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ABSTRACT
Pedestrian dynamics are nowadays commonly analyzed by lever-
aging Wi-Fi signals sent by devices that people carry with them
and captured by an infrastructure of Wi-Fi scanners. Emitting such
signals is not a feature for devices of only passersby, but also for
printers, smart TVs, and other devices that exhibit a stationary
behavior over time, which eventually end up affecting pedestrian
crowd measurements. In this paper we propose a system that accu-
rately counts nonstationary devices sensed by scanners, separately
from stationary devices, using no information other than the Wi-Fi
signals captured by each scanner in isolation. As counting involves
dealing with privacy-sensitive detections of people’s devices, the
system discards any data in the clear immediately after sensing, later
working on encrypted data that it cannot decrypt in the process.
The only information made available in the clear is the intended
output, i.e. statistical counts of Wi-Fi devices. Our approach relies
on an object, which we call comb, that maintains, under encryption,
a representation of the frequency of occurrence of devices over time.
Applying this comb on the detections made by a scanner enables
the calculation of the separate counts. We implement the system
and feed it with data from a large open-air festival, showing that
accurate anonymized counting of nonstationary Wi-Fi devices is
possible when dealing with real-world detections.
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•Human-centered computing→Ubiquitous andmobile com-
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1 INTRODUCTION
With a continuously increasing desire for uninterrupted connectiv-
ity, most people nowadays carry with them a smartphone whenever
they leave their house. Besides offering people access to the Inter-
net, smartphones leave radio traces behind them wherever they go.
For example, Wi-Fi interfaces of smartphones, whenever enabled,
periodically broadcast radio signals known as probe requests to dis-
cover available nearby Wi-Fi networks. These signals can be easily
captured by Wi-Fi scanners placed in public spaces; interpreted and
later aggregated into statistical counts, they are being leveraged
into a tremendous source of behavioral information regarding the
dynamics of the people carrying the emitting devices. Such con-
structions are calledWi-Fi based crowd-monitoring systems (CMS),
large-scale deployments being already implemented in many cities
across the globe.

Along with signals transmitted by devices of passersby, CMSs
receive signals coming from devices not belonging to the crowd
intended for monitoring. There are fixed devices such as printers,
smart TVs, as well asmany other home appliances from neighboring
buildings, which are Wi-Fi enabled. Also, there are devices that
are not necessarily fixed, yet they are not part of the crowd either,
such as laptops or even smartphones of people living or working
in nearby buildings, displaying a stationary behavior.

As the focus of a CMS is pedestrian dynamics, stationary devices
end up negatively influencing crowd measurements. Strategies for
setting them apart usually rely on fingerprinting Wi-Fi devices over
time by making use of information extracted from probe requests,
e.g., MAC addresses, received signal strength (RSS), frequency of
probing, etc. These fingerprints uniquely identify devices belonging
to individuals (i.e. natural persons), thus raising serious privacy
concerns. More precisely, such strategies are prone to profiling
allegations, as profiles of individuals can be potentially created as
a side effect, without consent, in the process, a practice frowned
upon by privacywatchdogs and strictly regulated by data protection
regulations such as the GDPR in the EU.

Modern CMS proposals follow privacy by design principles and
perform anonymization on the fly. This process happens directly on
scanners, and it implies discarding privacy-sensitive data as soon as
possible after ingestion, allowing only processed privacy-friendly
data that is sufficient to serve the intended purpose of the system,
i.e. statistical counts on crowds. In other words, by construction,
such a CMS would not be allowed to maintain data for building
fingerprints of devices. Therefore, a novel method is needed to sup-
port the separate counting of nonstationary and stationary devices,
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achieving the same goal as it was achieved through fingerprinting
but without needing access to privacy-sensitive data.

We build upon the notion of 𝑡-persistence [8] and we call non-
stationary and stationary devices the devices whose probe requests
reach a certain scanner in less than 𝑡 , respectively at least 𝑡 out
of a total of 𝑐𝑒 epochs (i.e. predefined fixed-length time intervals)
preceding the concerned moment of counting. We propose a sys-
tem that allows separately counting these two types of devices by
operating solely on encrypted data that cannot be decrypted in the
process. This is made possible by making use of an object, which
we call comb, that maintains an encrypted representation of the
frequency of occurrence of devices over time. We implement the
system and evaluate it using real-world data from a large open-air
festival, achieving a mean accuracy of 99.9% when counting non-
stationary devices sensed by the most crowded scanner throughout
all the epochs in the dataset.

