
DISTRIBUTED SYSTEMS
PRINCIPLES AND PARADIGMS

SECOND EDITION

PROBLEM SOLUTIONS

ANDREW S. TANENBAUM

MAARTEN VAN STEEN

Vrije Universiteit
Amsterdam, The Netherlands

PRENTICE HALL

UPPER SADDLE RIVER, NJ 07458

SOLUTIONS TO CHAPTER 1 PROBLEMS

1. Q: An alternative definition for a distributed system is that of a collection of
independent computers providing the view of being a single system, that is, it
is completely hidden from users that there even multiple computers. Give an
example where this view would come in very handy.
A: What immediately comes to mind is parallel computing. If one could
design programs that run without any serious modifications on distributed sys-
tems that appear to be the same as nondistributed systems, life would be so
much easier. Achieving a single-system view is by now considered virtually
impossible when performance is in play.

2. Q: What is the role of middleware in a distributed system?
A: To enhance the distribution transparency that is missing in network operat-
ing systems. In other words, middleware aims at improving the single-system
view that a distributed system should have.

3. Q: Many networked systems are organized in terms of a back office and a
front office. How does organizations match with the coherent view we demand
for a distributed system?
A: A mistake easily made is to assume that a distributed system as operating
in an organization, should be spread across the entire organization. In practice,
we see distributed systems being installed along the way that an organization
is split up. In this sense, we could have a distributed system supporting back-
office procedures and processes, as well as a separate front-office system. Of
course, the two may be coupled, but there is no reason for letting this coupling
be fully transparent.

4. Q: Explain what is meant by (distribution) transparency, and give examples of
different types of transparency.
A: Distribution transparency is the phenomenon by which distribution aspects
in a system are hidden from users and applications. Examples include access
transparency, location transparency, migration transparency, relocation trans-
parency, replication transparency, concurrency transparency, failure trans-
parency, and persistence transparency.

5. Q: Why is it sometimes so hard to hide the occurrence and recovery from fail-
ures in a distributed system?
A: It is generally impossible to detect whether a server is actually down, or
that it is simply slow in responding. Consequently, a system may have to
report that a service is not available, although, in fact, the server is just slow.

2 PROBLEM SOLUTIONS FOR CHAPTER 1

6. Q: Why is it not always a good idea to aim at implementing the highest degree
of transparency possible?
A: Aiming at the highest degree of transparency may lead to a considerable
loss of performance that users are not willing to accept.

7. Q: What is an open distributed system and what benefits does openness pro-
vide?
A: An open distributed system offers services according to clearly defined
rules. An open system is capable of easily interoperating with other open sys-
tems but also allows applications to be easily ported between different imple-
mentations of the same system.

8. Q: Describe precisely what is meant by a scalable system.
A: A system is scalable with respect to either its number of components, geo-
graphical size, or number and size of administrative domains, if it can grow in
one or more of these dimensions without an unacceptable loss of performance.

9. Q: Scalability can be achieved by applying different techniques. What are
these techniques?
A: Scaling can be achieved through distribution, replication, and caching.

10. Q: Explain what is meant by a virtual organization and give a hint on how
such organizations could be implemented.
A: A virtual organization (VO) defines a group of users/applications that have
access to a specified group of resources, which may be distributed across many
different computers, owned by many different organizations. In effect, a VO
defines who has access to what. This also suggests that the resources should
keep an account of foreign users along with their access rights. This can often
be done using standard access control mechanisms (like the rwx bits in UNIX),
although foreign users may need to have a special account. The latter compli-
cates matters considerably.

11. Q: When a transaction is aborted, we have said that the world is restored to its
previous state, as though the transaction had never happened. We lied. Give an
example where resetting the world is impossible.
A: Any situation in which physical I/O has occurred cannot be reset. For
example, if the process has printed some output, the ink cannot be removed
from the paper. Also, in a system that controls any kind of industrial process, it
is usually impossible to undo work that has been done.

12. Q: Executing nested transactions requires some form of coordination. Explain
what a coordinator should actually do.
A: A coordinator need simply ensure that if one of the nested transactions
aborts, that all other subtransactions abort as well. Likewise, it should

PROBLEM SOLUTIONS FOR CHAPTER 1 3

coordinate that all of them commit when each of them can. To this end, a
nested transaction should wait to commit until it is told to do so by the coordi-
nator.

13. Q: We argued that distribution transparancy may not be in place for pervasice
systems. This statement is not true for all types of transparencies. Give an
example.
A: Think of migration transparency. In mnay pervasive systems, components
are mobile and will need to re-establish connections when moving from one
access point to another. Preferably, such handovers should be completely
transparent to the user. Likewise, it can be argued that many other types of
transparencies should be supported as well. However, what should not be hid-
den is a user is possibly accessing resources that are directly coupled to the
user’s current environment.

14. Q: We already gav e some examples of distributed pervasive systems: home
systems, electronic health-care systems, and sensor networks. Extend this list
with more examples.
A: There are quite a few other examples of pervasive systems. Think of large-
scale wireless mesh networks in cities or neighborhoods that provide services
such as Internet access, but also form the basis for other services like a news
system. There are systems for habitat monitoring (as in wildlife resorts), elec-
tronic jails by which offenders are continuously monitored, large-scale inte-
grated sports systems, office systems deploying active badges to know about
the whereabouts of their employees, and so on.

15. Q: Sketch a design for a home system consisting of a separate media server
that will allow for the attachment of a wireless client. The latter is connected
to (analog) audio/video equipment and transforms the digital media streams to
analog output. The server runs on a separate machine, possibly connected to
the Internet, but has no keyboard and/or monitor connected.

SOLUTIONS TO CHAPTER 2 PROBLEMS

1. Q: If a client and a server are placed far apart, we may see network latency
dominating overall performance. How can we tackle this problem?
A: It really depends on how the client is organized. It may be possible to
divide the client-side code into smaller parts that can run separately. In that
case, when one part is waiting for the server to respond, we can schedule
another part. Alternatively, we may be able to rearrange the client so that it can
do other work after having sent a request to the server. This last solution effec-
tively replaces the synchronous client-server communication with asyn-
chronous one-way communication.

4 PROBLEM SOLUTIONS FOR CHAPTER 2

2. Q: What is a three-tiered client-server architecture?
A: A three-tiered client-server architecture consists of three logical layers,
where each layer is, in principle, implemented at a separate machine. The
highest layer consists of a client user interface, the middle layer contains the
actual application, and the lowest layer implements the data that are being
used.

3. Q: What is the difference between a vertical distribution and a horizontal dis-
tribution?
A: Vertical distribution refers to the distribution of the different layers in a
multitiered architectures across multiple machines. In principle, each layer is
implemented on a different machine. Horizontal distribution deals with the
distribution of a single layer across multiple machines, such as distributing a
single database.

4. Q: Consider a chain of processes P1, P2, ..., Pn implementing a multitiered
client-server architecture. Process Pi is client of process Pi+1, and Pi will
return a reply to Pi−1 only after receiving a reply from Pi+1. What are the main
problems with this organization when taking a look at the request-reply perfor-
mance at process P1?
A: Performance can be expected to be bad for large n. The problem is that
each communication between two successive layers is, in principle, between
two different machines. Consequently, the performance between P1 and P2
may also be determined by n − 2 request-reply interactions between the other
layers. Another problem is that if one machine in the chain performs badly or
is even temporarily unreachable, then this will immediately degrade the perfor-
mance at the highest level.

5. Q: In a structured overlay network, messages are routed according to the
topology of the overlay. What is an important disadvantage of this approach?
A: The problem is that we are dealing only with logical paths. It may very
well be the case that two nodes A and B which are neighbors in the overlay
network are physically placed far apart. As a consequence, the logically short
path between A and B may require routing a message along a very long path
in the underlying physical network.

6. Q: Consider the CAN network from Fig. 2-0. How would you route a message
from the node with coordinates (0.2,0.3) to the one with coordinates (0.9,0.6)?
A: There are several possibilities, but if we want to follow the shortest path
according to a Euclidean distance, we should follow the route (0.2,0.3) →
(0.6,0.7) → (0.9,0.6), which has a distance of 0.882. The alternative route
(0.2,0.3) → (0.7,0.2) → (0.9,0.6) has a distance of 0.957.

PROBLEM SOLUTIONS FOR CHAPTER 2 5

7. Q: Considering that a node in CAN knows the coordinates of its immediate
neighbors, a reasonable routing policy would be to forward a message to the
closest node toward the destination. How good is this policy?
A: In our example from the previous question, it can already be seen that it
need not lead to the best route. If node (0.2,0.3) follows this policy for the
message destined for node (0.9,0.6), it would send it off to node (0.7,0.2).

8. Q: Consider an unstructured overlay network in which each node randomly
chooses c neighbors. If P and Q are both neighbors of R, what is the probabil-
ity that they are also neighbors of each other?
A: Consider a network of N nodes. If each node chooses c neighbors at ran-
dom, then the probability that P will choose Q, or Q chooses P is roughly
2c / (N −1).

9. Q: Consider again an unstructured overlay network in which every node ran-
domly chooses c neighbors. To search for a file, a node floods a request to its
neighbors and requests those to flood the request once more. How many nodes
will be reached?
A: An easy upper bound can be computed as c × (c −1), but in that case we
ignore the fact that neighbors of node P can be each other’s neighbor as well.
The probability q that a neighbor of P will flood a message only to nonneigh-
bors of P is 1 minus the probability of sending it to at least one neighbor of P:

q = 1 −
c−1

k=1
Σ

c −1

k

c
N −1

k

1 −

c
N −1

c−1−k

In that case, this flooding strategy will reach c × q (c −1) nodes. For example,
with c = 20 and N = 10, 000, a query will be flooded to 365.817 nodes.

10. Q: Not every node in a peer-to-peer network should become superpeer. What
are reasonable requirements that a superpeer should meet?
A: In the first place, the node should be highly available, as many other nodes
rely on it. Also, it should have enough capacity to process requests. Most
important perhaps is that fact that it can be trusted to do its job well.

11. Q: Consider a BitTorrent system in which each node has an outgoing link with
a bandwidth capacity Bout and an incoming link with bandwidth capacity Bin.
Some of these nodes (called seeds) voluntarily offer files to be downloaded by
others. What is the maximum download capacity of a BitTorrent client if we
assume that it can contact at most one seed at a time?
A: We need to take into account that the outgoing capacity of seeding nodes
needs to be shared between clients. Let us assume that there are S seeders and
N clients, and that each client randomly picks one of the seeders. The joint
outgoing capacity of the seeders is S × Bout , giving each of the clients
S × Bout / N immediate download capacity. In addition, if clients help each

6 PROBLEM SOLUTIONS FOR CHAPTER 2

other, each one of them will be able to download chunks at a rate of Bout ,
assuming that Bin > Bout . Note that because of the tit-for-tat policy, the down-
load capacity of a BitTorrent client is mainly dictated by its outgoing capacity.
In conclusion, the total download capacity will be S × Bout / N + Bout .

12. Q: Give a compelling (technical) argument why the tit-for-tat policy as used in
BitTorrent is far from optimal for file sharing in the Internet.
A: The reasoning is relatively simple. Most BitTorrent clients are operated
behind asymmetric links such as provided by ADSL or cable modems. In gen-
eral, clients are offered a high incoming bandwidth capacity, but no one really
expects that clients have services to offer. BitTorrent does not make this
assumption, and turns clients into collaborative servers. Having symmetric
connections is then a much better match for the tit-for-tat policy.

13. Q: We gav e two examples of using interceptors in adaptive middleware. What
other examples come to mind?
A: There are several. For example, we could use an interceptor to support
mobility. In that case, a request-level interceptor would first look up the cur-
rent location of a referenced object before the call is forwarded. Likewise, an
interceptor can be used to transparently encrypt messages when security is at
stake. Another example is when logging is needed. Instead of letting this be
handled by the application, we could simply insert a method-specific intercep-
tor that would record specific events before passing a call to the referenced
object. More of such example will easily come to mind.

14. Q: To what extent are interceptors dependent on the middleware where they
are deployed?
A: In general, interceptors will be highly middleware-dependent. If we con-
sider Fig. 2-0, it is easy to see why: the client stub will most likely be tightly
bound to the lower level interfaces offered by the middleware, just as message-
level interceptors will be highly dependent on the interaction between middle-
ware and the local operating system. Nevertheless, it is possible to standardize
these interfaces, opening the road to developing portable interceptors, albeit
often for a specific class of middleware. This last approach has been followed
for CORBA.

15. Q: Modern cars are stuffed with electronic devices. Give some examples of
feed-back control systems in cars.
A: One obvious one is cruise control. On the one hand this subsystem mea-
sures current speed, and when it changes from the required setting, the car is
slowed down or speeded up. The anti-lock braking systems (ABS) is another
example. By pulsating the brakes of a car, while at the same time regulating
the pressure that each wheel is exerting, it is possible to continue steering
without losing control because the wheels are blocked. A last example is

PROBLEM SOLUTIONS FOR CHAPTER 2 7

formed by the closed circuit of sensors that monitor engine condition. As soon
as a dangerous state is reached, a car may come to an automatic halt to prevent
the worst.

