Distributed Systems

(4th edition, version 01)

Chapter 09: Security

Dependability

Basics
A dependable system provides availability, reliability, safety, maintainability,
confidentiality, and integrity.

¢ Confidentiality: refers to the property that information is disclosed only to
authorized parties.

* Integrity: alterations to a system’s assets can be made only in an
authorized way, ensuring accuracy and completeness.

Security
Dependability

Basics
A dependable system provides availability, reliability, safety, maintainability,
confidentiality, and integrity.

¢ Confidentiality: refers to the property that information is disclosed only to
authorized parties.

* Integrity: alterations to a system’s assets can be made only in an
authorized way, ensuring accuracy and completeness.

Alternative
We attempt to protect against security threats:

1. Unauthorized information disclosure (confidentiality)
2. Unauthorized information modification (integrity)

3. Unauthorized denial of use (availability)

Security mechanisms
* Encryption: transform data to something an attacker cannot understand,
or that can be checked for modificatons.

e Authentication: verify a claimed identity.

e Authorization: check an authenticated entity whether it has the proper
rights to access resources.

® Monitoring and auditing: (continuously) trace access to resources

Security

Introduction to security

Security principles

Design issues

Fail-safe defaults: defaults should already provide good protection.
Infamous example: the default “admin,admin” for edge devices.

Open design: do not apply security by obscurity: every aspect of a
distributed system is open for review.

Separation of privilege: ensure that critical aspects of a system can never
be fully controlled by just a single entity.

Least privilege: a process should operate with the fewest possible
privileges.

Least common mechanism: if multiple components require the same
mechanism, then they should all be offered the same implementation of
that mechanism.

Introduction to security

Where to implement security mechanisms?

Application Application
Middleware High-level protocols Middleware
OS Services OS Services
- Transport | Transport
OS kernel OS kernel
Network Low-level protocols Netwr?rk
Datalink Datalink
Hardware [ppysical Physical | Hardware

I Network

Observation
We are increasingly seeing end-to-end security, meaning that mechanisms are

implemented at the level of applications.

Security Introduction to security

Where to implement security mechanisms?

Application Application
Middleware High-level protocols Middleware
OS Services OS Services
- Transport | Transport -
OS kernel OS kernel
Network Low-level protocols Netwgrk
Datalink Datalink
Hardware [ppysical Physical | Hardware
I Network I
Observation

We are increasingly seeing end-to-end security, meaning that mechanisms are
implemented at the level of applications.

Issue: which layer do we trust?
Trusted Computing Base: The set of all security mechanisms in a (distributed)
computer system that are necessary and sufficient to enforce a security policy.

Dy -

On privacy

Observation

Privacy and confidentiality are closely related, yet are different. Privacy can be
invaded, whereas confidentiality can be breached = ensuring confidentiality is
not enough to guarantee privacy.

On privacy

Observation

Privacy and confidentiality are closely related, yet are different. Privacy can be
invaded, whereas confidentiality can be breached = ensuring confidentiality is
not enough to guarantee privacy.

Right to privacy

The right to privacy is about “a right to appropriate flow of personal information.”
Control who gets to see what, when, and how = a person should be able to
stop and revoke a flow of personal information.

Sy
On privacy

Observation

Privacy and confidentiality are closely related, yet are different. Privacy can be
invaded, whereas confidentiality can be breached = ensuring confidentiality is
not enough to guarantee privacy.

Right to privacy

The right to privacy is about “a right to appropriate flow of personal information.”
Control who gets to see what, when, and how = a person should be able to
stop and revoke a flow of personal information.

General Data Protection Regulation (GDPR)

The GDPR is a comprehensive set of regulations aiming to protect personal
data.

