ACCEPT(0, 1), detects crash, and becomes leader.
® Sz even never received ACCEPT(0,1).

* If S, sends ACCEPT(0%,2) = S3 sees unexpected timestamp and tells
S, that it missed o’.

e S, retransmits ACCEPT(0’,1), allowing Sj to catch up.

S, missed ACCEPT(07,1)
® S, did detect crash and became new leader
e If S, sends ACCEPT(0',1) = S retransmits LEARN(0?).

* If S, sends ACCEPT(0%,1) = Sj tells S, that it apparently missed
ACCEPT(0’,1) from Sy, so that S, can catch up.

Example: Paxos 31/77

Leader crashes after sending ACCEPT(0’,1)
Sz is completely ignorant of any activity by Sy

As soon as S, announces that 02 is to be accepted, S3 will notice that it
missed an operation and can ask S, to help recover.

S, had missed ACCEPT(0',1)
As soon as S, proposes an operation, it will be using a stale timestamp,
allowing Sj to tell S, that it missed operation 0.

32/77

Leader crashes after sending ACCEPT(07,1)

Sz is completely ignorant of any activity by Sy
As soon as S, announces that 02 is to be accepted, S3 will notice that it
missed an operation and can ask S» to help recover.

S, had missed ACCEPT(0',1)

As soon as S, proposes an operation, it will be using a stale timestamp,
allowing S; to tell S, that it missed operation o’.

Observation
Paxos (with three servers) behaves correctly when a single server crashes,
regardless when that crash took place.

Example: Paxos 32/77

Process resilience

False crash detections

e (o)

)7% (acc,0!,1) = 3
LEADER \ T f drop leadership
i
“} (ACC,02,2) / \'

=
& = =
W (LRN, 0%) 02 \ confusion

* (o) (3)

Problem and solution

Sj3 receives ACCEPT(0',1), but much later than ACCEPT(0?,1). If it knew who
the current leader was, it could safely reject the delayed accept message =
leaders should include their ID in messages.

33/77

Process resilience

But what about progress?

» - wn
N m =
>
o
m
éﬁ
=
S
o
L — »
4/\/5
>
=
~
/\\
S [
o
NG
S
\N
=

0 wn
N w
 —
~—]
le—|
=
2
ER ‘§:::;-
~ —
o gz
- =] -
o
\
e
-
2
\02’%\/
i
N
|
1
\]

34/77

Fault tolerance

But what about progress?
(")

Process resilience

)7% ACC, S1,01,1)
LEADER \\V

A

~
‘N

L

} (Acc, Sp,0%,1) /
LEADER/ \ %
(LRN,01) 0-1 (LRN,0%) 2 \ ,*:\"_)

* (o)

Essence of solution

(@3?)

When S; takes over, it needs to make sure that any outstanding operations
initiated by S; have been properly flushed, i.e., executed by enough servers.
This requires an explicit leadership takeover by which other servers are
informed before sending out new accept messages.

Example: Paxos

34/77

Process resilience

Consensus under arbitrary failure semantics

Essence
We consider process groups in which communication between process is
inconsistent.

Improper forwarding Different messages

35/77

Consensus under arbitrary failure semantics

System model

® We consider a primary P and n—1 backups By,...,Bn_1.
Aclientsendsve {T,F}to P

Messages may be lost, but this can be detected.
Messages cannot be corrupted beyond detection.

A receiver of a message can reliably detect its sender.

Byzantine agreement: requirements

BA1: Every nonfaulty backup process stores the same value.
BA2: If the primary is nonfaulty then every nonfaulty backup process stores
exactly what the primary had sent.

Observation

® Primary faulty = BA1 says that backups may store the same, but different
(and thus wrong) value than originally sent by the client.
® Primary not faulty = satisfying BA2 implies that BA1 is satisfied.

Consensus in faulty systems with arbitrary failures 36/77

Why having 3k processes is not enough

O Faulty process

------ » First message round

—» Second message round

v/ NF YRS
F T

37/77

Why having 3k + 1 processes is enough

O Faulty process

------ » First message round

—» Second message round

38/77

Practical Byzantine Fault Tolerance (PBFT)

Background

One of the first solutions that managed to Byzantine fault tolerance while
keeping performance acceptable. Popularity has increased with the
introduction of permissioned blockchains.