16. Q: Give an example of a self-managing system in which the analysis compo-
nent is completely distributed or even hidden.
A: We already came across this type of system: in unstructured peer-to-peer
systems where nodes exchange membership information, we saw how a topol-
ogy could be generated. The analysis component consists of dropping certain
links that will not help converge to the intended topology. Similar examples
can be found in other such systems as we referred to as well.

17. Q: Sketch a solution to automatically determine the best trace length for pre-
dicting replication policies in Globule.
A: An origin server would need to use the traces from Ti to Ti+1 to check its
prediction of policy for that period. It can simply see whether the policy that
would have been chosen on the actual access patterns is the same as the one
chosen based on the requests in the period Ti−1 to Ti . This would allow the
server to compute the prediction error. By varying the trace length, the origin
server would be able find the length for which the prediction is minimal. In
this way, we get an automatic determination of the optimal trace length, effec-
tively contributing to the self-managing nature of Globule.

18. Q: Using existing software, design and implement a BitTorrent-based system
for distributing files to many clients from a single, powerful server. Matters are
simplified by using a standard Web server that can operate as tracker.

SOLUTIONS TO CHAPTER 3 PROBLEMS

1. Q: In this problem you are to compare reading a file using a single-threaded
file server and a multithreaded server. It takes 15 msec to get a request for
work, dispatch it, and do the rest of the necessary processing, assuming that
the data needed are in a cache in main memory. If a disk operation is needed,
as is the case one-third of the time, an additional 75 msec is required, during
which time the thread sleeps. How many requests/sec can the server handle if
it is single threaded? If it is multithreaded?
A: In the single-threaded case, the cache hits take 15 msec and cache misses
take 90 msec. The weighted average is 2/3 × 15 + 1/3 × 90. Thus the mean
request takes 40 msec and the server can do 25 per second. For a multi-
threaded server, all the waiting for the disk is overlapped, so every request
takes 15 msec, and the server can handle 66 2/3 requests per second.

8 PROBLEM SOLUTIONS FOR CHAPTER 3

2. Q: Would it make sense to limit the number of threads in a server process?
A: Yes, for two reasons. First, threads require memory for setting up their own
private stack. Consequently, having many threads may consume too much
memory for the server to work properly. Another, more serious reason, is that,
to an operating system, independent threads tend to operate in a chaotic man-
ner. In a virtual memory system it may be difficult to build a relatively stable
working set, resulting in many page faults and thus I/O. Having many threads
may thus lead to a performance degradation resulting from page thrashing.
Even in those cases where everything fits into memory, we may easily see that
memory is accessed following a chaotic pattern rendering caches useless.
Again, performance may degrade in comparison to the single-threaded case.

3. Q: In the text, we described a multithreaded file server, showing why it is bet-
ter than a single-threaded server and a finite-state machine server. Are there
any circumstances in which a single-threaded server might be better? Give an
example.
A: Yes. If the server is entirely CPU bound, there is no need to have multiple
threads. It may just add unnecessary complexity. As an example, consider a
telephone directory assistance number for an area with 1 million people. If
each (name, telephone number) record is, say, 64 characters, the entire
database takes 64 megabytes, and can easily be kept in the server’s memory to
provide fast lookup.

4. Q: Statically associating only a single thread with a lightweight process is not
such a good idea. Why not?
A: Such an association effectively reduces to having only kernel-level threads,
implying that much of the performance gain of having threads in the first
place, is lost.

5. Q: Having only a single lightweight process per process is also not such a
good idea. Why not?
A: In this scheme, we effectively have only user-level threads, meaning that
any blocking system call will block the entire process.

6. Q: Describe a simple scheme in which there are as many lightweight pro-
cesses as there are runnable threads.
A: Start with only a single LWP and let it select a runnable thread. When a
runnable thread has been found, the LWP creates another LWP to look for a
next thread to execute. If no runnable thread is found, the LWP destroys itself.

7. Q: X designates a user’s terminal as hosting the server, while the application is
referred to as the client. Does this make sense?
A: Yes, although it may seem a bit confusing. The whole idea is that the server
controls the hardware and the application can send requests to manipulate that

PROBLEM SOLUTIONS FOR CHAPTER 3 9

hardware. From this perspective the X Window server should indeed reside on
the user’s machine, having the application acting as its client.

8. Q: The X protocol suffers from scalability problems. How can these problems
be tackled?
A: There are essentially two scalability problems. First, numerical scalability
is problematic in the sense that too much bandwidth is needed. By using com-
pression techniques, bandwidth can be considerably reduced. Second, there is
a geographical scalability problem as an application and the display generally
need to synchronize too much. By using cachinng techniques by which effec-
tively state of the display is maintained at the application side, much synchro-
nization traffic can be avoided as the application can inspect the local cache to
fins out what the state of the display is.

9. Q: Proxies can support replication transparency by inv oking each replica, as
explained in the text. Can (the server side of) an application be subject to a
replicated calls?
A: Yes: consider a replicated object A invoking another (nonreplicated) object
B. If A consists of k replicas, an invocation of B will be done by each replica.
However, B should normally be invoked only once. Special measures are
needed to handle such replicated invocations.

10. Q: Constructing a concurrent server by spawning a process has some advan-
tages and disadvantages compared to multithreaded servers. Mention a few.
A: An important advantage is that separate processes are protected against
each other, which may prove to be necessary as in the case of a superserver
handling completely independent services. On the other hand, process spawn-
ing is a relatively costly operation that can be saved when using multithreaded
servers. Also, if processes do need to communicate, then using threads is much
cheaper as in many cases we can avoid having the kernel implement the com-
munication.

11. Q: Sketch the design of a multithreaded server that supports multiple protocols
using sockets as its transport-level interface to the underlying operating sys-
tem.
A: A relatively simple design is to have a single thread T waiting for incoming
transport messages (TPDUs). If we assume the header of each TPDU contains
a number identifying the higher-level protocol, the tread can take the payload
and pass it to the module for that protocol. Each such module has a separate
thread waiting for this payload, which it treats as an incoming request. After
handling the request, a response message is passed to T , which, in turn, wraps
it in a transport-level message and sends it to tthe proper destination.

10 PROBLEM SOLUTIONS FOR CHAPTER 3

12. Q: How can we prevent an application from circumventing a window man-
ager, and thus being able to completely mess up a screen?
A: Use a microkernel approach by which the windowing system including the
window manager are run in such a way that all window operations are required
to go through the kernel. In effect, this is the essence of transferring the client-
server model to a single computer.

13. Q: Is a server that maintains a TCP/IP connection to a client stateful or state-
less?
A: Assuming the server maintains no other information on that client, one
could justifiably argue that the server is stateless. The issue is that not the
server, but the transport layer at the server maintains state on the client. What
the local operating systems keep track of is, in principle, of no concern to the
server.

14. Q: Imagine a Web server that maintains a table in which client IP addresses
are mapped to the most recently accessed Web pages. When a client connects
to the server, the server looks up the client in its table, and if found, returns the
registered page. Is this server stateful or stateless?
A: It can be strongly argued that this is a stateless server. The important issue
with stateless designs is not if any information is maintained by the server on
its clients, but instead whether that information is needed for correctness. In
this example, if the table is lost for what ever reason, the client and server can
still properly interact as if nothing happened. In a stateful design, such an
interaction would be possible only after the server had recovered from a possi-
ble fault.

15. Q: Strong mobility in UNIX systems could be supported by allowing a process
to fork a child on a remote machine. Explain how this would work.
A: Forking in UNIX means that a complete image of the parent is copied to the
child, meaning that the child continues just after the call to fork. A similar
approach could be used for remote cloning, provided the target platform is
exactly the same as where the parent is executing. The first step is to have the
target operating system reserve resources and create the appropriate process
and memory map for the new child process. After this is done, the parent’s
image (in memory) can be copied, and the child can be activated. (It should be
clear that we are ignoring several important details here.)

16. Q: In Fig. 3-0 it is suggested that strong mobility cannot be combined with
executing migrated code in a target process. Give a counterexample.
A: If strong mobility takes place through thread migration, it should be possi-
ble to have a migrated thread be executed in the context of the target process.

PROBLEM SOLUTIONS FOR CHAPTER 3 11

17. Q: Consider a process P that requires access to file F which is locally avail-
able on the machine where P is currently running. When P moves to another
machine, it still requires access to F . If the file-to-machine binding is fixed,
how could the systemwide reference to F be implemented?
A: The simplest solution is to create a separate process Q that handles remote
requests for F . Process P is offered the same interface to F as before, for
example in the form of a proxy. Effectively, process Q operates as a file server.

18. Q: Describe in detail how TCP packets flow in the case of TCP handoff, along
with the information on source and destination addresses in the various head-
ers.
A: There are various ways of doing this, but a simple one is to let a front end
to execute a three-way handshake and from there on forward packets to a
selected server. That server sends TCP PDUs in which the source address cor-
responds to that of the front end. An alternative is to forward the first packet to
a server. Note, however, that in this case the front end will continue to stay in
the loop. The advantage of this scheme is that the selected server builds up the
required TCP state (such as the sequence numbers to be used) instead of
obtaining this information from the front end as in the first scenario.

SOLUTIONS TO CHAPTER 4 PROBLEMS

1. Q: In many layered protocols, each layer has its own header. Surely it would
be more efficient to have a single header at the front of each message with all
the control in it than all these separate headers. Why is this not done?
A: Each layer must be independent of the other ones. The data passed from
layer k + 1 down to layer k contains both header and data, but layer k cannot
tell which is which. Having a single big header that all the layers could read
and write would destroy this transparency and make changes in the protocol of
one layer visible to other layers. This is undesirable.

2. Q: Why are transport-level communication services often inappropriate for
building distributed applications?
A: They hardly offer distribution transparency meaning that application devel-
opers are required to pay significant attention to implementing communica-
tion, often leading to proprietary solutions. The effect is that distributed appli-
cations, for example, built directly on top of sockets are difficult to port and to
interoperate with other applications.

3. Q: A reliable multicast service allows a sender to reliably pass messages to a
collection of receivers. Does such a service belong to a middleware layer, or
should it be part of a lower-level layer?
A: In principle, a reliable multicast service could easily be part of the transport

12 PROBLEM SOLUTIONS FOR CHAPTER 4

layer, or even the network layer. As an example, the unreliable IP multicasting
service is implemented in the network layer. Howev er, because such services
are currently not readily available, they are generally implemented using trans-
port-level services, which automatically places them in the middleware. How-
ev er, when taking scalability into account, it turns out that reliability can be
guaranteed only if application requirements are considered. This is a strong
argument for implementing such services at higher, less general layers.

4. Q: Consider a procedure incr with two integer parameters. The procedure adds
one to each parameter. Now suppose that it is called with the same variable
twice, for example, as incr(i, i). If i is initially 0, what value will it have after-
ward if call-by-reference is used? How about if copy/restore is used?
A: If call by reference is used, a pointer to i is passed to incr. It will be incre-
mented two times, so the final result will be two. However, with copy/restore, i
will be passed by value twice, each value initially 0. Both will be incremented,
so both will now be 1. Now both will be copied back, with the second copy
overwriting the first one. The final value will be 1, not 2.

5. Q: C has a construction called a union, in which a field of a record (called a
struct in C) can hold any one of several alternatives. At run time, there is no
sure-fire way to tell which one is in there. Does this feature of C have any
implications for remote procedure call? Explain your answer.
A: If the runtime system cannot tell what type value is in the field, it cannot
marshal it correctly. Thus unions cannot be tolerated in an RPC system unless
there is a tag field that unambiguously tells what the variant field holds. The
tag field must not be under user control.

6. Q: One way to handle parameter conversion in RPC systems is to have each
machine send parameters in its native representation, with the other one doing
the translation, if need be. The native system could be indicated by a code in
the first byte. However, since locating the first byte in the first word is pre-
cisely the problem, can this actually work?
A: First of all, when one computer sends byte 0, it always arrives in byte 0.
Thus the destination computer can simply access byte 0 (using a byte instruc-
tion) and the code will be in it. It does not matter whether this is the low-order
byte or the high-order byte. An alternative scheme is to put the code in all the
bytes of the first word. Then no matter which byte is examined, the code will
be there.

7. Q: Assume a client calls an asynchronous RPC to a server, and subsequently
waits until the server returns a result using another asynchronous RPC. Is this
approach the same as letting the client execute a normal RPC? What if we
replace the asynchronous RPCs with asynchronous RPCs?
A: No, this is not the same. An asynchronous RPC returns an acknowledgment

PROBLEM SOLUTIONS FOR CHAPTER 4 13

to the caller, meaning that after the first call by the client, an additional mes-
sage is sent across the network. Likewise, the server is acknowledged that its
response has been delivered to the client. Two asynchronous RPCs may be the
same, provided reliable communication is guaranteed. This is generally not the
case.

8. Q: Instead of letting a server register itself with a daemon as in DCE, we could
also choose to always assign it the same endpoint. That endpoint can then be
used in references to objects in the server’s address space. What is the main
drawback of this scheme?
A: The main drawback is that it becomes much harder to dynamically allocate
objects to servers. In addition, many endpoints need to be fixed, instead of just
one (i.e., the one for the daemon). For machines possibly having a large num-
ber of servers, static assignment of endpoints is not a good idea.