Doy -

sty
GDPR: Database perspective

GDPR regulation Impact on database systems
Attributes Actions

Collect data for explicit purposes Purpose Metadata indexing
Do not store data indefinitely TTL Timely deletion
Inform customers about GDPR metadata Purpose, TTL, Metadata indexing
associated with their data Origin, Sharing
Allow customers to access their data Person id Metadata indexing
Allow customers to erase their data TTL Timely deletion
Do not use data for objected reasons Objections Metadata indexing
Allow customers to withdraw from Automated Metadata indexing
algorithmic decision-making decisions
Safeguard and restrict access to data Access control
Do not grant unlimited access to data Access control
Audit operations on personal data Audit trail Monitor and log
Implement appropriate data security Encryption
Share audit trails from affected systems Audit trail Monitor and log

Dy -

Security Cryptography

Cryptography
Passive intruder Active intruder Active intruder
only listens to C can alter messages can insert messages
A %
\ 4
. Encryption || | Ciphertext || Decryption .
Plaintext, P —| method C = EqP) —> method —» Plaintext
Encryption Decryption
Sender key, Ex key, Dk Receiver

Basic concepts
® Plaintext: the original message or data (P)
e Ciphertext: the encrypted version of the the plaintext (C)
e Encryption key: input Ek to a function for encryption: C = Ex(P)
® Decryption key: input Dy to a function for decryption: P = D (C)

Security
Cryptosystems

Symmetric : if P = Dx(Ek(P)) then Dy = Ek.

Asymmetric : if P = Dx(Ek(P)) then Dx # Ek.
Also called public-key systems with a publicly known key PK and
secret key SK

Examples
Let PKy denote public key of X and SK the associated secret key.

Confidential message : if m is to be kept private: C = PKigcejyer(m).

Authenticated message : if m is to be authenticated: C = SKggnger(m).

Homomorphic encryption

Mathematical operations on plaintext can be performed on the corresponding
ciphertext: if x and y are two numbers, then

Ex(x)*Ex(y) = Ex(x*Y)

Security Cryptography

Hash functions

Description

A hash function H takes a message m of arbitrary length as input and
produces a bit string h having a fixed length as output:

h = H(m) with length of h fixed.

Example: digital signature

Alice computes a digest from m; encrypts the digest with her private key;
encrypted digest is sent along with m to Bob:

Alice: send [m, sig] with sig = SKa(H(m)).

Bob decrypts digest with Alice’s public key; separately calculates the message
digest. If both match, Bob knows the message has been signed by Alice:

Bob: receive [m, sig], compute i = H(m) and verify i = PK,(sig).

EER SRS -

Cryptography

Key management

Essence
How do Alice and Bob get the correct (often shared) keys so that they can set

up secure channels?

Diffie-Hellman key exchange
Assume two large, nonsecret numbers p and g (with specific mathematical
properties):

Alice Bob

picks x picks y

Bob computes
(g* mod p)Y

;
p, g, g¥ mod p =g mod p

@ el
2 o
=z 2
Alice computes < g¥ mod p @
(g¥ mod p)*
=g¥¥ mod p

Cryptography

DH key exchange: example

Multiparty computation

Can we protect private data while computing statistics? Who has the highest
salary without revealing salaries? Can we compute the number of votes cast
for a specific candidate without revealing who voted for whom?

Security Cryptography

DH key exchange: example

Multiparty computation

Can we protect private data while computing statistics? Who has the highest
salary without revealing salaries? Can we compute the number of votes cast
for a specific candidate without revealing who voted for whom?

Oblivious transfer

Alice has n secret messages my, ..., mp. Bob is interested (and allowed) to
know only message m;. Which message he wants to know should be kept
secret to Alice; all messages m; # m; should be kept secret to Bob.

T em— -

Security
DH key exchange: example

Multiparty computation

Can we protect private data while computing statistics? Who has the highest
salary without revealing salaries? Can we compute the number of votes cast
for a specific candidate without revealing who voted for whom?

Oblivious transfer

Alice has n secret messages my, ..., mp. Bob is interested (and allowed) to
know only message m;. Which message he wants to know should be kept
secret to Alice; all messages m; # m; should be kept secret to Bob.

Solution

Bob generates a number Q that Alice, in turn, uses to generate n different
encryption keys PKy,..., PKn: mf = PK;(m;)

Bob uses Q to generate a decryption key SK; that matches only PK;. When
Bob receives m7j,..., mp he can decrypt only my. SK,-(mf) (with i # j) will fail.