Assumptions
* A server may exhibit arbitrary failures
* Messages may be lost, delayed, and received out of order
* Messages have an identifiable sender (i.e., they are signed)

e Partially synchronous execution model

Essence
A primary-backup approach with 3k + 1 replica servers.

Consensus in faulty systems with arbitrary failures 39/77

Process resilience

PBFT: four phases
‘ @i

PRIMARY N

W\

B3 \’

PRE-PREPARE PREPARE COMMIT REPLY

4 -

S

'
\
\

e Cis the client
® P isthe primary

* By, B,, Bs are backups
Assume By is faulty

40/77

Fault tolerance Process resilience

PBFT: four phases

: <oi
PRIMAHY N‘

\\t
%g
‘B W

\ I i 7 ///
” "l !
!
N, / 1
! ’, !
¢ £ h
B N S i
0?
\\ >~
B3 = A—
0
PRE-PREPARE PREPARE cCoMMIT REPLY

® All servers assume to be working in a current view v.

® C requests operation o to be executed

® P timestamps o and sends PRE-PREPARE(t, Vv, 0)

Backup B; accepts the pre-prepare message if it is also is in v and has
not accepted a an operation with timestamp t before.

Consensus in faulty systems with arbitrary failures 41/77

Fault tolerance Process resilience

PBFT: four phases

: <oi
PRIMAHY N‘

\\t
%g
sl o

\ /A 7
, [~ !
/
N, 7/ !
! ’, /
B2 . < =
0?
\\ "~
B3 = A—
0
PRE-PREPARE PREPARE COMMIT REPLY

® B, broadcasts PREPARE(t, v, 0) to all (including the primary)

* Note: a nonfaulty server will eventually log 2k messages PREPARE({, v, 0)
(including its own) = consensus on the ordering of o.

* Note: it doesn’'t matter what faulty B, sends, it cannot affect joint
decisions by P, By, Bs.

Consensus in faulty systems with arbitrary failures 42/77

Fault tolerance Process resilience

PBFT: four phases

: <oi
PRIMAHY N‘

\\t
%g
‘B W

\ I i 7 ///
” "l !
!
N, / 1
! ’, !
¢ £ h
B N S i
0?
\\ >~
B3 = A—
0
PRE-PREPARE PREPARE cCoMMIT REPLY

® All servers broadcast COMMIT(t, v, 0)

® The commit is needed to also make sure that o can be executed now,
that is, in the current view v.

* When 2k messages have been collected, excluding its own, the server
can safely execute o and reply to the client.

Consensus in faulty systems with arbitrary failures 43/77

FullipzarE
PBFT: when the primary fails

Issue

When a backup detects the primary failed, it will broadcast a view change to
view v+ 1. We need to ensure that any outstanding request is executed once
and only once by all nonfaulty servers. The operation needs to be handed over
to the new view.

Procedure

® The next primary P* is known deterministically

® A backup server broadcasts VIEW-CHANGE(v + 1,P): P is the set of
prepares it had sent out.

* P* waits for 2k 4 1 view-change messages, with X = |JP containing all
previously sent prepares.

® P* sends out NEW-VIEW(v+1,X,0) with O a new set of pre-prepare
messages.

® Essence: this allows the nonfaulty backups to replay what has gone on in
the previous view, if necessary, and bring o into the new view v+ 1.

Consensus in faulty systems with arbitrary failures 4477

Fault tolerance Process resilience

Realizing fault tolerance

Observation

Considering that the members in a fault-tolerant process group are so tightly
coupled, we may bump into considerable performance problems, but perhaps
even situations in which realizing fault tolerance is impossible.

Question
Are there limitations to what can be readily achieved?
* What is needed to enable reaching consensus?

* What happens when groups are partitioned?