9. Q: Would it be useful to also make a distinction between static and dynamic
RPCs?
A: Yes, for the same reason it is useful with remote object invocations: it sim-
ply introduces more flexibility. The drawback, however, is that much of the
distribution transparency is lost for which RPCs were introduced in the first
place.

10. Q: Describe how connectionless communication between a client and a server
proceeds when using sockets.
A: Both the client and the server create a socket, but only the server binds the
socket to a local endpoint. The server can then subsequently do a blocking
read call in which it waits for incoming data from any client. Likewise, after
creating the socket, the client simply does a blocking call to write data to the
server. There is no need to close a connection.

11. Q: Explain the difference between the primitives mpi bsend and mpi isend in
MPI.
A: The primitive mpi bsend uses buffered communication by which the caller
passes an entire buffer containing the messages to be sent, to the local MPI
runtime system. When the call completes, the messages have either been trans-
ferred, or copied to a local buffer. In contrast, with mpi isend, the caller passes
only a pointer to the message to the local MPI runtime system after which it
immediately continues. The caller is responsible for not overwriting the mes-
sage that is pointed to until it has been copied or transferred.

12. Q: Suppose that you could make use of only transient asynchronous communi-
cation primitives, including only an asynchronous receive primitive. How
would you implement primitives for transient synchronous communication?
A: Consider a synchronous send primitive. A simple implementation is to send
a message to the server using asynchronous communication, and subsequently

14 PROBLEM SOLUTIONS FOR CHAPTER 4

let the caller continuously poll for an incoming acknowledgment or response
from the server. If we assume that the local operating system stores incoming
messages into a local buffer, then an alternative implementation is to block the
caller until it receives a signal from the operating system that a message has
arrived, after which the caller does an asynchronous receive.

13. Q: Suppose that you could make use of only transient synchronous communi-
cation primitives. How would you implement primitives for transient asyn-
chronous communication?
A: This situation is actually simpler. An asynchronous send is implemented by
having a caller append its message to a buffer that is shared with a process that
handles the actual message transfer. Each time a client appends a message to
the buffer, it wakes up the send process, which subsequently removes the mes-
sage from the buffer and sends it its destination using a blocking call to the
original send primitive. The receiver is implemented in a similar fashion by
offering a buffer that can be checked for incoming messages by an application.

14. Q: Does it make sense to implement persistent asynchronous communication
by means of RPCs?
A: Yes, but only on a hop-to-hop basis in which a process managing a queue
passes a message to a next queue manager by means of an RPC. Effectively,
the service offered by a queue manager to another is the storage of a message.
The calling queue manager is offered a proxy implementation of the interface
to the remote queue, possibly receiving a status indicating the success or fail-
ure of each operation. In this way, even queue managers see only queues and
no further communication.

15. Q: In the text we stated that in order to automatically start a process to fetch
messages from an input queue, a daemon is often used that monitors the input
queue. Give an alternative implementation that does not make use of a dae-
mon.
A: A simple scheme is to let a process on the receiver side check for any
incoming messages each time that process puts a message in its own queue.

16. Q: Routing tables in IBM WebSphere, and in many other message-queuing
systems, are configured manually. Describe a simple way to do this automati-
cally.
A: The simplest implementation is to have a centralized component in which
the topology of the queuing network is maintained. That component simply
calculates all best routes between pairs of queue managers using a known rout-
ing algorithm, and subsequently generates routing tables for each queue man-
ager. These tables can be downloaded by each manager separately. This
approach works in queuing networks where there are only relatively few, but
possibly widely dispersed, queue managers.

PROBLEM SOLUTIONS FOR CHAPTER 4 15

A more sophisticated approach is to decentralize the routing algorithm, by
having each queue manager discover the network topology, and calculate its
own best routes to other managers. Such solutions are widely applied in com-
puter networks. There is no principle objection for applying them to message-
queuing networks.

17. Q: With persistent communication, a receiver generally has its own local
buffer where messages can be stored when the receiver is not executing. To
create such a buffer, we may need to specify its size. Give an argument why
this is preferable, as well as one against specification of the size.
A: Having the user specify the size makes its implementation easier. The sys-
tem creates a buffer of the specified size and is done. Buffer management
becomes easy. Howev er, if the buffer fills up, messages may be lost. The alter-
native is to hav e the communication system manage buffer size, starting with
some default size, but then growing (or shrinking) buffers as need be. This
method reduces the chance of having to discard messages for lack of room, but
requires much more work of the system.

18. Q: Explain why transient synchronous communication has inherent scalability
problems, and how these could be solved.
A: The problem is the limited geographical scalability. Because synchronous
communication requires that the caller is blocked until its message is received,
it may take a long time before a caller can continue when the receiver is far
aw ay. The only way to solve this problem is to design the calling application
so that it has other useful work to do while communication takes place, effec-
tively establishing a form of asynchronous communication.

19. Q: Give an example where multicasting is also useful for discrete data
streams.
A: Passing a large file to many users as is the case, for example, when updat-
ing mirror sites for Web services or software distributions.

20. Q: Suppose that in a sensor network measured temperatures are not times-
tamped by the sensor, but are immediately sent to the operator. Would it be
enough to guarantee only a maximum end-to-end delay?
A: Not really if we assume that the operator would still need to know when the
measurement took place. In this case, a timestamp can be attached when the
measurement is received, but this would mean that we should also have guar-
antees for minimum end-to-end delays.

21. Q: How could you guarantee a maximum end-to-end delay when a collection
of computers is organized in a (logical or physical) ring?
A: We let a token circulate the ring. Each computer is permitted to send data
across the ring (in the same direction as the token) only when holding the
token. Moreover, no computer is allowed to hold the token for more than T

16 PROBLEM SOLUTIONS FOR CHAPTER 4

seconds. Effectively, if we assume that communication between two adjacent
computers is bounded, then the token will have a maximum circulation time,
which corresponds to a maximum end-to-end delay for each packet sent.

22. Q: How could you guarantee a minimum end-to-end delay when a collection
of computers is organized in a (logical or physical) ring?
A: Strangely enough, this is much harder than guaranteeing a maximum delay.
The problem is that the receiving computer should, in principle, not receive
data before some elapsed time. The only solution is to buffer packets as long
as necessary. Buffering can take place either at the sender, the receiver, or
somewhere in between, for example, at intermediate stations. The best place to
temporarily buffer data is at the receiver, because at that point there are no
more unforeseen obstacles that may delay data delivery. The receiver need
merely remove data from its buffer and pass it to the application using a sim-
ple timing mechanism. The drawback is that enough buffering capacity needs
to be provided.

23. Q: Despite that multicasting is technically feasible, there is very little support
to deploy it in the Internet. The answer to this problem is to be sought in
down-to-earth business models: no one really knows how to make money out
of multicasting. What scheme can you invent?
A: The problem is mainly caused by ISPs, as they see no reason to save on
bandwidth (their clients are paying anyway). However, matters may change in
scenarios such as the following. An Internet broadcasting service pays for a
certain quality-of-service as promised by various ISPs. Each of these ISPs will
see a drop in their income when they cannot meet these QoS requirements. At
this point, they may now hav e an incentive to start deploying multicasting as
they can offer better (and guaranteed) service.

24. Q: Normally, application-level multicast trees are optimized with respect
stretch, which is measured in terms of delay or hop counts. Give an example
where this metric could lead to very poor trees.
A: The underlying assumption with stretch is that communication delays pre-
dominate performance. However, in the case of, for example, video broadcast-
ing, it is the available which counts. In that case, we would like to construct
trees that maximize costs (measured in terms of bandwidth).

25. Q: When searching for files in an unstructured peer-to-peer system, it may
help to restrict the search to nodes that have similar files as yourself. Explain
how gossiping can help to find those nodes.
A: The idea is very simple: if, during gossiping, nodes exchange membership
information, every node will eventually get to know about all other nodes in
the system. Each time it discovers a new node, it can be evaluated with respect
to its semantic proximity, for example, by counting the number of files in

PROBLEM SOLUTIONS FOR CHAPTER 4 17

common. The semantically nearest nodes are then selected for submitting a
search query.

SOLUTIONS TO CHAPTER 5 PROBLEMS

1. Q: Give an example of where an address of an entity E needs to be further
resolved into another address to actually access E.
A: IP addresses in the Internet are used to address hosts. However, to access a
host, its IP address needs to be resolved to, for example, an Ethernet address.

2. Q: Would you consider a URL such as http://www.acme.org/index.html to be
location independent? What about http://www.acme.nl/index.html?
A: Both names can be location independent, although the first one gives fewer
hints on the location of the named entity. Location independent means that the
name of the entity is independent of its address. By just considering a name,
nothing can be said about the address of the associated entity.

3. Q: Give some examples of true identifiers.
A: Examples are ISBN numbers for books, identification numbers for software
and hardware products, employee numbers within a single organization, and
Ethernet addresses (although some addresses are used to identify a machine
instead of just the Ethernet board).

4. Q: Is an identifier allowed to contain information on the entity it refers to?
A: Yes, but that information is not allowed to change, because that would
imply changing the identifier. The old identifier should remain valid, so that
changing it would imply that an entity has two identifiers, violating the second
property of identifiers.

5. Q: Outline an efficient implementation of globally unique identifiers.
A: Such identifiers can be generated locally in the following way. Take the
network address of the machine where the identifier is generated, append the
local time to that address, along with a generated pseudo-random number.
Although, in theory, it is possible that another machine in the world can gener-
ate the same number, chances that this happens are negligible.

6. Q: Consider the Chord system as shown in Fig. 5-0 and assume that node 7
has just joined the network. What would its finger table be and would there be
any changes to other finger tables?
A: Let us first consider the finger table for node 7. Using the same method as
we introduced when discussing Chord, it can be seen that this table will be [9,
9, 11, 18, 28]. For example, entry #2 is computed as
succ(7 + 21) = succ(9) = 9. More tables will need to change, however, in

18 PROBLEM SOLUTIONS FOR CHAPTER 5

particular those of node 4 (which becomes [7,7,9,14,28]), node 21
([28,28,28,1,7]) and node 1 ([4,4,7,9,18]).

7. Q: Consider a Chord DHT-based system for which k bits of an m-bit identifier
space have been reserved for assigning to superpeers. If identifiers are ran-
domly assigned, how many superpeers can one expect to have in an N -node
system?
A: The total number of superpeers in an overlay of N nodes will be equal to
min{2k−m N , 2k}.

8. Q: If we insert a node into a Chord system, do we need to instantly update all
the finger tables?
A: Fortunately not. Consider the previous question and assume that only the
finger table of node #7 is installed and that the rest are kept as they are. The
worst that can happen is that a request to look up, say, key 5, is routed to node
#9 instead of #7. However, node #9 knows that node #7 has joined the system
and can therefore take corrective action.

9. Q: What is a major drawback of recursive lookups when resolving a key in a
DHT-based system?
A: A problem is that the requesting client will never be able to discover what
went wrong when no answer is returned. Somewhere along the route that cor-
responds to resolving the key, a message may have been lost or a node may
have failed. For this reason, an iterative lookup is sometimes preferred: the
client will know exactly which part of the lookup did not come through and
may be able to choose an alternative node to help out.

10. Q: A special form of locating an entity is called anycasting, by which a service
is identified by means of an IP address (see, for example, Sending a request to
an anycast address, returns a response from a server implementing the service
identified by that anycast address. Outline the implementation of an anycast
service based on the hierarchical location service described in Sec. 5.2.4.
A: Each service has a unique identifier associated with it. Any server imple-
menting that service, inserts its network-level address into the location service
at the directory node of the leaf domain in which the server resides. Lookup
requests use the identifier of the service, and will automatically return the
nearest server implementing that service.

11. Q: Considering that a two-tiered home-based approach is a specialization of a
hierarchical location service, where is the root?
A: The root is formed jointly by all home locations, but is partitioned in such a
way that each mobile entity has its own root server.

PROBLEM SOLUTIONS FOR CHAPTER 5 19

12. Q: Suppose that it is known that a specific mobile entity will almost never
move outside domain D, and if it does, it can be expected to return soon. How
can this information be used to speed up the lookup operation in a hierarchical
location service?
A: Simply encode the domain D in the identifier for the entity that is used for
the lookup operation. The operation can then be immediately forwarded to the
directory node dir(D), from where the search continues.

13. Q: In a hierarchical location service with a depth of k, how many location
records need to be updated at most when a mobile entity changes its location?
A: Changing location can be described as the combination of an insert and a
delete operation. An insert operation requires that at worst k +1 location
records are to be changed. Likewise, a delete operation also requires changing
k +1 records, where the record in the root is shared between the two opera-
tions. This leads to a total of 2k +1 records.

14. Q: Consider an entity moving from location A to B, while passing several
intermediate locations where it will reside for only a relatively short time.
When arriving at B, it settles down for a while. Changing an address in a hier-
archical location service may still take a relatively long time to complete, and
should therefore be avoided when visiting an intermediate location. How can
the entity be located at an intermediate location?
A: Combine the hierarchical location service with forwarding pointers. When
the entity starts to move, it leaves behind a forwarding pointer at A to its next
(intermediate) location. Each time it moves again, a forwarding pointer is left
behind. Upon arrival in B, the entity inserts its new address into the hierarchi-
cal location service. The chain of pointers is subsequently cleaned up, and the
address in A is deleted.