T em— -

Cryptography

1-out-of-2 oblivious transfer

Alice Bob
picﬁx picks y, and c € {0,1}
Ifc=0:Q«gY

——{ pag —> |79
: 2
AK — QX ‘ |I| BK - gxy
AKj < (Q/gX)*
AK1(m1), AKZ(mZ) d1 - BK(m;)
e dy = BK(m3)

Alice
Bob

mj m}
1 2

Analysis
° c=0= Q=g AK; = BK = g AK, = g9 ¥
e c=1=Q=g"V AK; = ¥t AK, = BK = g¥.

Security
Example, continued

Preliminaries
® P;and P need to compute F(a,b).
® Parameter ais secret and known only to Py; secret b known only to Po.
e gecXandbeY;Xand are finite.

Construct a |X| x |Y| matrix F.

F[i,j] = F(x;,y;) for each pair (x;,y;) € Xx Y.

Solution
® Pj generates |X|-|Y| unique key pairs (K;, K;)
Construct F*[i,j] = Ki(K;(F (i, ;))). Assume a= Xx;).

P; permutes F* and sends it along with Kj to P>

P; sends Q using a 1-out-of-|Y| oblivious transfer.

Assume b = y;. Using Q, P> can construct K;, and only K;

P> decrypts F*[i,j], corresponding to F(a,b).
R aegemen -

What is needed to distribute keys

Symmetric-key distribution

Encryption

Plaintext, P — method

A
Encryption
key, K

Ciphertext

Decryption .
method —» Plaintext

Symmetric-key
generator

Decryption
key, K

Communication channels with
confidentiality and authentication

Observation

In general, we will need a secure channel to distribute the secret key to the

communicating parties.

Security
What is needed to distribute keys

Public-key distribution

. Encryption Decryption .
Plaintext, P —» = - thod method [Plaintext
A A
Ciphertext
Public Private
key, PK key, SK
Asymmetric-key
EF’i generator 4':;‘
Communication channel with Communication channel with
authentication only authentication and confidentiality
Observation

No need for a scure channel in the case of the public key, but you do need to
know that the key is authentic = have the public key be signed by a
certification authority. Note, we do need to trust that authority, or otherwise
make sure that its signature can be verified as well.

T em— -

Authentication

Essence
Verifying the claimed identity of a person, a software component, a device, and
so on.

Means of authentication

1. Based on what a client knows, such as a password or a personal
identification number.

2. Based on what a client has, such as an ID card, cell phone, or software
token.

3. Based on what a client is, i.e., static biometrics such as a fingerprint or
facial characteristics.

4. Based on what a client does, i.e., dynamic biometrics such as voice
patterns or typing patterns.

Security Authentication

Authentication versus message integrity

Observation
Authentication without integrity (and vice versa) is meaningles:

® Consider a system that supports authentication but no mechanisms to
ensure message integrity. Bob may know for sure that Alice sent m, but
how useful is that if he doesn’t know that m may have been modified?

* Consider a system that guarantees message integrity, but does not
provide authentication. Can Bob be happy with a guaranteed unmodified
message that states he just won $1,000,000?

Using a shared secret key

%

]

4

Alice
Bob

»

| {RasR——_|

]

Steps
1. Alice announces she wants to talk to Bob.
2. Bob returns a nonce.

3. Alice encrypts the nonce with the shared key Ky g, thus proving that she
owns Ky g = Bob knows he’s talking to Alice.

4. Alice sends a nonce to Bob.

5. Bob returns proof that he owns the shared secret key as well = Alice
knows she’s talking to Bob.

Authentication

About optimizations

Let’s reduce the num-
ber of messages

Alice
N
ps]
@
??:
[N
2
Bob

About optimizations

Let’s reduce the num- 1

AR,
ber of messages

“[Re-Kas R

Alice
Bob

,
We just broke the pro-
tocol

4
Rp2. Ka,5(Rg)

L] > Ka,5(Rs) _) First session

} First session

Chuck
Bob

} Second session

Authentication

Using a Key Distribution Center

o
1 <
2
o g
©
2 o 3
<< S o
2 = 2
< KA,KDC(KA.B) o) KB.KDC(KA,B) >
o
N4

Basics
Every client has a secret key shared with the KDC.