Some limitations on realizing fault tolerance 45/77

Process resilience

Distributed consensus: when can it be reached

Process behavior Message ordering Commun. delay
Unordered Ordered
Synchronous{ v v v v Bounded
v v Unbounded
Asynchronous { v Bounded
v UnBounded

Unicast Multicast Unicast Multicast
Message transmission

Formal requirements for consensus

® Processes produce the same output value
e Every output value must be valid
® Every process must eventually provide output

46 /77

Consistency, availability, and partitioning

CAP theorem
Any networked system providing shared data can provide only two of the
following three properties:

C: consistency, by which a shared and replicated data item appears as a
single, up-to-date copy

A: availability, by which updates will always be eventually executed

P: Tolerant to the partitioning of process group.

Conclusion

In a network subject to communication failures, it is impossible to realize an
atomic read/write shared memory that guarantees a response to every
request.

Some limitations on realizing fault tolerance 4777

CAP theorem intuition

Simple situation: two interacting processes

® P and Q can no longer communicate:

® Allow P and Q to go ahead = no consistency
* Allow only one of P, Q to go ahead =- no availability

* P and Q have to be assumed to continue communication = no
partitioning allowed.

48/77

CAP theorem intuition

Simple situation: two interacting processes

® P and Q can no longer communicate:

® Allow P and Q to go ahead = no consistency
* Allow only one of P, Q to go ahead =- no availability

* P and Q have to be assumed to continue communication = no
partitioning allowed.

Fundamental question
What are the practical ramifications of the CAP theorem?

48/77

Failure detection

Issue
How can we reliably detect that a process has actually crashed?
General model

e Each process is equipped with a failure detection module

® A process P probes another process Q for a reaction

If Qreacts: Q is considered to be alive (by P)

If Q does not react with t time units: Q is suspected to have crashed

Observation for a synchronous system

a suspected crash = a known crash

49/77

Practical failure detection

Implementation
e |f P did not receive heartbeat from Q within time t: P suspects Q.
¢ If Q later sends a message (which is received by P):

® P stops suspecting Q
® Pincreases the timeout value t

* Note: if Q did crash, P will keep suspecting Q.

50/77

Reliable client-server communication

Reliable remote procedure calls

What can go wrong?

1. The client is unable to locate the server.
. The request message from the client to the server is lost.
. The server crashes after receiving a request.

. The reply message from the server to the client is lost.

a ~h W N

. The client crashes after sending a request.

51/77

Reliable client-server communication

Reliable remote procedure calls

What can go wrong?

1. The client is unable to locate the server.
. The request message from the client to the server is lost.
The server crashes after receiving a request.

The reply message from the server to the client is lost.

SIS

The client crashes after sending a request.

Two “easy” solutions

1: (cannot locate server): just report back to client

2: (request was lost): just resend message

51/77

Fault tolerance Reliable client-server communication

Reliable RPC: server crash

REQ Server REQ Server REQ Server
> Receive | Receive — > Receive
Execute Execut_g ; :
REP Reply No REP :
(a) (b) (c)
Problem

Where (a) is the normal case, situations (b) and (c) require different solutions.
However, we don’'t know what happened. Two approaches:

* At-least-once-semantics: The server guarantees it will carry out an
operation at least once, no matter what.

® At-most-once-semantics: The server guarantees it will carry out an
operation at most once.

RPC semantics in the presence of failures 52/77

Why fully transparent server recovery is impossible

Three type of events at the server
(Assume the server is requested to update a document.)

M: send the completion message
P: complete the processing of the document
C: crash

Six possible orderings
(Actions between brackets never take place)

M — P — C: Crash after reporting completion.

M — C — P: Crash after reporting completion, but before the update.
P — M — C: Crash after reporting completion, and after the update.
P — C(— M): Update took place, and then a crash.