15. Q: The root node in hierarchical location services may become a potential bot-
tleneck. How can this problem be effectively circumvented?
A: An important observation is that we are using only random bit strings as
identifiers. As a result, we can easily partition the identifier space and install a
separate root node for each part. In addition, the partitioned root node should
be spread across the network so that accesses to it will also be spread.

16. Q: Give an example of how the closure mechanism for a URL could work.
A: Assuming a process knows it is dealing with a URL, it first extracts the
scheme identifier from the URL, such as the string ftp:. It can subsequently
look up this string in a table to find an interface to a local implementation of
the FTP protocol. The next part of the closure mechanism consists of extract-
ing the host name from the URL, such as www.cs.vu.nl, and passing that to the
local DNS name server. Knowing where and how to contact the DNS server is
an important part of the closure mechanism. It is often hard-coded into the

20 PROBLEM SOLUTIONS FOR CHAPTER 5

URL name resolver that the process is executing. Finally, the last part of the
URL, which refers to a file that is to be looked up, is passed to the identified
host. The latter uses its own local closure mechanism to start the name resolu-
tion of the file name.

17. Q: Explain the difference between a hard link and a soft link in UNIX systems.
Are there things that can be done with a hard link that cannot be done with a
soft link or vice versa?
A: A hard link is a named entry in a directory file pointing to the same file
descriptor as another named entry (in possibly a different directory). A sym-
bolic link is a file containing the (character string) name of another file. With a
soft link you can link to a different disk partition or even to a different
machine.

18. Q: High-level name servers in DNS, that is, name servers implementing nodes
in the DNS name space that are close to the root, generally do not support
recursive name resolution. Can we expect much performance improvement if
they did?
A: Probably not: because the high-level name servers constitute the global
layer of the DNS name space, it can be expected that changes to that part of
the name space do not occur often. Consequently, caching will be highly effec-
tive, and much long-haul communication will be avoided anyway. Note that
recursive name resolution for low-level name servers is important, because in
that case, name resolution can be kept local at the lower-level domain in which
the resolution is taking place.

19. Q: Explain how DNS can be used to implement a home-based approach to
locating mobile hosts.
A: The DNS name of a mobile host would be used as (rather poor) identifier
for that host. Each time the name is resolved, it should return the current IP
address of the host. This implies that the DNS server responsible for providing
that IP address will act as the host’s name server. Each time the host moves, it
contacts this home server and provides it with its current address. Note that a
mechanism should be available to avoid caching of the address. In other
words, other name servers should be told not to cache the address found.

20. Q: How is a mounting point looked up in most UNIX systems?
A: By means of a mount table that contains an entry pointing to the mount
point. This means that when a mounting point is to be looked up, we need to
go through the mount table to see which entry matches a given mount point.

21. Q: Consider a distributed file system that uses per-user name spaces. In other
words, each user has his own, private name space. Can names from such name
spaces be used to share resources between two different users?
A: Yes, provided names in the per-user name spaces can be resolved to names

PROBLEM SOLUTIONS FOR CHAPTER 5 21

in a shared, global name space. For example, two identical names in different
name spaces are, in principle, completely independent and may refer to differ-
ent entities. To share entities, it is necessary to refer to them by names from a
shared name space. For example, Jade relies on DNS names and IP addresses
that can be used to refer to shared entities such as FTP sites.

22. Q: Consider DNS. To refer to a node N in a subdomain implemented as a dif-
ferent zone than the current domain, a name server for that zone needs to be
specified. Is it always necessary to include a resource record for that server’s
address, or is it sometimes sufficient to provide only its domain name?
A: When the name server is represented by a node NS in a domain other than
the one in which N is contained, it is enough to give only its domain name. In
that case, the name can be looked up by a separate DNS query. This is not pos-
sible when NS lies in the same subdomain as N, for in that case, you would
need to contact the name server to find out its address.

23. Q: Counting common files is a rather naive way of defining semantic proxim-
ity. Assume you were to build semantic overlay networks based on text docu-
ments, what other semantic proximity function can you think of?
A: One intriguing one is to have a look at actual content when possible. In the
case of documents, one could look at similarity functions derived from infor-
mation retrieval, such as the Vector Space Model (VSM).

24. Q: Set up your own DNS server. Install BIND on either a Windows or UNIX
machine and configure it for a few simple names. Test your configuration
using tools such as the Domain Information Groper (DIG). Make sure your
DNS database includes records for name servers, mail servers, and standard
servers. Note that if you are running BIND on a machine with host name
HOSTNAME, you should be able to resolve names of the form RESOURCE-
NAME.HOSTNAME.

SOLUTIONS TO CHAPTER 6 PROBLEMS

1. Q: Name at least three sources of delay that can be introduced between WWV
broadcasting the time and the processors in a distributed system setting their
internal clocks.
A: First we have signal propagation delay in the atmosphere. Second we might
have collision delay while the machines with the WWV receivers fight to get
on the Ethernet. Third, there is packet propagation delay on the LAN. Fourth,
there is delay in each processor after the packet arrives, due to interrupt pro-
cessing and internal queueing delays.

22 PROBLEM SOLUTIONS FOR CHAPTER 6

2. Q: Consider the behavior of two machines in a distributed system. Both have
clocks that are supposed to tick 1000 times per millisecond. One of them
actually does, but the other ticks only 990 times per millisecond. If UTC
updates come in once a minute, what is the maximum clock skew that will
occur?
A: The second clock ticks 990,000 times per second, giving an error of 10
msec per second. In a minute this error has grown to 600 msec. Another way
of looking at it is that the second clock is one percent slow, so after a minute it
is off by 0. 01 × 60 sec, or 600 msec.

3. Q: One of the modern devices that have (silently) crept into distributed sys-
tems are GPS receivers. Give examples of distributed applications that can
make use of GPS information.
A: One typical example that comes to mind is sports and health care. There are
now GPS-based body-area networks that allow a person to keep track of his
pace while exercising an outdoors sports. These networks are often augmented
with heart rate monitors and can be hooked up to a computer to downlaod the
sensored data for further analysis. Another example is formed by car-naviga-
tion equipment, which is generally based on GPS receivers. Hooked up to a
(portable) personal computer that can be connected to the Internet, maps and
such can be continously updated. Related are GPS-based distributed systems
for tracking the movement of cars and trucks.

4. Q: When a node synchronizes its clock to that of another node, it is generally
a good idea to take previous measurements into account as well. Why? Also,
give an example of how such past readings could be taken into account.
A: The obvious reason is that there may be an error in the current reading.
Assuming that clocks need only be gradually adjusted, one possibility is to
consider the last N values and compute a median or average. If the measured
value falls outside a current interval, it is not taken into account (but is added
to the list). Likewise, a new value can be computed by taking a weighted aver-
age, or an aging algorithm.

5. Q: Add a new message to Fig. 6-0 that is concurrent with message A, that is, it
neither happens before A nor happens after A.
A: The solution cannot involve 0 or it would be ordered. Thus it must be a
message from 1 to 2 or from 2 to 1. If it departs or arrives from 1 after 16, it
will be ordered with respect to A, so it must depart or arrive before 16. The
possibilities are a message leaving process 2 at 0 and arriving at process 1 at 8,
or a message leaving process 1 at 0 and arriving at process 2 at 10. Both of
these are concurrent with A.

PROBLEM SOLUTIONS FOR CHAPTER 6 23

6. Q: To achieve totally-ordered multicasting with Lamport timestamps, is it
strictly necessary that each message is acknowledged?
A: No, it is sufficient to multicast any other type of message, as long as that
message has a timestamp larger than the received message. The condition for
delivering a message m to the application, is that another message has been
received from each other process with a large timestamp. This guarantees that
there are no more messages underway with a lower timestamp.

7. Q: Consider a communication layer in which messages are delivered only in
the order that they were sent. Give an example in which even this ordering is
unnecessarily restrictive.
A: Imagine the transfer of a large image which, to that end, has been divided
into consecutive blocks. Each block is identified by its position in the original
image, and possibly also its width and height. In that case, FIFO ordering is
not necessary, as the receiver can simply paste each incoming block into the
correct position.

8. Q: Many distributed algorithms require the use of a coordinating process. To
what extent can such algorithms actually be considered distributed? Discuss.
A: In a centralized algorithm, there is often one, fixed process that acts as
coordinator. Distribution comes from the fact that the other processes run on
different machines. In distributed algorithms with a nonfixed coordinator, the
coordinator is chosen (in a distributed fashion) among the processes that form
part of the algorithm. The fact that there is a coordinator does not make the
algorithm less distributed.

9. Q: In the centralized approach to mutual exclusion (Fig. 6-0), upon receiving a
message from a process releasing its exclusive access to the resources it was
using, the coordinator normally grants permission to the first process on the
queue. Give another possible algorithm for the coordinator.
A: Requests could be associated with priority levels, depending on their
importance. The coordinator could then grant the highest priority request first.

10. Q: Consider Fig. 6-0 again. Suppose that the coordinator crashes. Does this
always bring the system down? If not, under what circumstances does this
happen? Is there any way to avoid the problem and make the system able to
tolerate coordinator crashes?
A: Suppose that the algorithm is such that every request is answered immedi-
ately, either with permission or with denial. If there are no processes accessing
resources and no processes queued, then a crash is not fatal. The next process
to request permission will fail to get any reply at all, and can initiate the elec-
tion of a new coordinator. The system can be made even more robust by hav-
ing the coordinator store every incoming request on disk before sending back a
reply. In this way, in the event of a crash, the new coordinator can reconstruct

24 PROBLEM SOLUTIONS FOR CHAPTER 6

the list of accessed resources and the queue by reading the file from the disk.
11. Q: Ricart and Agrawala’s algorithm has the problem that if a process has

crashed and does not reply to a request from another process to access a
resources, the lack of response will be interpreted as denial of permission. We
suggested that all requests be answered immediately to make it easy to detect
crashed processes. Are there any circumstances where even this method is
insufficient? Discuss.
A: Suppose that a process denies permission and then crashes. The requesting
process thinks that it is alive, but permission will never come. One way out is
to have the requester not actually block, but rather go to sleep for a fixed
period of time, after which it polls all processes that have denied permission to
see if they are still running.

12. Q: How do the entries in Fig. 6-0 change if we assume that the algorithms can
be implemented on a LAN that supports hardware broadcasts?
A: Only the entries for the distributed case change. Because sending a point-
to-point message is as expensive as doing a broadcast, we need only send one
broadcast message to all processes requesting access to the resource. Likewise,
only one release broadcast message is needed. The delay becomes 1 + (n − 1):
one delay coming from the broadcast request, and an additional n − 1 as we
still need to receive a message from each other process before being allowed to
access the resource.

13. Q: A distributed system may have multiple, independent resources. Imagine
that process 0 wants to access resource A and process 1 wants to access
resource B. Can Ricart and Agrawala’s algorithm lead to deadlocks? Explain
your answer.
A: It depends on the ground rules. If processes access resources strictly
sequentially, that is, a process holding a resource may not attempt to access
another one, then there is no way that it can block while holding a resource
that some other process wants. The system is then deadlock free. On the other
hand, if process 0 may hold resource A and then try to access resource B, a
deadlock can occur if some other process tries to acquire them in the reverse
order. The Ricart and Agrawala algorithm itself does not contribute to dead-
lock since each resource is handled independently of all the others.

14. Q: Suppose that two processes detect the demise of the coordinator simultane-
ously and both decide to hold an election using the bully algorithm. What hap-
pens?
A: Each of the higher-numbered processes will get two ELECTION messages,
but will ignore the second one. The election will proceed as usual.

PROBLEM SOLUTIONS FOR CHAPTER 6 25

15. Q: In Fig. 6-0 we have two ELECTION messages circulating simultaneously.
While it does no harm to have two of them, it would be more elegant if one
could be killed off. Devise an algorithm for doing this without affecting the
operation of the basic election algorithm.
A: When a process receives an ELECTION message, it checks to see who
started it. If it itself started it (i.e., its number is at the head of the list), it turns
the message into a COORDINAT OR message as described in the text. If it did
not start any ELECTION message, it adds its process number and forwards it
along the ring. However, if it did send its own ELECTION message earlier and
it has just discovered a competitor, it compares the originator’s process num-
ber with its own. If the other process has a lower number, it discards the mes-
sage instead of passing it on. If the competitor is higher, the message is for-
warded in the usual way. In this way, if multiple ELECTION messages are
started, the one whose first entry is highest survives. The rest are killed off
along the route.

16. Q: UNIX systems provide many facilities to keep computers in synch. Notably
the combination of the crontab tool (which allows to automatically schedule
operations) and various synchronization commands are powerful. Configure a
UNIX that keeps the local time accurate with in the range of a single second.
Likewise, configure an automatic backup facility by which a number of crucial
files are automatically transferred to a remote machine once every 5 minutes.
Your solution should be efficient when it comes to bandwidth usage.

SOLUTIONS TO CHAPTER 7 PROBLEMS

1. Q: Access to shared Java objects can be serialized by declaring its methods as
being synchronized. Is this enough to guarantee serialization when such an
object is replicated?
A: No. The problem is that access to each replica is serialized. However, dif-
ferent operations at different replicas may be executed at the same time, leav-
ing the replicated instance variables in an inconsistent state.