1. Alice tells the KDC that she wants to talk to Bob
2. The KDC sends a fresh secret key, shared by Alice and Bob

Authentication

Using a Key Distribution Center

drvy
AB

KDC

Bob

4—21 KakocKag) KekocKas)F—

3
A, Kg kpc(Kag)

Alice

Basics
Using a ticket is practically better:

1. Alice tells the KDC that she wants to talk to Bob
2. The KDC sends a fresh secret key, shared by Alice and Bob
3. Alice tells Bob that she wants to talk, along with the key to be used.

Security Authentication

The Needham-Schroeder protocol

4—2|KA,KDC(RA1x B, K Kp.koc(AKae) ——
3
4‘ Ka,B(Ra2), Kg kpc(A, Kap) |—>

< 4 {Ka5(Raz - 1, Rg)

*Kap(Ra - 1) > |

(@]
[a)
X

Bob

Alice

Important observation
In the case of request-response messages, you want to make sure that the
received response, is associated with the sent request. Mitigates replay

attacks.

General principle
Use nonces to relate any combination of request-response messages.

Authentication protocols

Authentication

Mitigate against reuse of keys

] A
LA] >

2=
Kg kpc(Re1)
3
Ra1: A, B, Kg kpc(Re1)
4
<—|KA koc(Ra1, B, Ka g, K kpc(AKa, BvRB1))}—

4' Ka,8(Ra2), Kgkpc(A Ka s RB1)|—>
< @l—

»
'

KA,B(Rsz -1) L

A

O
a
X

Bob

Alice

Some observations
* Note how B1 ties message #2 to #5
* Note that by returning R4> — 1 in #6, Bob proves he knows Ky g

® And, likewise, in the case of Alice in #6 (by modifying Rgo).

Security
Using public keys

Alice
Bob

Steps

1. Alice tells Bob she wants to talk, sending a nonce Ry, and encrypting the
message with Bob’s public key.

2. Bob generates a shared secret session key Ky g, proves he is the owner
of PKg by decrypting R4, and challenges Alice to prove she owns PKj.

3. Alice decrypts the response, and proves to Bob that she is Alice by then
sending Bob’s nonce back encrypted with the generated session key

KA,B-

Security
Practical example: Kerberos

] 2] >
[A] >

3
<—| Ka,as(Katas: Kas,Tes(A Kates)) I—

AS

Alice's workstation

6

—— Kas,7es(A Ka1cs). B, Ka taslt) [——>
7

—— Ka 765(B.Kag). Kg 765(B.Kag) —

TGS

Essence
1,2 Alice types in her login name.

3 The Authentication Service returns a ticket Kas 7gs(A, Ka 7gs) that she
can use with the Ticket Granting Service.

4,5 To be able to decrypt the message, Alice must type in her password. She
is then logged in. Using the AS in this way, we have a single sign-on
system.

6,7 Alice wants to talk to Bob, and requests the TGS for a session key.

Transport Layer Security

Client Server
picks x picks y
o] [| PKg: public key
PKe"= g*mod p certified by CA
PKR R, G
M PK2M= gy mod p
€ o GE) SKgf'é =g mod p
- 3
SKRlk=gymodp | O 2 @
Compute SK¢ g ms Com x
: pute SK¢ s
o - Compute SK¢'s
SKc,s(l PKs.sigcal) ’
Compute SK&'s
SK& s(data)

SKE s = flH(MqImy), SKE'E)
SK&'s = f(H(myImylmy), SKE%)

® G denotes a specific set of parameter settings, called a group (e.g.,
values for p and g).

Transport Layer Security

Client Server
picks x picks y
o] [| PKg: public key
PKe"= g*mod p certified by CA
PKRH R, G
M PK2M= gy mod p
€ o GE) SKgf'é =g mod p
S0 8
SKRlk=gymodp | O 2 @
Compute SK¢ g m3 Compute SK¢&
’ S
S Na— o
> - Compute S
SKE, ([PKs sigeal) pute SKc's
Compute SK&'s
SK{'s(data)

SKE s = flH(MqImy), SKE'E)
SK&'s = f(H(myImylmy), SKE%)

® The client uses a nonce Rg; the server uses Rg

® H(my|my) denotes the hash over the concatenation of m; and m;

Security
On trust

Definition
Trust is the assurance that one entity holds that another will perform
particular actions according to a specific expectation.