C(— P — M): Crash before doing anything

C(— M — P): Crash before doing anything

ARSI S

RPC semantics in the presence of failures 53/77

Reliable client-server communication

Why fully transparent server recovery is impossible

Strategy M — P Strategy P - M
Reissue strategy MPC MC(P) C(MP) PMC PC(M) C(PM)
Always DUP OK OK DUP DUP OK
Never OK ZERO | ZERO OK OK ZERO
Only when ACKed DUP OK ZERO DUP OK ZERO
Only when not ACKed OK ZERO OK OK DUP OK
Client Server Server
OK = Document processed once
DUP = Document processed twice
ZERO = Document not processed at all

54 /77

Reliable RPC: lost reply messages

The real issue

What the client notices, is that it is not getting an answer. However, it cannot
decide whether this is caused by a lost request, a crashed server, or a lost
response.

Partial solution
Design the server such that its operations are idempotent: repeating the same
operation is the same as carrying it out exactly once:

® pure read operations
e strict overwrite operations

Many operations are inherently nonidempotent, such as many banking
transactions.

RPC semantics in the presence of failures 55/77

Reliable RPC: client crash

Problem
The server is doing work and holding resources for nothing (called doing an
orphan computation).
Solution
® Orphan is killed (or rolled back) by the client when it recovers

¢ Client broadcasts new epoch number when recovering = server kills
client’s orphans

* Require computations to complete in a T time units. Old ones are simply
removed.

56 /77

Fault tolerance

Reliable group communication

Simple reliable group communication

Intuition

A message sent to a process group G should be delivered to each member of
G. Important: make distinction between receiving and delivering messages.

Introduction

Sender

Recipient

Recipient

Group membership
functionality

Group membership
functionality

Group membership
functionality

v

T Message delivery ?

Message-handling

Message-handling

Message-handling

component component component
¢ T Message reception f
Local OS Local OS Local OS

N

J

J

57/77

Network

Reliable group communication

Less simple reliable group communication

Reliable communication in the presence of faulty processes
Group communication is reliable when it can be guaranteed that a message is
received and subsequently delivered by all nonfaulty group members.

Tricky part
Agreement is needed on what the group actually looks like before a received
message can be delivered.

58/77

Simple reliable group communication

Reliable communication, but assume nonfaulty processes
Reliable group communication now boils down to reliable multicasting: is a
message received and delivered to each recipient, as intended by the sender.

Receiver missed
message #24

Sender Receiver Receiver Receiver Receiver
M25 History
buffer Last=24 | |Last=24 Last = 23 Last = 24
-
— M25 M25 M25 M25
Network
Sender Receiver Receiver Receiver Receiver
Last =25 Last = 24 Last = 23 Last =24
=
A@ AL AK25 | ack2s | Jissed 24 J ACK 25
Network

Introduction 59/77

Distributed commit protocols

Problem
Have an operation being performed by each member of a process group, or
none at all.

¢ Reliable multicasting: a message is to be delivered to all recipients.
¢ Distributed transaction: each local transaction must succeed.

60/77

Two-phase commit protocol (2PC)

Essence
The client who initiated the computation acts as coordinator; processes
required to commit are the participants.

® Phase 1a: Coordinator sends VOTE-REQUEST to participants (also called
a pre-write)

® Phase 1b: When participant receives VOTE-REQUEST it returns either
VOTE-COMMIT or VOTE-ABORT to coordinator. If it sends VOTE-ABORT, it
aborts its local computation

e Phase 2a: Coordinator collects all votes; if all are VOTE-COMMIT, it sends
GLOBAL-COMMIT to all participants, otherwise it sends GLOBAL-ABORT

® Phase 2b: Each participant waits for GLOBAL-COMMIT or GLOBAL-ABORT
and handles accordingly.

61/77

2PC - Finite state machines

Vote-request
Vote-abort

Vote-request
Vote-commit

Commit
Vote-request

Vote-abort
Global-abort

(ABoRT) ((commiT)

Vote-commit
Global-commit

Global-abort
ACK

Global-commit
ACK

ABORT) ((commiT)

Coordinator Participant

62/77

2PC — Failing participant

Analysis: participant crashes in state S, and recovers to S

® /NIT: No problem: participant was unaware of protocol

63/77

2PC — Failing participant
Analysis: participant crashes in state S, and recovers to S
* READY: Participant is waiting to either commit or abort. After recovery,

participant needs to know which state transition it should make = log the
coordinator’s decision

63/77

2PC — Failing participant

Analysis: participant crashes in state S, and recovers to S

°* ABORT: Merely make entry into abort state idempotent, e.g., removing
the workspace of results

63/77

2PC — Failing participant

Analysis: participant crashes in state S, and recovers to S

e COMMIT: Also make entry into commit state idempotent, e.g., copying
workspace to storage.