2. Q: Explain in your own words what the main reason is for actually consider-
ing weak consistency models.
A: Weak consistency models come from the need to replicate for performance.
However, efficient replication can be done only if we can avoid global syn-
chronizations, which, in turn, can be achieved by loosening consistency con-
straints.

3. Q: Explain how replication in DNS takes place, and why it actually works so
well.
A: The basic idea is that name servers cache previously looked up results.

26 PROBLEM SOLUTIONS FOR CHAPTER 7

These results can be kept in a cache for a long time, because DNS makes the
assumption that name-to-address mappings do not change often.

4. Q: During the discussion of consistency models, we often referred to the con-
tract between the software and data store. Why is such a contract needed?
A: If a program expects a sequentially consistent data store and cannot live
with anything less, the store must provide sequential consistency. Howev er, to
improve performance, some systems provide a weaker model. It is then essen-
tial that the software agrees to abide by the rules imposed by this model. Gen-
erally, it means that programs obeying the rules will perceive what looks like a
sequentially consistent data store.

5. Q: Given the replicas in Fig. 7-0, what would need to be done to finalize the
values in the conit such that both A and B see the same result?
A: In this case it is relatively simple: if A and B exchange their list of tentative
operations and subsequently order them according the time, then both would
get to see the same result.

6. Q: In Fig. 7-0, is 001110 a legal output for a sequentially consistent memory?
Explain your answer.
A: Yes. If the processes run in the order (a), (c), (b), this result is obtained.

7. Q: It is often argued that weak consistency models impose an extra burden for
programmers. To what extent is this statement actually true?
A: It really depends. Many programmers are used to protect their shared data
through synchronization mechanisms such as locks or transactions. The main
idea is that they require a coarser grain of concurrency than one offered at the
level of only read and write operations. However, programmers do expect that
operations on synchronization variables adhere to sequential consistency.

8. Q: Does totally ordered multicasting by means of a sequencer and for the sake
of consistency in active replication, violate the end-to-end argument in system
design?
A: Yes. The end-to-end argument states that problems should be solved at the
same level in which they occur. In this case, we are dealing with the problem
of totally ordered multicasting for achieving consistency in active replication.
In primary-based protocols, consistency is achieved by first forwarding all
operations to the primary. Using a sequencer, we are actually doing the same
but at a lower level of abstraction. In this case, it may have been better to use a
primary-based protocol in which updates are propagated by sending opera-
tions.

9. Q: What kind of consistency would you use to implement an electronic stock
market? Explain your answer.
A: Causal consistency is probably enough. The issue is that reactions to

PROBLEM SOLUTIONS FOR CHAPTER 7 27

changes in stock values should be consistent. Changes in stocks that are inde-
pendent can be seen in different orders.

10. Q: Consider a personal mailbox for a mobile user, implemented as part of a
wide-area distributed database. What kind of client-centric consistency would
be most appropriate?
A: All of them, actually. What it boils down to is that the owner should always
see the same mailbox, no matter whether he is reading or updating it. In fact,
the simplest implementation for such a mailbox may well be that of a primary-
based local-write protocol, where the primary is always located on the user’s
mobile computer.

11. Q: Describe a simple implementation of read-your-writes consistency for dis-
playing Web pages that have just been updated.
A: The simplest implementation is to let the browser always check whether it
is displaying the most recent version of a page. This requires sending a request
to the Web server. This scheme is simple as it is already implemented by many
systems.

12. Q: To make matters simple, we assumed that there were no write-write con-
flicts in Bayou. Of course, this is an unrealistic assumption. Explain how con-
flicts may happen.
A: There are many occasions in which conflicts can occur. For example, noth-
ing prevents a client of using a shared agenda. In that case, updates may con-
sist of scheduling a meeting at a time where the client has already scheduled
something else, but this information had not yet been propagated to other
replicas.

13. Q: When using a lease, is it necessary that the clocks of a client and the server,
respectively, are tightly synchronized?
A: No. If the client takes a pessimistic view concerning the level at which its
clock is synchronized with that of the server, it will attempt to obtain a new
lease far before the current one expires.

14. Q: We hav e stated that totally ordered multicasting using Lamport’s logical
clocks does not scale. Explain why.
A: Lamport’s way totally ordered multicasting requires that all servers are up
and running, effectively hindering performance when one of them turns out to
be slow or has crashed. This will have to be detected by all other servers. As
the number of servers grows, this problem is aggravated.

15. Q: Show that, in the case of continuous consistency, having a server Sk
advance its view TWk(i, k) whenever it receives a fresh update that would
increase TW (k, k) − TWk(i, k) beyond δ i / N − 1), ensures that v(t) − vi ≤ δ i .
A: That this advancement indeed yields correctness can easily be seen as

28 PROBLEM SOLUTIONS FOR CHAPTER 7

follows:

v(t) − vi = (v(0) +
N

k=1
Σ TW [k, k]) + (v(0) +

N

k=1
Σ TW [i, k])

=
N

k=1
Σ (TW [k, k] − TW [i, k])

≤
N

k=1
Σ [TW [k, k] − TWk[i, k]] ≤ (N − 1) × δ i / (N − 1) = δ i

Note that the factor (N − 1) comes from the fact that TW [k, k] − TWk[k, k] = 0,
by which we can eliminate a term in the summation.

16. Q: For continuous consistency, we hav e assumed that each write only
increases the value of data item x. Sketch a solution in which it is also possible
to decrease x’s value.
A: The situation is relatively simple if we separate positive-valued updates
from negative-valued ones and keep separate accounts for each of them. In
particular, we keep track of:
TWN [i, j] = Σ {weight(W) weight(W) < 0 & origin(W) = S j & W ∈ Li}

TWP[i, j] = Σ {weight(W) weight(W) > 0 & origin(W) = S j & W ∈ Li}
Note that TWP[i, j] ≡ TW [i, j]. Again, each node keeps track of views
TWPk[i, k] and TWNk[i, k], respectively, and advances its view when it notices
that a fresh write would either increase |TWN [k, k] − TWNk[i, k]| or
|TWP[k, k] − TWPk[i, k]| beyond δ i / (N − 1).

17. Q: Consider a nonblocking primary-backup protocol used to guarantee
sequential consistency in a distributed data store. Does such a data store
always provide read-your-writes consistency?
A: No. As soon as the updating process receives an acknowledgment that its
update is being processed, it may disconnect from the data store and reconnect
to another replica. No guarantees are given that the update has already reached
that replica. In contrast, with a blocking protocol, the updating process can
disconnect only after its update has been fully propagated to the other replicas
as well.

18. Q: For active replication to work in general, it is necessary that all operations
be carried out in the same order at each replica. Is this ordering always neces-
sary?
A: No. Consider read operations that operate on nonmodified data or commu-
tative write operations. In principle, such situations allow ordering to be differ-
ent at different replicas. However, it can be hard or impossible to detect

PROBLEM SOLUTIONS FOR CHAPTER 7 29

whether, for example, two write operations are commutative.
19. Q: To implement totally ordered multicasting by means of a sequencer, one

approach is to first forward an operation to the sequencer, which then assigns it
a unique number and subsequently multicasts the operation. Mention two
alternative approaches, and compare the three solutions.
A: Another approach is to multicast the operation, but defer delivery until the
sequencer has subsequently multicast a sequence number for it. The latter hap-
pens after the operation has been received by the sequencer. A third approach
is to first get a sequence number from the sequencer, and then multicast the
operation.
The first approach (send operation to sequencer), involves sending one point-
to-point message with the operation, and a multicast message. The second
approach requires two multicast messages: one containing the operation, and
one containing a sequence number. The third approach, finally, costs one
point-to-point message with the sequence number, followed by a multicast
message containing the operation.

20. Q: A file is replicated on 10 servers. List all the combinations of read quorum
and write quorum that are permitted by the voting algorithm.
A: The following possibilities of (read quorum, write quorum) are legal. (1,
10), (2, 9), (3, 8), (4, 7), (5, 6), (6, 5), (7, 4), (8, 3), (9, 2), and (10, 1).

21. Q: State-based leases are used to offload a server by letting it allow to keep
track of as few clients as needed. Will this approach necessarily lead to better
performance?
A: No, for the simple reason that for some clients it would still be better to
inform them when updates happened. Not maintaining any state may lead to
the situation that these clients will often poll the already busy server.

22. For this exercise, you are to implement a simple system that supports multicast
RPC. We assume that there are multiple, replicated servers and that each client
communicates with a server through an RPC. However, when dealing with
replication, a client will need to send an RPC request to each replica. Program
the client such that to the application it appears as if a single RPC is sent.
Assume you are replicating for performance, but that servers are susceptible to
failures.

SOLUTIONS TO CHAPTER 8 PROBLEMS

1. Q: Dependable systems are often required to provide a high degree of security.
Why?
A: If, for example, the responses given by servers cannot be trusted to be

30 PROBLEM SOLUTIONS FOR CHAPTER 8

correct because some malicious party has tampered with them, it hardly makes
sense to talk about a dependable system. Likewise, servers should be able to
trust their clients.

2. Q: What makes the fail-stop model in the case of crash failures so difficult to
implement?
A: The fact that, in practice, servers simply stop producing output. Detecting
that they hav e actually stopped is difficult. As far as another process can see,
the server may just be slow, or communication may (temporarily) be failing.

3. Q: Consider a Web browser that returns an outdated cached page instead of a
more recent one that had been updated at the server. Is this a failure, and if so,
what kind of failure?
A: Whether or not it is a failure depends on the consistency that was promised
to the user. If the browser promises to provide pages that are at most T time
units old, it may exhibit performance failures. However, a browser can never
live up to such a promise in the Internet. A weaker form of consistency is to
provide one of the client-centric models discussed in Chap. 7. In that case,
simply returning a page from the cache without checking its consistency may
lead to a response failure.

4. Q: Can the model of triple modular redundancy described in the text handle
Byzantine failures?
A: Absolutely. The whole discussion assumed that failing elements put out
random results, which are the same as Byzantine failures.

5. Q: How many failed elements (devices plus voters) can Fig. 8-0 handle? Give
an example of the worst case that can be masked.
A: In each row of circles, at most one element can fail and be masked. Further-
more, one voter in each group can also fail provided it is feeding a faulty ele-
ment in the next stage. For example, if all six elements at the top of their
respective columns all fail, two of the three final outputs will be correct, so we
can survive six failures.

6. Q: Does TMR generalize to five elements per group instead of three? If so,
what properties does it have?
A: Yes, any odd number can be used. With five elements and five voters, up to
two faults per group of devices can be masked.

7. Q: For each of the following applications, do you think at-least-once seman-
tics or at most once semantics is best? Discuss.
(a) Reading and writing files from a file server.
(b) Compiling a program.
(c) Remote banking.

PROBLEM SOLUTIONS FOR CHAPTER 8 31

A: For (a) and (b), at least once is best. There is no harm trying over and over.
For (c), it is best to give it only one try. If that fails, the user will have to inter-
vene to clean up the mess.

8. Q: With asynchronous RPCs, a client is blocked until its request has been
accepted by the server. To what extent do failures affect the semantics of asyn-
chronous RPCs?
A: The semantics are generally affected in the same way as ordinary RPCs. A
difference lies in the fact that the server will not be processing the request
while the client is blocked, which introduces problems when the client crashes
in the meantime. Instead, the server simply does its work, and attempts to con-
tact the client later on, if necessary.

9. Q: Give an example in which group communication requires no message
ordering at all.
A: Multicasting images in small fragments, where each fragment contains the
(x, y) coordinate as part of its data. Likewise, sending the pages of a book,
with each page being numbered.

10. Q: In reliable multicasting, is it always necessary that the communication
layer keeps a copy of a message for retransmission purposes?
A: No. In many cases, such as when transferring files, it is necessary only that
the data is still available at the application level. There is no need that the com-
munication layer maintains its own copy.

11. Q: To what extent is scalability of atomic multicasting important?
A: It really depends on how many processes are contained in a group. The
important thing to note is, that if processes are replicated for fault tolerance,
having only a few replicas may be enough. In that case, scalability is hardly an
issue. When groups of different processes are formed, scalability may become
an issue. When replicating for performance, atomic multicasting itself may be
overdone.

12. Q: In the text, we suggest that atomic multicasting can save the day when it
comes to performing updates on an agreed set of processes. To what extent can
we guarantee that each update is actually performed?
A: We cannot give such guarantees, similar to guaranteeing that a server has
actually performed an operation after having sent an acknowledgement to the
client. However, the degree of fault tolerance is improved by using atomic
multicasting schemes, and makes developing fault-tolerant systems easier.

13. Q: Virtual synchrony is analogous to weak consistency in distributed data
stores, with group view changes acting as synchronization points. In this con-
text, what would be the analog of strong consistency?
A: The synchronization resulting from individual multicasts, be they totally,

32 PROBLEM SOLUTIONS FOR CHAPTER 8

causally, or FIFO ordered. Note that view changes take place as special multi-
cast messages, which are required to be properly ordered as well.