Important observation
* Expectations have been made explicit = no need to talk about trust?
e Example: Consider a Byzantine fault-tolerant process group of size n

® Specificiation: the group can tolerate that at most k < (n—1)/3
processes go rogue.
® Realisation: for example PBFT.
® Consequence: if more than k processes fail, all bets are simply off.
® Consequence: it's not about trust, it'’s all about meeting
specifications.
® Observation: if a process group often does not meet its specifications,
one may start to doubt its reliability, but this is something else than
(dis)trusting the system.

Trust in the face of Byzantine failures -

Sybil attack

Essence: Just create multiple identities, but owned by one entity

® |n the case of a peer-to-peer network:

[R SRR SR

QP nim

g

set of honest nodes
set of Sybil nodes
Attacker node

minimal fraction of Sybil nodes needed for an attack

le True:
s = A.createNode()
S.add(s)

h = random.choice (H)
s.connectTo (h)

if len(S) / len(H) > d:

A.attack()

create a Sybil node
add it to the set S

pick an arbitrary honest node
connect the new sybil node to h

enough sybil nodes for...
...an attack

Sybil attack

Essence: Just create multiple identities, but owned by one entity

® |n the case of a peer-to-peer network:

1 H = set of honest nodes

2 S = set of Sybil nodes

3 A = Attacker node

4 d = minimal fraction of Sybil nodes needed for an attack

5

6 while True:

7 s = A.createNode () # create a Sybil node

8 S.add(s) # add it to the set S

9

10 h = random.choice (H) # pick an arbitrary honest node
11 s.connectTo (h) # connect the new sybil node to h
12

13 if len(S) / len(H) > d: # enough sybil nodes for...

14 A.attack() # ...an attack

* |n the case of a Web-of-trust:

* Endorse a public key without an out-of-band check.
® Bob checks with k > 1 others that they have endorsed Alice’s key.
® Alice creates k > 1 identities each stating her key is valid.

Eclipse attack

Essence: Try to isolate a node from the network

Example: a hub attack in the case of a gossip-based service. In this case,
when exchanging links to other peers, a colluding node returns links only to
other colluders.

100000

75000 -

50000 -

25000 -

0_

Number of affected nodes

T T T T
50 100 150 200 250
Number of rounds

o -

Affected node: has links only to colluders.

General solution
Use a centralized certification authority.

Trust in distributed systems

Preventing Sybil attacks: Blockchain solutions

Essence: creating an identity comes at a cost
In the case of permissionless blockchains:

* Proof-of-Work: Let validators run a computational race. This approach
requires considerable computational resources

* Proof-of-Stake: Pick a validator as a function of the number of tokens it
owns. This approach requires risking loss of tokens.

Security
Preventing Sybil attacks: Decentralized accounting

A simple example

® Each node P maintains a list of nodes interested in doing work for P: the
choice set of P (choice(P)).

® Selecting Q € choice(P) depends on Q's work for others (i.e., its
reputation).

® P maintains a (subjective) view on reputations. Of course, P knows
precisely what it has done for others, and what others have done for P.

® P can compute a capacity (cap(Q):
cap(Q) = max{MF(Q,P) — MF(P,Q),0}

with MF(P, Q) the amount of work that P has, or could have contributed
to work done for Q, including the work done by others.

i i -

Trust in distributed systems

Preventing Sybil attacks: Decentralized accounting

Essence: Keep track of work that nodes do for each other
® Assume R directly contributed 3 units of work for Q, and R had processed
7 units for P = P may have contributed 3 units of work for Q, through R.

® Reasoning: R may never have been able to work for Q, if it had not
worked for P.

Security
Preventing Sybil attacks: Decentralized accounting

How Sybil attacks are prevented
* Let Q € choice(P) create n Sybil nodes Q3,...,Q}; Q= Q)
¢ Forwork by Q7 for Q to increase cap(Q;):

1. O]’f needs to have worked for some node R
2. R needs to have worked for P

In other words: Q can successfully attack only if it had worked for honest
nodes. Also, honest nodes have to work for Q: the total capacity Tcap(Q)
of the Sybils must grow, with

n

Tcap(Q) = Y cap(Qy)
k=0

® Assume that P works 1 unit for Qf = MF(P, Q) increases by 1 unit =
cap(Q;) drops by 1 unit, and so does Tcap(Q).