The rest of this paper is structured as follows. Section 2 presents
background information and reviews the related work. Section 3
introduces the system model. In Section 4 we propose our construc-
tion, followed by an evaluation in Section 5 and a discussion in
Section 6. Finally, Section 7 concludes the paper.

2 BACKGROUND & RELATEDWORK
Devices with an active Wi-Fi interface periodically broadcast wire-
less signals (i.e. 802.11 Management Frames) called probe requests,
expecting to receive back probe responses from access points (APs)
available in their vicinity, responses that contain information neces-
sary for a potential connection. Probe requests happen outside any
established connection, so they circulate in the clear. Moreover, any
Wi-Fi scanner can receive them since they are being broadcasted.
Therefore, they represent a rich source of information that can be
easily sniffed.

The header of a probe request frame contains, among other in-
formation, the sender’s MAC address, serving as an identifier of
the sending device. By having a scanner performing Wi-Fi sniffing
at a location over time (e.g., a location where pedestrian traffic is
expected), one can get a good idea regarding the devices passing
through that scanner’s range. Considering that most people nowa-
days carry Wi-Fi enabled devices, the step from sensing devices to
monitoring crowds came naturally, as it was proved that a clear cor-
relation can be seen between measured devices and people present
in a certain location [18]. Such measurements, commonly known as
statistical counts, are the expected outputs of a CMS, and they can
lead to accurate representations of crowds under the assumption
that an appropriate correction factor is applied [5, 19].

A common crowd-monitoring scenario is presented in Fig. 1. An
entity providing crowd-monitoring services (i.e. a service provider)
runs an infrastructure of scanners, generally managed by a server.
Each scanner gathers Wi-Fi signals and creates a list of devices
detected within a certain period of time (i.e. epoch). It passes that list
to a server, which is later queried by a party interested in statistical
counts on crowds (i.e. a consumer). A classical query is that of
footfall, asking for how many devices were detected in the range of
a scanner in an epoch. An improved version of the query, which we
also aim to accommodate in this paper, can ask for more insights,

such as howmany of those devices displayed a nonstationary versus
a stationary behavior.

How many devices? 

7 

How many non- / stationary? 

4 / 3 

Anonymized detections 

Scanner Server Consumer 

Service Provider Consumers

Figure 1: Intended behavior of a CMS offering statistical
counts on footfall, including the ability to count separately
nonstationary and stationary devices.

Anonymization on the fly is a vital prerequisite for protecting
collected data generated by individuals’ devices from being exposed
to privacy-invasive situations. In CMSs implementing this concept
[3, 20, 21], scanners process the data sensed from devices into an
anonymized format that still allows the computation of statistical
counts. Immediately afterwards, they discard the original data. As
a result, only anonymized data leaves the scanners at the end of
each epoch. This can be achieved, for example [20], by immedi-
ately encoding data into a format facilitating statistical counts and
encrypting it with a cryptographic scheme that allows the computa-
tion of those counts under encryption while leaving no possibility
of decryption through the process. In such a system, once a device
is recorded as present within an epoch, it remains counted, so dis-
carding detections on the fly does not affect the statistical counts.
However, being able to tell whether a sensed device is nonstation-
ary or stationary can prove to be challenging, as a single spotting
of a device may not be enough for making a decision.

There are different methods researchers attempted to use for
discriminating between nonstationary and stationary devices based
on transmitted Wi-Fi signals. Chilipirea et al. [9] investigated the
use of so-called stay points [14]. Essentially, the approach relies
on the assumption that a nonstationary device will be detected by
multiple nonadjacent scanners. We cannot use such an approach
since it implies a post-factum decision based on information from
multiple scanners, whereas in our case the decision should be made
directly on the scanner, in isolation, while having no access to
information external to the concerned scanner.

A solution that can indeed be deployed in isolation on a scanner
is presented by Redondi et al. in [16]. The authors extract, for each
MAC address seen in probe requests, features such as interprobe
period, RSS, number of broadcasted or directed probe requests, etc.
They use these features to build a machine-learning algorithm for
classifying devices into nonstationary (handheld) and stationary
(nonhandheld) devices. However, for such a system to be effective,
privacy-sensitive data must live for a much longer period than
anonymization on the fly permits.

Lastly, single-shot attempts such as [2] try tomake the distinction
by looking only at the MAC address of a device, more precisely at
the first 24 bits representing the Organizationally Unique Identifier
(OUI). The advantage of such an approach is that, besides being
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applicable in isolation, it does not need to store data for a long time.
There are, though, several drawbacks, such as the fact that new
OUIs are constantly being assigned, therefore additional effort is
required to maintain an up-to-date list, and, more importantly, the
same OUI can be very well assigned by manufacturers to devices of
both types, thus making the approach impractical for our purpose.