14. Q: What are the permissible delivery orderings for the combination of FIFO
and total-ordered multicasting in Fig. 8-0?
A: There are six orderings possible:

Order 1 Order 2 Order 3 Order 4 Order 5 Order 6
m1 m1 m1 m3 m3 m3
m2 m3 m3 m1 m1 m4
m3 m2 m4 m2 m4 m1
m4 m4 m2 m4 m2 m2

15. Q: Adapt the protocol for installing a next view Gi+1 in the case of virtual syn-
chrony so that it can tolerate process failures.
A: When a process P receives Gi+k , it first forwards a copy of any unstable
message it has, regardless to which previous view it belonged, to every process
in Gi+k , followed by a flush message for Gi+k . It can then safely mark the mes-
sage as being stable.

If a process Q receives a message m that was sent in G j (with j < i + k), it
discards it when Q was nev er in G j . If the most recently installed view at Q is
Gl with l > j, message m is also discarded (it is a duplicate). If l = j and m
had not yet been received, process Q delivers m taking any additional message
ordering constraints into account. Finally, if l < j, message m is simply stored
in the communication layer until G j has been installed.

16. Q: In the two-phase commit protocol, why can blocking never be completely
eliminated, even when the participants elect a new coordinator?
A: After the election, the new coordinator may crash as well. In this case, the
remaining participants can also not reach a final decision, because this requires
the vote from the newly elected coordinator, just as before.

17. Q: In our explanation of three-phase commit, it appears that committing a
transaction is based on majority voting. Is this true?
A: Absolutely not. The point to note is that a recovering process that could not
take part in the final decision as taken by the other process, will recover to a
state that is consistent with the final choice made by the others.

18. Q: In a piecewise deterministic execution model, is it sufficient to log only
messages, or do we need to log other events as well?
A: More logging is generally needed: it concerns all nondeterministic events,
including local I/O and, in particular, system calls.

19. Q: Explain how the write-ahead log in distributed transactions can be used to
recover from failures.

PROBLEM SOLUTIONS FOR CHAPTER 8 33

A: The log contains a record for each read and write operation that took place
within the transaction. When a failure occurs, the log can be replayed to the
last recorded operation. Replaying the log is effectively the opposite from
rolling back, which happens when the transaction needed to be aborted.

20. Q: Does a stateless server need to take checkpoints?
A: It depends on what the server does. For example, a database server that has
been handed a complete transaction will maintain a log to be able to redo its
operations when recovering. However, there is no need to take checkpoints for
the sake of the state of the distributed system. Checkpointing is done only for
local recovery.

21. Q: Receiver-based message logging is generally considered better than sender-
based logging. Why?
A: The main reason is that recovery is entirely local. In sender-based logging,
a recovering process will have to contact its senders to retransmit their mes-
sages.

SOLUTIONS TO CHAPTER 9 PROBLEMS

1. Q: Which mechanisms could a distributed system provide as security services
to application developers that believe only in the end-to-end argument in sys-
tem’s design, as discussed in Chap. 6?
A: None. Applying the end-to-end argument to security services means that
developers will not trust anything that is not provided by their own applica-
tions. In effect, the distributed system as a whole is considered to be untrusted.

2. Q: In the RISSC approach, can all security be concentrated on secure servers
or not?
A: No, we still need to make sure that the local operating systems and commu-
nication between clients and servers are secure.

3. Q: Suppose you were asked to develop a distributed application that would
allow teachers to set up exams. Give at least three statements that would be
part of the security policy for such an application.
A: Obvious requirements would include that students should not be able to
access exams before a specific time. Also, any teacher accessing an exam
before the actual examination date should be authenticated. Also, there may be
a restricted group of people that should be given read access to any exam in
preparation, whereas only the responsible teacher should be given full access.

4. Q: Would it be safe to join message 3 and message 4 in the authentication pro-
tocol shown in Fig. 9-0, into KA,B(RB, RA)?

34 PROBLEM SOLUTIONS FOR CHAPTER 9

A: Yes, there is no reason why the challenge sent by Alice for Bob cannot be
sent in the same message.

5. Q: Why is it not necessary in Fig. 9-0 for the KDC to know for sure it was
talking to Alice when it receives a request for a secret key that Alice can share
with Bob?
A: Suppose that Chuck had sent the message ‘‘I’m Alice and I want to talk to
Bob.’’ The KDC would just return KA,KDC(KA,B) which can be decrypted only
by Alice because she is the only other entity holding the secret key KA,KDC .

6. Q: What is wrong in implementing a nonce as a timestamp?
A: Although a timestamp is used only once, it is far from being random.
Implementations of security protocols exist that use timestamps as nonces, and
which have been succusfully attacked by exploiting the nonrandomness of the
nonces.

7. Q: In message 2 of the Needham-Schroeder authentication protocol, the ticket
is encrypted with the secret key shared between Alice and the KDC. Is this
encryption necessary?
A: No. Because Bob is the only one who can decrypt the ticket, it might as
well have been sent as plaintext.

8. Q: Can we safely adapt the authentication protocol shown in Fig. 9-0 such that
message 3 consists only of RB?
A: In principle, if RB is never used again, then returning it unencrypted should
be enough. However, such randomness is seldom found. Therefore, by
encrypting RB, it becomes much more difficult for Chuck to break in and forge
message 3.

9. Q: Devise a simple authentication protocol using signatures in a public-key
cryptosystem.
A: If Alice wants to authenticate Bob, she sends Bob a challenge R. Bob will
be requested to return K−

B(R), that is, place his signature under R. If Alice is
confident that she has Bob’s public key, decrypting the response back to R
should be enough for her to know she is indeed talking to Bob.

10. Q: Assume Alice wants to send a message m to Bob. Instead of encrypting m
with Bob’s public key K+

B , she generates a session key KA,B and then sends
[KA,B(m), K+

B(KA,B)]. Why is this scheme generally better? (Hint: consider per-
formance issues.)
A: The session key has a short, fixed length. In contrast, the message m may
be of arbitrary length. Consequently, the combination of using a session key
and applying public-key cryptography to a short message will generally pro-
vide much better performance than using only a public key on a large message.

PROBLEM SOLUTIONS FOR CHAPTER 9 35

11. Q: What is the role of the timestamp in message 6 in Fig. 9-0, and why does it
need to be encrypted?
A: The timestamp is used to protect against replays. By encrypting it, it
becomes impossible to replay message 6 with a later timestamp. This example
illustrates a general application of timestamps in cryptographic protocols.

12. Q: Complete Fig. 9-0 by adding the communication for authentication
between Alice and Bob.
A: Alice sends to Bob the message M = [KB,AS(A, KA,B), KA,B(t)], where KB,AS
is the secret key shared between Bob and the AS. At that point, Bob knows he
is talking to Alice. By responding with KA,B(t + 1), Bob proves to Alice that he
is indeed Bob.

13. Q: How can role changes be expressed in an access control matrix?
A: Roles, or protection domains in general, can be viewed as objects with
basically a single operation: enter. Whether or not this operation can be called
depends on the role from which the request is issued. More sophisticated
approaches are also possible, for example, by allowing changes back to previ-
ous roles.

14. Q: How are ACLs implemented in a UNIX file system?
A: Each file has three associated entries: one for the owner, one for a group
that is associated with the file, and one for everyone else. For each entry, the
access rights can essentially be specified as read, write, execute.

15. Q: How can an organization enforce the use of a Web proxy gateway and pre-
vent its users to directly access external Web servers?
A: One way is to use a packet-filtering gateway that discards all outgoing traf-
fic except that directed to a few, well-known hosts. Web traffic is accepted pro-
vided it is targeted to the company’s Web proxy.

16. Q: Referring to Fig. 9-0, to what extent does the use of Java object references
as capabilities actually depend on the Java language?
A: It is independent of the Java language: references to secured objects still
need to be handed out during runtime and cannot be simply constructed. Java
helps by catching the construction of such references during compile time.

17. Q: Name three problems that will be encountered when developers of inter-
faces to local resources are required to insert calls to enable and disable privi-
leges to protect against unauthorized access by mobile programs as explained
in the text.
A: An important one is that no thread switching may occur when a local
resource is called. A thread switch could transfer the enabled privileges to
another thread that is not authorized to access the resource. Another problem

36 PROBLEM SOLUTIONS FOR CHAPTER 9

occurs when another local resource needs to be called before the current
invocation is finished. In effect, the privileges are carried to the second
resource, while it may happen that the caller is actually not trusted to access
that second resource. A third problem is that explicitly inserting calls to enable
and disable privileges is suspect to programming errors, rendering the mecha-
nism useless.

18. Q: Name a few advantages and disadvantages of using centralized servers for
key management.
A: An obvious advantage is simplicity. For example, by having N clients share
a key with only a centralized server, we need to maintain only N keys. Pair-
wise sharing of keys would add up to N (N − 1) /2 keys. Also, using a central-
ized server allows efficient storage and maintenance facilities at a single site.
Potential disadvantages include the server becoming a bottleneck with respect
to performance as well as availability. Also, if the server is compromised, new
keys will need to be established.

19. Q: The Diffie-Hellman key-exchange protocol can also be used to establish a
shared secret key between three parties. Explain how.
A: Suppose Alice, Bob, and Chuck want to set up a shared secret key based on
the two publicly known large primes n and g. Alice has her own secret large
number x, Bob has y, and Chuck has z. Alice sends gx mod n to Bob; Bob
sends gy mod n to Chuck; and Chuck sends gz mod n to Alice. Alice can now
compute gxz mod n, which she sends to Bob. Bob, in turn, can then compute
gxyz mod n. Likewise, after receiving gx mod n from Alice, Bob can compute
gxy mod n, which he sends to Chuck. Chuck can then compute gxyz mod n.
Similarly, after Chuck receives gy mod n from Bob, he computes gyz mod n
and sends that to Alice so that she can compute gxyz mod n.

20. Q: There is no authentication in the Diffie-Hellman key-exchange protocol. By
exploiting this property, a malicious third party, Chuck, can easily break into
the key exchange taking place between Alice and Bob, and subsequently ruin
the security. Explain how this would work.
A: Assume Alice and Bob are using the publicly known values n and g. When
Alice sends gx mod n to Bob, Chuck need simply intercept that message,
return his own message gz mod n, and thus make Alice believe she is talking
to Bob. After intercepting Alice’s message, he sends gz mod n to Bob, from
which he can expect gy mod n as reply. Chuck is now in the middle.

21. Q: Give a straightforward way how capabilities in Amoeba can be revoked.
A: The object’s owner simply requests that the server discard all registered
(rights, check)-pairs for that object. A disadvantage is that all capabilities are
revoked. It is difficult to revoke a capability handed out to a specific process.

PROBLEM SOLUTIONS FOR CHAPTER 9 37

22. Q: Does it make sense to restrict the lifetime of a session key? If so, give an
example how that could be established.
A: Session keys should always have a restricted lifetime as they are easier to
break than other types of cryptographic keys. The way to restrict their lifetime
is to send along the expiration time when the key is generated and distributed.
This approach is followed, for example, in SESAME.

23. Install and configure a Kerberos v5 environment for a distributed system con-
sisting of three different machines. One of these machines should be running
the KDC. Make sure you can setup a (Kerberos) telnet connection between
any two machines, but making use of only a single registered password at the
KDC. Many of the details on running Kerberos are explained in (Garman,
2003).

SOLUTIONS TO CHAPTER 10 PROBLEMS

1. Q: We made a distinction between remote objects and distributed objects.
What is the difference?
A: A remote object is an object that is hosted by a single server, but whose
methods can be invoked by remote clients. In contrast, a distributed object is
one whose state may be physically distributd across different servers. An
example of distributed objects are those provided by Globe. Most object-based
systems, however, support only remote objects.

2. Q: Why is it useful to define the interfaces of an object in an Interface Defini-
tion Language?
A: There are several reasons. First, from a software-engineering point of view,
having precise and unambiguous interface definitions is important for under-
standing and maintaining objects. Furthermore, IDL-based definitions come in
handy for generating stubs. Finally, and related to the latter, if an IDL defini-
tion has been parsed and stored, supporting dynamic invocations becomes eas-
ier, as the client-side proxy can be automatically constructed at runtime from
an interface definition.

3. Q: Some implementations of distributed-object middleware systems are
entirely based on dynamic method invocations. Even static invocations are
compiled to dynamic ones. What is the benefit of this approach?
A: Realizing that an implementation of dynamic invocations can handle all
invocations, static ones become just a special case. The advantage is that only
a single mechanism needs to be implemented. A possible disadvantage is that
performance is not always as optimal as it could be had we analyzed the static
invocation.

38 PROBLEM SOLUTIONS FOR CHAPTER 10

4. Q: Outline a simple protocol that implements at-most-once semantics for an
object invocation.
A: A simple solution is to let a proxy retransmit an invocation request, but
telling the server explicitly that it is a retransmission. In that case, the server
may decide to ignore the request and return an error to the client. In a more
sophisticated solution, the server can cache results of previous invocations and
check whether it still has those results when receiving a retransmitted request.

5. Q: Should the client and server-side objects for asynchronous method invoca-
tion be persistent?
A: In general, they should be persistent, allowing the client or server to shut
down and later restart and fetch the objects from disk. However, in theory,
there is no hard reason to demand that these objects should be persistent.