63/77

2PC — Failing participant

Analysis: participant crashes in state S, and recovers to S

® /NIT: No problem: participant was unaware of protocol

e READY: Participant is waiting to either commit or abort. After recovery,
participant needs to know which state transition it should make = log the
coordinator’s decision

°* ABORT: Merely make entry into abort state idempotent, e.g., removing
the workspace of results

e COMMIT: Also make entry into commit state idempotent, e.g., copying
workspace to storage.

Observation
When distributed commit is required, having participants use temporary
workspaces to keep their results allows for simple recovery in the presence of

failures.

2PC — Failing participant

Alternative
When a recovery is needed to READY state, check state of other participants
= no need to log coordinator’s decision.

Recovering participant P contacts another participant Q

State of Q | Action by P

COMMIT Make transition to COMMIT
ABORT Make transition to ABORT
INIT Make transition to ABORT
READY Contact another participant

Result
If all participants are in the READY state, the protocol blocks. Apparently, the

coordinator is failing. Note: The protocol prescribes that we need the decision
from the coordinator.

64/77

2PC — Failing coordinator

Observation
The real problem lies in the fact that the coordinator’s final decision may not be
available for some time (or actually lost).

Alternative

Let a participant P in the READY state timeout when it hasn’t received the
coordinator’s decision; P tries to find out what other participants know (as
discussed).

Observation
Essence of the problem is that a recovering participant cannot make a local
decision: it is dependent on other (possibly failed) processes

65/77

Coordinator in Python

1 class Coordinator:

2 def run(self) :

3 yetToReceive = list (self.participants)

4 self.log.info ("WAIT")

5 self.chan.sendTo(self.participants, VOTE_REQUEST)

6 while len(yetToReceive) > 0:

7 msg = self.chan.recvFrom(self.participants, BLOCK, TIMEOUT)
8 if msg == -1 or (msg[l] == VOTE_ABORT) :

9 self.log.info(’ ABORT’)

10 self.chan.sendTo(self.participants, GLOBAL_ABORT)
11 return

12 else: # msg[l] == VOTE_COMMIT

13 yetToReceive.remove (msg[0])

14 self.log.info (' COMMIT’)

15 self.chan.sendTo(self.participants, GLOBAL_COMMIT)

66 /77

Participant in Python

1 class Participant:

2 def run(self) :

3 self.log.info(’ INIT")

4 msg = self.chan.recvFrom(self.coordinator, BLOCK, TIMEOUT)
5 if msg == -1: # Crashed coordinator - give up entirely

6 decision = LOCAL_ABORT

7 else: # Coordinator will have sent VOTE_REQUEST

8 decision = self.do_work()

9 if decision == LOCAL_ABORT:

10 self.chan.sendTo(self.coordinator, VOTE_ABORT)

11 self.log.info(’ LOCAL_ABORT’)

12 else: # Ready to commit, enter READY state

13 self.log.info(’READY")

14 self.chan.sendTo(self.coordinator, VOTE_COMMIT)

15 msg = self.chan.recvFrom(self.coordinator, BLOCK, TIMEOUT)
16 if msg == -1: # Crashed coordinator — check the others
17 self.log.info(’NEED_DECISION')

18 self.chan.sendTo(self.participants, NEED_DECISION)

19 while True:

20 msg = self.chan.recvFromAny ()

21 if msg[l] in [GLOBAL_COMMIT, GLOBAIL, ABORT, LOCAIL_ABORT] :
22 decision = msg[1]

23 break

24 else: # Coordinator came to a decision

25 decision = msg[1]

26 if decision == GLOBAL_COMMIT:

27 self.log.info(’ COMMIT)