® As soon as Tcap(Q) drops to 0, P will look at other nodes.

i i -

Security
Trusting a system: Blockchains

Essence
One needs to know for sure that the information in a blockchain has not been

tampered with: data integrity assurance. Solution: make sure that no change
can go unnoticed (recall: a blockchain is an append-only data structure).

Block number Block number Block number Block number
Timestamp Timestamp Timestamp Timestamp
0x00000000 Hash predecessor Hash predecessor Hash predecessor

T % T %,

TXn X, X, X,

Hash Hash Hash Hash
Observation

Any change of block By, will affect its hash value, and thus that of By y, which
would then also need to be changed, in turn affecting the hash value of By »,

and so on.

TS ASREE -

Authorization

Access control: General model

Authorization
Making sure that authenticated entities have only access to specific resources.

Subject »| Reference » Object
monitor
Request for Authorized
operation request

Observation
The reference monitor needs to be tamperproof: it is generally implemented
under full control of the operating system, or a secure server.

Security
Protection

Data is protected against Data is protected against
wrong or invalid operations unauthorized operations
i i pata i i
Object

2 $

...against invalid operations ...against unauthorized access

Data is protected by
checking the caller

Call Operation

...against unauthorized invokers

Security
Access control policies

1. Mandatory access control: A central administration defines who gets
access to what.

2. Discretionary access control: The owner of an object can change access
rights, but also who may have access to that object.

3. Role-based access control: Users are not authorized based on their
identity, but based on the role they have within an organization.

4. Attribute-based access control: Attributes of users and of objects they
want to access are considered for deciding on a specific access rule.

Authorization

Access control matrix

Theory
Construct a matrix in which M(s, o] describes the access rights subject s has
with respect to object o. Impractical, so use access control lists or capabilities.

Client Server

Create access request r ACL Object
as subject s

(s.r)

™| if (s appears in ACL) and
(r appears in ACL[s])
grant access

Access control list

Client Server
Create access request r Object
for object 0. Pass
capability C (o, 1) =

if (client owns C) and
(rappears in C)
grant access

Capabilities

Security

Authorization

Special case: Attribute-based Access Control

Distinguish different classes of attributes:

Attribute-based access control

User attributes: name, data of birth, current roles, home address,
department, qualifiers obtained, contract status, etc. May also depend on
role (e.g., teacher or student).

Object attributes: anything — creator, last-modified time, version number,
file type, file size, but also information related to its content.

Environmental attributes: describe the current state of the system, e.g.,
date and time, current workload, maintenance status, storage properties,
available services, etc.

Connection attributes provide information on the current session, e.g., IP
address, session duration, available bandwidth and latency estimates,
type and strength of security used.

Administrative attributes: reflect global policies, e.g., minimal security
settings, general access regulations, and maximum session durations.

Sy
Example: the Policy Machine

Essence

A server maintains sets of (atrribute,value) pairs, distinguishing users,
applications, operations, and objects. At the core, we formulate access control
rules.

Access control rules

® Assignment: A user u can be assigned to an attribute va: u — ua. An
object to an attribute: 0 — o0a; an attribute to an attribute: va; — va,
(meaning that if u — vay, then u — ua,. Leads to rules like
allowed(ua, ops, 0a): users assigned to ua are allowed to execute
operations in ops on objects assigned to oa.

® Prohibition: explicitly state what is not allowed, such as
denied(u, ops, 0s). Also: denied(u, ops,—0s), meaning denial when u
wants to perform o assigned to ops on an object not in os.

¢ Obligation: automated action upon an event, such as denying copying of
information:

when u reads f € fs then denied(u, {write},—fs).

Attribute-based access control -

Authorization

Delegation

What'’s the issue?

Alice makes use of an e-mail service provider who stores her mailbox. She is
required to log in to the provider to access her mail. Alice wants to use her own
local mail client. How to allow that mail client to act on behalf of Alice? How to
delegate Alice’s access rights to her mail client?

Observation

It is not a good idea to hand over all user credentials to an application: why
would the application or the machine be trusted? = use a security proxy.