6. Q: In the text, we mentioned that an implementation of CORBA’ s asyn-
chronous method invocation do not affect the server-side implementation of an
object. Explain why this is the case.
A: The important issue is that the client-side runtime system handles all the
calls to the server. In particular, the RTS can do a synchronous call to the
server, possibly having to wait a long time before an answer is returned. At
that moment, it does an upcall to the client application. Likewise, the method
invocation can be forwarded to a message router, where eventually, the tar-
geted object server is simply called. Again, it is the communication subsystem
that handles the asynchronous nature of the invocation.

7. Q: Give an example in which the (inadvertent) use of callback mechanisms
can easily lead to an unwanted situation.
A: If a callback leads to another invocation on the same object, a deadlock
may arise if locks are needed to protect shared resources. Situations as these
are very hard to control in a general way.

8. Q: Is it possible for an object to have more than one servant?
A: Yes. Recall that an object can be virtually anything. Now consider an object
that consists of some data that is stored somewhere in a database, along per-
haps with some procedures for manipulating its data. There is no reason why
we cannot provide two different access points (by means of servants) to that
data. Of course, the object will, in this case, also have two different identifiers.

9. Q: Is it possible to have system-specific implementations of CORBA object
references while still being able to exchange references with other CORBA-
based systems?
A: Yes, this what the IORs are for. The only issue that is important, is that
objects that can be referenced from outside, can be represented by an IOR. In
that case, a specific CORBA system will need to provide a gateway for

PROBLEM SOLUTIONS FOR CHAPTER 10 39

translating such references into its internal and specific implementation.
10. Q: How can we authenticate the contact addresses returned by a lookup ser-

vice for secure Globe objects?
A: Simply have each contact address be signed using the object’s private key.
In that way, we establish a secure binding between an object’s identifier, its
public key, and its contact addresses.

11. Q: What is the key difference between object references in CORBA and those
in Globe?
A: In CORBA, an object reference is essentially what is referred to as a con-
tact address in Globe. In Globe, object references are location independent,
meaning that no information whatsoever concerning the current server hosting
a (distributed) object is contained in the reference. This information is always
part of a CORBA IOR.

12. Q: Consider Globe. Outline a simple protocol by which a secure channel is set
up between a user proxy (who has access to the Alice’s private key) and a
replica that we know for certain can execute a given method.
A: Suppose we found replica R. We can execute the following steps. (1) The
user proxy sends the user certificate to the replica. (2) The replica responds
with its replica certificate, along with a nonce NR. (3) The user proxy responds
by returning K−

Alice(NR, N Alice). This message will allow R to verify that Alice
is on the other end of the channel. It responds with K−

R(N Alice) allowing Alice
to verify the identity of R. Note that extra information, like session keys, can
be exchanged as well.

13. Q: Give an example implementation of an object reference that allows a client
to bind to a transient remote object.
A: Using Java, we can express such an implementation as the following class:

public class Object reference {
InetAddress server address; // networ k address of object’s ser ver
int server endpoint; // endpoint to which server is listening
int object identifier ; // identifier for this object
URL client code; // (remote) file containing client-side stub
byte[] init data; // possible additional initialization data

}

The object reference should at least contain the transport-level address of the
server where the object resides. We also need an object identifier as the server
may contain several objects. In our implementation, we use a URL to refer to a
(remote) file containing all the necessary client-side code. A generic array of
bytes is used to contain further initialization data for that code. An alternative
implementation would have been to directly put the client-code into the

40 PROBLEM SOLUTIONS FOR CHAPTER 10

reference instead of a URL. This approach is followed, for example, in Java
RMI where proxies are passed as reference.

14. Q: Java and other languages support exceptions, which are raised when an
error occurs. How would you implement exceptions in RPCs and RMIs?
A: Because exceptions are initially raised at the server side, the server stub can
do nothing else but catch the exception and marshal it as a special error
response back to the client. The client stub, on the other hand, will have to
unmarshal the message and raise the same exception if it wants to keep access
to the server transparent. Consequently, exceptions now also need to be
described in an interface definition language.

15. Q: How would you incorporate persistent asynchronous communication into a
model of communication based on RMIs to remote objects?
A: An RMI should be asynchronous, that is, no immediate results are expected
at invocation time. Moreover, an RMI should be stored at a special server that
will forward it to the object as soon as the latter is up and running in an object
server.

16. Q: Consider a distributed object-based system that supports object replication,
in which all method invocations are totally ordered. Also, assume that an
object invocation is atomic (e.g., because every object is automatically locked
when invoked). Does such a system provide entry consistency? What about
sequential consistency?
A: By totally ordering all method invocations, we not only achieve that all
method invocations for the same object are carried out in the same order at
ev ery one of its replicas, but also that method calls to different objects are car-
ried out in the same order everywhere. As a consequence, such a system pro-
vides entry consistency, but in particular sequential consistency.

17. Q: Describe a receiver-based scheme for dealing with replicated invocations,
as mentioned in the text.
A: In this case, we let the coordinator of a replicated object imply invoke the
replicas of the called object, but let everyone of those replicas return their
answer to the coordinator. The latter, in turn, will need to do two things. First,
it should be able to detect multiple responses to a previous sent request. Such a
detection may require the use of sequence numbers. Second, the coordinator
should now about the other replicas in its group, and forward a response to
each of them.

SOLUTIONS TO CHAPTER 11 PROBLEMS

PROBLEM SOLUTIONS FOR CHAPTER 11 41

1. Q: Is a file server implementing NFS version 3 required to be stateless?
A: No, but the NFS protocols are such that it is possible to provide an imple-
mentation using stateless servers.

2. Q: Explain whether or not NFS is to be considered a distributed file system.
A: On can argue that it is not a file system, but merely a protocol that allows
local file systems to become accessible to remote clients. In fact, most of the
actual file system functionality is not implemented by NFS. Instead, it relies
on the Virtual File System interface available in most operating systems.

3. Q: Despite that GFS scales well, it could be argued that the master is still a
potential bottleneck. What would be a reasonable alternative to replace it?
A: Considering that master uses a file name to look up a chunk server, we
could also implement the master in the form of a DHT-based system and use a
hash of the file name as the key to be looked up. In this way, one would obtain
a fully decentralized master.

4. Q: Using RPC2’s side effects is convenient for continuous data streams. Give
another example in which it makes sense to use an application-specific proto-
col next to RPC.
A: File transfer. Instead of using a pure RPC mechanism, it may be more effi-
cient to transfer very large files using a protocol such as FTP.

5. Q: NFS does not provide a global, shared name space. Is there a way to mimic
such a name space?
A: A global name space can easily be mimicked using a local name space for
each client that is partially standardized, and letting the automounter mount
the necessary directories into that name space.

6. Q: Give a simple extension to the NFS lookup operation that would allow iterative
name lookup in combination with a server exporting directories that it mounted from
another server.
A: If a lookup operation always returns an identifier for the server from which
a directory was mounted, transparent iterative name lookups across multiple
servers would be easy. Whenever a server looks up a mount point on which it
mounted a remote file system, it simply returns the server’s ID for that file sys-
tem. The client can then automatically mount the directory as well, and contact
its associated server to continue name resolution.

7. Q: In UNIX-based operating systems, opening a file using a file handle can be
done only in the kernel. Give a possible implementation of an NFS file handle
for a user-level NFS server for a UNIX system.
A: The problem to be solved is to return a file handle that will allow the server
to open a file using the existing name-based file system interface. One

42 PROBLEM SOLUTIONS FOR CHAPTER 11

approach is to encode the file name into the file handle. The obvious drawback
is that as soon as the file name changes, its file handles become invalid.

8. Q: Using an automounter that installs symbolic links as described in the text
makes it harder to hide the fact that mounting is transparent. Why?
A: After the symbolic link has been followed, the user will not be in the
expected directory, but in a subdirectory used by the automounter. In other
words, the local home directory for Alice will be /tmp mnt/home/alice instead
of what she thinks it is, namely /home/alice. Special support from the operat-
ing system or shell is needed to hide this aspect.

9. Q: Suppose the current denial state of a file in NFS is WRITE. Is it possible
that another client can first successfully open that file and then request a write
lock?
A: Yes. If the second client requires read/write access (i.e., value BOTH) but
no denial (i.e., value NONE), it will have been granted access to the file. How-
ev er, although a write lock may actually be granted, performing an actual write
operation will fail. Remember that share reservation is completely independent
from locking.

10. Q: Taking into account cache coherence as discussed in Chap. 7, which kind
of cache-coherence protocol does NFS implement?
A: Because multiple write operations can take place before cached data is
flushed to the server, NFS clients implement a write-back cache.

11. Q: Does NFS implement entry consistency?
A: Yes. Because share reservations and file locking are associated with spe-
cific files, and because a client is forced to revalidate a file when opening it
and flush it back to the server when closing it, it can be argued that NFS
implements entry consistency.

12. Q: We stated that NFS implements the remote access model to file handling. It
can be argued that it also supports the upload/download model. Explain why.
A: Because a server can delegate a file to a client, it can effectively support
whole-file caching and putting that client in charge of further handling of the
file. This model comes close to uploading a file to a client and downloading it
later when when the client is finished.

13. Q: In NFS, attributes are cached using a write-through cache coherence policy.
Is it necessary to forward all attributes changes immediately?
A: No. For example, when appending data to a file, the server does not really
need to be informed immediately. Such information may possibly be passed on
when the client flushes its cache to the server.

PROBLEM SOLUTIONS FOR CHAPTER 11 43

14. Q: What calling semantics does RPC2 provide in the presence of failures?
A: Considering that the client will be reported an error when an invocation
does not complete, RPC2 provides at-most-once semantics.

15. Q: Explain how Coda solves read-write conflicts on a file that is shared
between multiple readers and only a single writer.
A: The problem is solved by ‘‘defining it away.’’ The semantics of transactions
underlying file sharing in Coda, permit treating all readers as accessing the
shared file before the writer opened it. Note that read-write conflicts within a
specific time interval cannot be solved in this way.

16. Q: Using self-certifying path names, is a client always ensured it is communi-
cating with a nonmalicious server?
A: No. SFS does not solve naming problems. In essence, a client will have to
trust that the server named in the path can actually be trusted. In other words, a
client will have to put its trust in the name and name resolution process. It may
very well be the case that a malicious SFS server is spoofing another server by
using its IP address and passing the other server’s public key.

17. One of the easiest ways for building a UNIX-based distributed system, is to
couple a number of machines by means of NFS. For this assignment, you are
to connect two file systems on different computers by means of NFS. In partic-
ular, install an NFS server on one machine such that various parts of its file
system are automatically mounted when the first machine boots.

18. To integrate UNIX-based machines with Windows clients, one can make use
of Samba servers. Extend the previous assignment by making a UNIX-based
system available to a Windows client, by installing and configuring a Samba
server. At the same time, the file system should remain accessible through
NFS.

SOLUTIONS TO CHAPTER 12 PROBLEMS

1. Q: To what extent is e-mail part of the Web’s document model?
A: E-mail is not part of the document model underlying the Web, but rather a
separate system that has been integrated with hypertext documents by means
of client-side software only. For example, most Web browsers provide addi-
tional support for handling e-mail, but the actual e-mail messages are not
related to hypertext documents in any way.

2. Q: In many cases, Web sites are designed to be accessed by users. However,
when it comes to Web services, we see that Web sites become dependent on
each other. Considering the three-tiered architecture of Fig. 12-0, where would
you expect to see the dependency occur?

44 PROBLEM SOLUTIONS FOR CHAPTER 12

A: There are two places: from the Web server to an externally available ser-
vice, or from the application (i.e., CGI) server to an external service. Consider-
ing that the Web server is acting as a relatively simple front end, and that most
of the complexity for implementing the service offered by a Web site is con-
tained in the application server, we generally see that the application server
makes use of other Web services.

3. Q: The Web uses a file-based approach to documents by which a client first
fetches a file before it is opened and displayed. What is the consequence of
this approach for multimedia files?
A: One of the problems is that in many cases such files are first fetched and
stored locally before that can be opened. What is needed, however, is to keep
the file at the server and set up a data stream to the client. This approach is
supported in the Web, but requires special solutions at both the client and the
server.

4. Q: One could argue that from an technological point of view Web services do
not address any new issues. What is the compelling argument to consider Web
services important?
A: What many people underestimate is the inoperability between systems
from different manufacturers in addition to inoperability between systems at
different organizations. Web services addresses these differences by essentially
prescribing how such systems can be used together. Although this may not be
very innovative, it is definitely a challenging problem to come up with the
right set of standards that fit the many business processes that are deployed in
practice.

5. Q: What would be the main advantage of using the distributed server dis-
cussed in Chap. 0 to implement a Web server cluster, in comparison to the way
the such clusters are organized as shown in Fig. 12-0. What is an obvious dis-
advantage?
A: The main advantage is that a client could communicate directly with its
assigned Web server, which may show to be beneficial when the cluster is dis-
persed across different networks (which may happen when dealing with flash
crowds). However, the more traditional design relies on well-deployed tech-
nology (IPv4) and is also seemingly simpler.

6. Q: Why do persistent connections generally improve performance compared
to nonpersistent connections?
A: The real gain is in avoiding connection setup, which requires a 3-way hand-
shake in the case of TCP.