28 else: # decision in [GLOBAI ABORT, LOCAL ABORT] :

29 self.log.info(’ ABORT)

30 while True: # Help any other participant when coordinator crashed
31 msg = self.chan.recvFrom(self.participants)

32 if msg[1] NEED_DECISION:

33 self.chan.sendTo([msg[0]], decision)

Fault tolerance Recovery

Recovery: Background

Essence
When a failure occurs, we need to bring the system into an error-free state:

® Forward error recovery: Find a new state from which the system can
continue operation

® Backward error recovery: Bring the system back into a previous error-free
state

Practice
Use backward error recovery, requiring that we establish recovery points

Observation
Recovery in distributed systems is complicated by the fact that processes need
to cooperate in identifying a consistent state from where to recover

Introduction 68/77

Recovery

Consistent recovery state
Requirement
Every message that has been received is also shown to have been sent in the
state of the sender.

Recovery line

Assuming processes regularly checkpoint their state, the most recent
consistent global checkpoint.

Recovery line
P14

1] 1 / 1
T L] L] l. l\
\‘/ \\
\ /\\
1 \
P2 4 | = e
Checkpoint Inconsistent set

of checkpoints

69/77

Recovery

Coordinated checkpointing

Essence
Each process takes a checkpoint after a globally coordinated action.

Simple solution
Use a two-phase blocking protocol:

70/77

Recovery

Coordinated checkpointing

Essence
Each process takes a checkpoint after a globally coordinated action.

Simple solution
Use a two-phase blocking protocol:

¢ A coordinator multicasts a checkpoint request message

70/77

Coordinated checkpointing

Essence
Each process takes a checkpoint after a globally coordinated action.

Simple solution
Use a two-phase blocking protocol:
¢ A coordinator multicasts a checkpoint request message
* When a participant receives such a message, it takes a checkpoint, stops
sending (application) messages, and reports back that it has taken a
checkpoint

70/77

Coordinated checkpointing

Essence
Each process takes a checkpoint after a globally coordinated action.

Simple solution
Use a two-phase blocking protocol:

¢ A coordinator multicasts a checkpoint request message

* When a participant receives such a message, it takes a checkpoint, stops
sending (application) messages, and reports back that it has taken a
checkpoint

* When all checkpoints have been confirmed at the coordinator, the latter
broadcasts a checkpoint done message to allow all processes to continue

Coordinated checkpointing

Essence
Each process takes a checkpoint after a globally coordinated action.

Simple solution
Use a two-phase blocking protocol:

¢ A coordinator multicasts a checkpoint request message

* When a participant receives such a message, it takes a checkpoint, stops
sending (application) messages, and reports back that it has taken a
checkpoint

* When all checkpoints have been confirmed at the coordinator, the latter
broadcasts a checkpoint done message to allow all processes to continue

Observation
It is possible to consider only those processes that depend on the recovery of
the coordinator, and ignore the rest

Recovery

Cascaded rollback

Observation
If checkpointing is done at the “wrong” instants, the recovery line may lie much
earlier. We have a so-called cascaded rollback.

P1 4+—i 1 1 74!\

m* m

P2 4 t L *——»

Checkpoint

71/77

Recovery

Independent checkpointing
Essence

Each process independently takes checkpoints, with the risk of a cascaded
rollback to system startup.

72/77

Independent checkpointing

Essence
Each process independently takes checkpoints, with the risk of a cascaded
rollback to system startup.

e Let CP;(m) denote m" checkpoint of process P; and INT;(m) the interval
between CP;(m—1) and CP;(m).

72/77

Independent checkpointing

Essence
Each process independently takes checkpoints, with the risk of a cascaded
rollback to system startup.

e Let CP;(m) denote m" checkpoint of process P; and INT;(m) the interval
between CP;(m—1) and CP;(m).

* When process P; sends a message in interval INT;(m), it piggybacks
(i,m)

72/77

Independent checkpointing

Essence
Each process independently takes checkpoints, with the risk of a cascaded

rollback to system startup.
e Let CP;(m) denote m" checkpoint of process P; and INT;(m) the interval
between CP;(m—1) and CP;(m).
* When process P; sends a message in interval INT;(m), it piggybacks
(i,m)
* When process P; receives a message in interval INT;(n), it records the
dependency INT;(m) — INTj(n).