Security
Security proxy

Certificate
/—/%
[R | Pkioy [sig(A, R, PKprowy)]| SKoroxy |

access rights public part of secret signature private part of secret

R, PKproxy]Ar KA,B(SKproxy)

R, PKproxy]A

Bob

How it works

1. Alice passes some rights R to Bob, together with a secret key SKproxy
2. When Bob wants to exercise his rights, he passes the certificate

3. The server wants Bob to prove he knows the secret key

4. Bob proves he does, and thus that Alice had delegated R.

Delegation -

Security
Example: Open Authorization (OAuth)

Four different roles

® Resource owner: typically an end user.

¢ Client: an application that one would like to act on behalf of the resource
owner,

* Resource server: An interface through which a person would normally
access the resource.

® Authorization server: an entity handing out certificates to a client on
behalf of a resource owner.

Initial steps

1. The client application registers itself at the authorization server and
receives its own identifier, cid.

2. Alice wants to delegate a list R of rights =
Client: send [cid, R,H(S)]

with a hash of a temporary secret S

Delegation -

Security
Completing the process

Final steps

3. Alice is required to log in and confirm delegation R to the client.
4. Server sends a temporary authorization code AC to client.

5. Client requests a final access token:
Client: sends [cid, AC, S].

Sending S to the authorization server allows the latter to verify the identity
of the client (by computing H(S).

The authorization server has now (1) verified that Alice wants to delegate
access rights to the client, and (2) has verified the identity of the client = it
returns an access token to the client.

Delegation -

Security
Example: decentralized authorization

WAVE (and keeping it very simple)

Essence: Alice delegates rights to Bob, Bob delegates some of those rights to
Chuck.

* When Check wants to exercise his rights, there should be no need for
Alice or Bob to be online.

* No one but Alice, Bob, and Chuck need to be aware of the delegation.

Essentials
Alice delegates rights R to Bob, for which he creates a keypair (PKF,SKE):

Asends: PKE([RISK§]))
~—
my

Bob delegates parts of those rights R’ to Chuck, assuming he is allowed to do
S0:

B sends: PKE ([R'|m4|SKE])
—_————
mz

Decentralized authorization: an example -

Security . Monitoring_
Firewalls

Essence
Simply prevent anything nasty coming in, but also preventing unwanted

outbound traffic.

Packet Application ~ Packet
filtering gateway filtering
router router

T
Connections \:~ —/ Connections

tointernal —] [tooutside

i
networks /i/_ | | | I _\i\ networks

1
i Inside LAN Outside LAN

Firewall

Different types of firewalls
® Packet-filtering gateway: operates as a router and makes filters packets
based on source and destination address.
* Application-level gateway: inspects the content of an incoming or
outgoing message (e.g., gateways filtering spam e-mail).
* Proxy gateway: works as a front end to an application, filtering like an
application-level gateway (e.g., Web proxies).

Firewalls -

Intrusion detection systems

Two flavors

® Signature-based: matches against patterns of known network-level
intrusions. Problematic when series of packets need to be matched, or
when new attacks take place.

* Anomaly-based: assumes that we can model or extract typical behavior
to subsequently detect nontypical, or anomalous behavior. Relies heavily
on modern artificial-intelligence technologies.

sty T

Intrusion detection systems

Two flavors
® Signature-based: matches against patterns of known network-level
intrusions. Problematic when series of packets need to be matched, or
when new attacks take place.
* Anomaly-based: assumes that we can model or extract typical behavior
to subsequently detect nontypical, or anomalous behavior. Relies heavily
on modern artificial-intelligence technologies.

Using sensors
Key idea is to manage false and true positives (FP/TP) as well as false and
true negatives (FN/TN). Maximize accuracy and precision:

TP+ TN

Accuracy: TP+ TN+ FP+ FN
Precision: i
: TP+ FP

Intrusion detection: basics -

	Security
	Introduction to security
	Security threats, policies, and mechanisms
	Design issues

	Cryptography
	Basics
	Symmetric and asymmetric cryptosystems
	Hash functions
	Key management

	Authentication
	Introduction to authentication
	Authentication protocols

	Trust in distributed systems
	Trust in the face of Byzantine failures
	Trusting an identity
	Trusting a system

	Authorization
	General issues in access control
	Attribute-based access control
	Delegation
	Decentralized authorization: an example

	Monitoring
	Firewalls
	Intrusion detection: basics

