
The Channel package

Throughout the book, we make use of a communication package to illustrate
communication in distributed systems. The package provides a simple imple-
mentation of a bidirectional channel for passing messages between processes.
In order for a process P1 to send a message to another process P2, both P1

and P2 will have to join the same channel. If multiple processes P1, . . . ,Pn

have joined the same channel c, any process Pi can send a message to one
other specific process Pj, or to every other process that has joined c (including
itself). The package is written in Python.

The channel interface

The package provides a single class Channel, offering the following operations.
Examples used below should clarify most of these operations.

join(subgroup) This operation is called to join a channel. The subgroup is
a string indicating a possible subgroup of processes that the joining
process belongs to. Typical examples of such sugbroups are “client,”
“server,” “primary,” and “backup.” The operation returns a unique
process identifier pid that can be used for communicating with the
joined process.

bind(pid) Internally, each channel-level process is implemented as a separate
operating-system-level process. This operation binds the channel-level
process identifier to the process identifier as assigned by the operating
system. As a consequence, when sending or receiving a message, the
caller can be identified automatically.

subgroup(subgroup) Returns a list of process identifiers that have joined the
channel in the subgroup named “subgroup.”

sendTo(destinationSet, message) Called by a process to send the application-
level message message to a set of destination processes, identified as a

1



2

list of process identifiers destinationSet. It is a nonblocking operation.
Conceptually, message is copied to the list of input messages, with one
list associated with each process. The message is prepended with the
caller’s identifier.

The calling process as well as each destination process is verified to have
previously joined the channel.

sendToAll(message) To be called when the calling process wants the application-
level message message to be sent to every process that has joined the
channel (including itself). The message is prepended with the caller’s
identifier. The calling process is verified to have previously joined the
channel.

recvFromAny(timeout=0) This operation returns to the calling process, the
least recently message that was sent to it, prepended with the sender’s
identifier. That message is removed from the caller’s input queue. If
the input queue is empty, the caller is blocked until a message is sent,
or until the specified timeout value (in seconds) has expired (a value
of 0 means no timeout). Because each message is prepended with the
sender’s identifier, the calling process can always find out who sent the
message. The calling process is verified to have previously joined the
channel.

recvFrom(senderSet, timeout=0) This operation returns to the calling pro-
cess, the least recently message that was sent to it by any process in
senderSet. That message is removed from the caller’s input queue.
If there was no message from any process in senderSet, the caller is
blocked until such a message is sent, or (only if timeout > 0) timeout
seconds have expired. The calling process as well as the referenced
senders are verified to have previously joined the channel.

Channels are implemented using the Redis package, which provides a
server maintaining a (key,value) data store. By default, this data store is
maintained on the local host, listening to default port 6379.

Some simple examples

To illustrate the usage of the package, consider the following simple exam-
ples. We confine ourselves to implementations running on a single machine,
communicating with a single redis server listening to its default port.

A multiple client, single server system

We construct a simple client-server system by defining two classes, shown
in Figure 0.1. The Server class initializes itself by joining a default channel



3

channel.Channel(), and subsequently joining the subgroup server. Once
running, the only the server does is listen for incoming messages, and sub-
sequently responding to the sender, acknowledging it received the message.
Note that the sender is identified by msg[0], and that a single-element list
[str(msg[0])] is used for sending a response.

1 import channel
2

3 class Server:
4 def __init__(self):
5 self.ci=channel.Channel()
6 self.server=self.ci.join(’server’)
7

8 def run(self):
9 while True:

10 msg = self.ci.recvAny(self.server)
11 self.ci.sendTo(self.server, [str(msg[0])], ’Received ’+msg[1])
12

13 class Client:
14 def __init__(self):
15 self.ci=channel.Channel()
16 self.client=self.ci.join(’client’)
17 self.server=self.ci.subgroup(’server’)
18

19 def run(self):
20 self.ci.sendTo(self.client,self.server,’Hello from ’+self.client)
21 print self.ci.recvFrom(self.client,self.server[0])

Figure 0.1: Classes for client-server communication using channels.

The client is very similar. It joins the default channel, and, in particular, the
subgroup client. In order to see who the server is, it asks for the processes
from the server subgroup. Its lifecycle is simple: once run, it sends a “hello”
message to the list of servers (in our example containing only a single process),
to subsequently block until it receives a response.

To initiate a collection of 10 clients and a single server, the script shown in
Figure 0.2 can be used. We assume that the client-server classes are contained
in a file clientserver.py, whereas the channel package is available as a file
channel.py.

We start with creating a channel chan, and by flushing its content we
are sure that there are no entries left in the associated redis database from
previous runs. A single server object and a total of 10 client objects are
subsequently created. The actual server process is created through Python’s
fork operation and subsequently calling the server’s run operation, effectively
putting it into an infinite loop. Likewise, we then create the client processes
by forking 10 more processes and subsequently calling run for each of them.



4

1 #!/usr/bin/env python
2 import os
3 import channel
4 import clientserver
5

6 chan = channel.Channel()
7 chan.channel.flushall()
8

9 server = clientserver.Server()
10 client = [clientserver.Client() for i in range(10)]
11

12 pid = os.fork()
13 if pid == 0:
14 server.run()
15 os._exit(0)
16

17 for i in range(10):
18 pid = os.fork()
19 if pid == 0:
20 client[i].run()
21 os._exit(0)

Figure 0.2: A script for starting a server and 10 clients as defined in Figure 0.1.