7. Q: SOAP is often said to adhere to RPC semantics. Is this really true?
A: The answer is simply ‘‘no.’’ SOAP fundamentally adheres a two-way asyn-
chronous message-passing model, in which a request is explicitly formulated

PROBLEM SOLUTIONS FOR CHAPTER 12 45

in terms of a message sent to a server, whereas another message is sent back as
a response. SOAP does not prescribe that clients need to wait, not does it pro-
vide transparancy that one normally finds with RPC systems.

8. Q: Explain the difference between a plug-in, an applet, a servlet, and a CGI
program.
A: A plug-in is a piece of code that can be dynamically loaded from a
browser’s local file system. In contrast, an applet is dynamically downloaded
from the server to the browser, for which reason security is generally more
important. Note that many plug-ins can be dynamically downloaded as well,
but generally not without manual interference by the user. A servlet is compa-
rable to a plug-in, but is entirely handled at the server side. A CGI program is
a piece of code that runs in a separate process on the same machine as the
server.

9. Q: In WebDAV , is it sufficient for a client to show only the lock token to the
server in order to obtain write permissions?
A: No, the client should also identify itself as the rightful owner of the token.
For this reason, WebDAV not only hands over a token to a client, but also reg-
isters which client has the token.

10. Q: Instead of letting a Web proxy compute an expiration time for a document,
a server could do this instead. What would be the benefit of such an approach?
A: An important benefit would be that the expiration time is consistent in a
hierarchy of caches. For example, if a browser cache computes a longer expi-
ration time than its associated Web proxy, this would mean that one user
would get to see a possibly stale document, while other users that access the
same proxy are returned a fresher version.

11. Q: With Web pages becoming highly personalized (because they can be
dynamically generated on a per-client basis), one could argue that Web caches
will soon all be obsolete. Yet, this is most likely not going to happen soon.
Explain why.
A: The answer lies in the fact that although pages are highly personalized, the
various elements of which they are made can often be effectictively shared by
many different users. For example, a Web page may consist of various images
that are used for many different clients. Such elements are good candidates to
keep in a local cache, also because they generally do not change often.

12. Q: Does the Akamai CDN follow a pull-based or push-based distribution pro-
tocol?
A: Because replicas are fetched on demand after a client has been redirected to
a CDN server, Akamai is seen to follow a pull-based protocol.

46 PROBLEM SOLUTIONS FOR CHAPTER 12

13. Q: Outline a simple scheme by which an Akamai CDN server can find out that
a cached embedded document is stale without checking the document’s valid-
ity at the original server.
A: A simple approach followed by Akamai is to include a hash value of the
embedded document in its modified URL. It is important to realize that any
client will always retrieve all modified URLs when fetching the main docu-
ment. Subsequent lookups will eventually lead to a CDN server, which can
then conclude that a cached document is no longer valid by comparing hash
values in the modified URL of the requested and the cached document, respec-
tively.

14. Q: Would it make sense to associate a replication strategy with each Web doc-
ument separately, as opposed to using one or only a few global strategies?
A: Probably, considering the wide variety of usage patterns for Web docu-
ments. Many documents such as personal home pages, are hardly ever
updated, and if so, they are updated by only a single person, making these doc-
uments suitable for caching and replication. Dynamically generated docu-
ments containing timely information require a different strategy, especially if
they need to be replicated for performance. Note that the current Web can
hardly differentiate such documents.

15. Q: Assume that a nonreplicated document of size s bytes is requested r times
per second. If the document is replicated to k different servers, and assuming
that updates are propagated separately to each replica, when will replication be
cheaper than when the document is not replicated?
A: The consumed bandwidth in the nonreplicated case is r × s, assuming that
the requests are independent. Suppose now that document is updated w times
per second and replicated to k servers. Updates are propagated independently,
so that we have a total consumed bandwidth for propagating an update as
k × w × s bytes. Replication will be cheaper only if k × w × s < r × s.

16. Q: Consider a Web site experiencing a flash crowd. What could be an appro-
priate measure to take in order to ensure that clients are still serviced well?
A: One possible solution is to have the Web site replicated and redirect clients
to the replicas. This will still put a burden on the main site as it needs to per-
form the redirections, but in practice this approach works reasonably well. The
problem is that the Web site will need to be replicated in advance. As an alter-
native, if flash crowds are predictable, it may be possible to perform replica-
tion on demand, provided the resources to do so can be instantly claimed. The
latter is generally the case in CDNs.

17. Q: There are, in principle, three different techniques for redirecting clients to
servers: TCP handoff, DNS-based redirection, and HTTP-based redirection.
What are the main advantages and disadvantages of each technique?

PROBLEM SOLUTIONS FOR CHAPTER 12 47

A: Roughly speaking, we have that TCP handoff is highly transparent to
clients: they need not notice that there connection is being handled by another
server. Howev er, TCP handoff clearly has scalability problems: it will gener-
ally work only for Web server clusters. DNS-based redirection is also transpar-
ent, but works only for an entire site. Redirection on a per-page basis is not
possible. In contrast, HTTP-based redirection can operate at this finer granu-
larity, but has the disadvantage that a client will notice to which page it is
being redirected. The latter may not be what it wanted when clients store these
redirects such as in the case of maintaining bookmarks in Web browsers.

18. Q: Give an example in which a query containment check as performed by an
edge server supporting content-aware caching will return successfully.
A: Consider the two SQL queries Q1 ‘‘select * from booklist with price < 10’’
and Q2 ‘‘select * from booklist with price < 20.’’ In this example, the answer
for Q1 is contained in that of Q2. As a consequence, if the server had cached
the answer for Q2, it should be able to successfully perform Q1 locally.

19. Set up a simple Web-based system by installing and configuring the Apache
Web server for your local machine such that it can be accessed from a local
browser. If you have multiple computers in a local-area network, make sure
that the server can be accessed from any browser on that network.

20. WebDAV is supported by the Apache Web server and allows multiple users to
share files for reading and writing over the Internet. Install and configure
Apache for a WebDAV -enabled directory in a local-area network. Test the con-
figuration by using a WebDAV client.

SOLUTIONS TO CHAPTER 13 PROBLEMS

1. Q: What type of coordination model would you classify the message-queuing
systems discussed in Chap. 0?
A: Considering that in message-queuing systems processes are temporally
uncoupled, but will otherwise have to agree on message format and destination
queues, they classify as mailbox coordination models.

2. Q: Outline an implementation of a publish/subscribe system based on a mes-
sage-queuing system like that of IBM WebSphere.
A: Such an implementation can be accomplished by using a message broker.
All publish/subscribe messages are published to the broker. Subscribers pass
their subscriptions to the broker as well, which will then take care to forward
published messages to the appropriate subscribers. Note that the broker makes
use of the underlying message-queuing network.

48 PROBLEM SOLUTIONS FOR CHAPTER 13

3. Q: Explain why decentralized coordination-based systems have inherent scala-
bility problems.
A: The crux of the matter lies in the fact that we need to do decentralized
matching of published data and subscriptions. Sometimes, building an index is
possible, such as with subject-based systems. In those cases, we can use DHT-
based systems to distribute the index among the nodes in the peer-to-peer sys-
tem. If building such an index is not possible, as in the case of content-based
matching, we essentially need to do a global search to find subscriptions that
match published data. Such a search does not scale well.

4. Q: To what is a subject name in TIB/Rendezvous actually resolved, and how
does name resolution take place?
A: A name is resolved to the current group of subscribers. Name resolution
takes place by properly routing message to those subscribers. In TIB/Ren-
dezvous, routing takes place through a combination of multicasting and filter-
ing messages at rendezvous and router daemons.

5. Q: Outline a simple implementation for totally-ordered message delivery in a
TIB/Rendezvous system.
A: Use a sequencer to which all messages are sent. Subscribers pass subscrip-
tions to this sequencer. The FIFO-ordered message delivery of the TIB/Ren-
dezvous system will then guarantee that all messages multicast by the
sequencer are delivered to every subscriber in the same order.

6. Q: In content-based routing such as used in the Siena system, which we
described in the text, we may be confronted with a serious management prob-
lem. Which problem is that?
A: The issue here, is that these type of systems assume that an overlay of
application-level routers has already been established. In practice, this means
that an organization will need to manually configure the overlay network and
ensure that it is kept alive.

7. Q: Assume a process is replicated in a TIB/Rendezvous system. Give two
solutions to avoid so that messages from this replicated process are not pub-
lished more than once.
A: A first solution is to attach a message identifier to each published message,
and to let subscribers discard duplicates by taking a look at the identifiers. The
main drawback of this approach is the waste of network bandwidth. Another
solution is to assign a coordinator among the replicas, and let only the coordi-
nator actually publish messages. This solution is similar to assigning a coordi-
nator in the case of invocations with replicated distributed objects.

8. Q: To what extent do we need totally-ordered multicasting when processes are
replicated in a TIB/Rendezvous system?

PROBLEM SOLUTIONS FOR CHAPTER 13 49

A: Assuming that duplicate messages are either detected by subscribers, or
avoided altogether, total ordering is not an issue at all. In this case, the FIFO-
ordering delivery semantics are sufficient to let subscribers process the mes-
sages in the order they were published by the replicated process.

9. Q: Describe a simple scheme for PGM that will allow receivers to detect miss-
ing messages, even the last one in a series.
A: A simple scheme is to use sequence numbers. Whenever a sender has no
more data to send, it should announce by multicasting a special control mes-
sage. If that control message is lost, a receiver will start complaining in the
usual way. The sender can then simply retransmit the control message. In
essence, this is also the solution adopted in PGM.

10. Q: How could a coordination model based on generative communication be
implemented in TIB/Rendezvous?
A: This is actually not very difficult. What makes TIB/Rendezvous different
from, for example, the JavaSpaces in Jini, is that processes are still temporally
coupled. If published messages are temporarily stored, it would be possible for
subscribers to read them even when the publisher of messages no longer
exists. What is needed is for each subscriber to record a published message
that it has already read, so that receiving duplicates can be avoided.

11. Q: A lease period in Jini is always specified as a duration and not as an abso-
lute time at which the lease expires. Why is this done?
A: Especially in wide-area systems, it may happen that clocks on different
machines give very different times. In that case, specifying the expiration of a
lease as an absolute time is simply too inaccurate as the holder of the lease
may have a very different idea when the lease expires than the processes that
handed out the lease. With durations, this difference becomes less an issue,
provided some guarantees can be given that the transmission time of a lease is
relatively low.

12. Q: What are the most important scalability problems in Jini?
A: One important problem is related to the fact the Jini uses a multicast proto-
col to locate lookup services. In a wide-area system, this protocol will have to
be replaced by something different if Jini is to scale to large numbers of users
and processes. A second problem is related to matching templates to tuples in
JavaSpaces. Again, special measures will be needed to search a JavaSpace that
may be potentially distributed across a large-scale network. No efficient solu-
tions to these problems are yet known.

13. Q: Consider a distributed implementation of a JavaSpace in which tuples are
replicated across several machines. Give a protocol to delete a tuple such that
race conditions are avoided when two processes try to delete the same tuple.
A: Use a two-phase commit protocol. In phase one, the process doing the

50 PROBLEM SOLUTIONS FOR CHAPTER 13

delete sends a message to all the JavaSpace servers holding the tuple asking
them to lock the tuple. When all of them are locked, the delete is sent. If a sec-
ond delete happens simultaneously, it can happen that some servers have
locked one tuple and some have locked the other. If a server cannot grant a
request because the tuple is already locked, it sends back a negative acknowl-
edgement, which causes the initiator to abort the delete, unlock all the tuples it
has locked, wait a random time, and try again later.

14. Q: Suppose a transaction T in Jini requires a lock on an object that is currently
locked by another transaction T ′. Explain what happens.
A: Transaction T will continue to block until the lock is either released or until
the lease on the transaction expires. In the latter case, transaction T is simply
aborted.

15. Q: Suppose a Jini client caches the tuple it obtained from a JavaSpace so that
it can avoid having to go to the JavaSpace the next time. Does this caching
make any sense?
A: Caching is senseless because the tuple will have been removed from the
JavaSpace when it was returned; it is ready for the client to keep. The main
idea behind caching is to keep data local to avoid another server access. In the
case of Jini, a JavaSpace is often used to explicitly synchronize processes.
Caching does not play a role when process synchronization is explicitly
needed.

16. Q: Answer the previous question, but now for the case that a client caches the
results returned by a lookup service.
A: This is a completely different situation. The lookup service stores informa-
tion on the whereabouts of services. In this case, it may indeed make sense for
a client to cache previously returned results and try to contact the returned ser-
vices before going to the lookup service again.

17. Q: Outline a simple implementation of a fault-tolerant JavaSpace.
A: The simplest approach is to implement a JavaSpace on a single server with
stable storage. Write operations succeed only if the tuple has been safely writ-
ten to storage. In a more advanced setting, a distributed JavaSpace can be used
in which a server group is used to mask process failures. In that case, the
servers may need to follow a two-phase commit protocol for each write opera-
tion.

18. Q: In some subject-based publish/subscribe systems, secure solutions are
sought in end-to-end encryption beteen publishers and subscribers. However,
this approach may violate the initial design goals of coordination-based sys-
tems. How?
A: The problem is that end-to-end encryption requires that a publisher and
subscriber know each other. This is against the initial design goal that

PROBLEM SOLUTIONS FOR CHAPTER 13 51

processes should be referentially decoupled.