Independent checkpointing

Essence
Each process independently takes checkpoints, with the risk of a cascaded

rollback to system startup.

e Let CP;(m) denote m" checkpoint of process P; and INT;(m) the interval
between CP;(m—1) and CP;(m).

* When process P; sends a message in interval INT;(m), it piggybacks
(i,m)

* When process P; receives a message in interval INT;(n), it records the
dependency INT;(m) — INT;(n).

® The dependency INT;(m) — INT;(n) is saved to storage when taking
checkpoint CP;(n).

Independent checkpointing

Essence
Each process independently takes checkpoints, with the risk of a cascaded

rollback to system startup.

e Let CP;(m) denote m" checkpoint of process P; and INT;(m) the interval
between CP;(m—1) and CP;(m).

* When process P; sends a message in interval INT;(m), it piggybacks
(i,m)

* When process P; receives a message in interval INT;(n), it records the
dependency INT;(m) — INT;(n).

® The dependency INT;(m) — INT;(n) is saved to storage when taking
checkpoint CP;(n).

Observation
If process P; rolls back to CP;(m— 1), P; must roll back to CP;(n—1).

Message logging

Alternative
Instead of taking an (expensive) checkpoint, try to replay your (communication)
behavior from the most recent checkpoint = store messages in a log.

Assumption
We assume a piecewise deterministic execution model:
* The execution of each process can be considered as a sequence of state
intervals
® Each state interval starts with a nondeterministic event (e.g., message
receipt)
¢ Execution in a state interval is deterministic

Conclusion
If we record nondeterministic events (to replay them later), we obtain a
deterministic execution model that will allow us to do a complete replay.

Recovery

Message logging and consistency

When should we actually log messages?
Avoid orphan processes:
® Process Q has just received and delivered messages m; and m»

® Assume that m; is never logged.
o After delivering m; and mo, Q sends message mz to process R

® Process R receives and subsequently delivers mjs: it is an orphan.

iy \

my
Q ____ll__7__1h___:1*.g\ ________ ‘. \ f v
my ms Q rejoins my ms
) [\ Ly
loaged m2 is never replayed, so
&—> logged message m3 will neither be replayed

—> unlogged message

74177

Fault tolerance Recovery

Message-logging schemes

Notations

® DEP(m): processes to which m has been delivered. If message m* is
causally dependent on the delivery of m, and m* has been delivered to Q,
then Q € DEP(m).

® COPY(m): processes that have a copy of m, but have not (yet) reliably
stored it.

® FAIL: the collection of crashed processes.

Characterization

Qis orphaned < 3Im: Q € DEP(m) and COPY(m) C FAIL

Recovery

Message-logging schemes

Pessimistic protocol
For each nonstable message m, there is at most one process dependent on m,

that is |DEP(m)| < 1.

Consequence
An unstable message in a pessimistic protocol must be made stable before

sending a next message.

76/77

Recovery

Message-logging schemes

Optimistic protocol

For each unstable message m, we ensure that if COPY(m) C FAIL, then
eventually also DEP(m) C FAIL.

Consequence

To guarantee that DEP(m) C FAIL, we generally roll back each orphan process
Q until Q ¢ DEP(m).

77177

	Fault tolerance
	Introduction to fault tolerance
	Basic concepts
	Failure models
	Failure masking by redundancy

	Process resilience
	Resilience by process groups
	Failure masking and replication
	Consensus in faulty systems with crash failures
	Example: Paxos
	Consensus in faulty systems with arbitrary failures
	Consensus in blockchain systems
	Some limitations on realizing fault tolerance
	Failure detection

	Reliable client-server communication
	Point-to-point communication
	RPC semantics in the presence of failures

	Reliable group communication
	Introduction
	Scalability in reliable multicasting
	Atomic multicast

	Distributed commit
	Recovery
	Introduction
	Checkpointing
	Message logging