3 SYSTEM MODEL
3.1 Overview
We model a CMS as a system run by a service provider (SP), of-
fering crowd-monitoring insights in the form of statistical counts
to interested parties, which we call consumers (see Fig. 1). The SP
manages an infrastructure of scanners, which detect Wi-Fi devices
in their vicinity. Scanners collect and group such detections in sets
corresponding to predefined periods of time called epochs. Con-
sumers can address queries to the SP, asking for statistical counts
such as footfall found near a scanner in a specific epoch. Further-
more, consumers can ask for more granular information, such as
how many of the counted devices are (non)stationary. The system
should deliver its functionality in such a way that the privacy of
individuals whose devices are detected is not compromised in the
process.

3.2 Formalities
We denote by S = {𝑠1, ..., 𝑠𝑛} the set of all scanners managed by the
SP. Each scanner 𝑠 ∈ S performs Wi-Fi sensing across successive
time intervals called epochs.

Definition 1. An epoch 𝑒 ∈ E is a time interval having 𝑡𝑠𝑡𝑎𝑟𝑡 (𝑒)
as beginning and 𝑡𝑒𝑛𝑑 (𝑒) as end, where E denotes the set of all such
epochs.

When a scanner receives a probe request from a nearby device,
it reads the MAC address 𝑎 ∈ A ⊂ {0, 1}48 encased in the probe
request and assigns it, according to the timestamp of reception 𝑡𝑟 ,
to the corresponding epoch 𝑒 for which 𝑡𝑠𝑡𝑎𝑟𝑡 (𝑒) ≤ 𝑡𝑟 < 𝑡𝑒𝑛𝑑 (𝑒).

Definition 2. We call detection a triplet (𝑎, 𝑠, 𝑒) indicating that a
device bearing the MAC address 𝑎 was detected by scanner 𝑠 during
epoch 𝑒 . We denote the set of all such detections made by a scanner
𝑠 during an epoch 𝑒 as D𝑠,𝑒 .1

Typically, a CMS is able to offer information regarding footfall
in the range of a scanner 𝑠 during an epoch 𝑒 by computing the
statistical count |D𝑠,𝑒 |. However, in this paper we go further and
aim to offer additional valuable information for crowd monitoring,
such as how many of the spotted devices are (non)stationary.

Definition 3. For a current epoch 𝑒 , a set of 𝑐𝑒 consecutive epochs
𝐸 = {𝑒−𝑐𝑒 , ..., 𝑒−1} preceding it and a threshold 𝑡 , we define a non-
stationary device as a device detected in an epoch 𝑒 near a scanner
𝑠 that was also detected by the same scanner 𝑠 in less than 𝑡 out
of the 𝑐𝑒 epochs in E. Conversely, a device is stationary if it was
detected by 𝑠 in at least 𝑡 out of the 𝑐𝑒 epochs in E.

1Note that by using sets, we avoid counting the same device multiple times within
an epoch. This is useful since many Wi-Fi devices are known to transmit numerous
probe requests in short periods of time, while for a CMS it is sufficient that a device
signals its presence once in an epoch to count it.

For an epoch 𝑒 and a scanner 𝑠 we denote the sets of nonstation-
ary and stationary devices as ND𝑠,𝑒 and SD𝑠,𝑒 , respectively. The
corresponding statistical counts can be, thus, computed as |ND𝑠,𝑒 |
and |SD𝑠,𝑒 |. These, together with |D𝑠,𝑒 |, represent the types of
outputs the system should offer.

3.3 Threat model
Throughout the crowd-monitoring process, the system senses and
manages data generated by Wi-Fi devices, many of them belonging
to people from the crowd. Such data is privacy-sensitive and must be
carefully handled. We consider an attacker having as main purpose
learning privacy-sensitive information about the individuals being
sensed. To reach her target, the attacker could compromise each
component of the system and, without deviating from the protocol,
try to infer as much insights as possible from the data handled by
that component. Such an attacker is commonly known as honest-
but-curious (HBC). To make sure that such an attack cannot succeed,
we demand three main security goals to be met, while ensuring
that one assumption is followed.

Anonymization on the fly. There should be no data in the clear
surviving more than the duration of the epoch in which it was
generated, neither outside the scanner that handles it. Gathering
and processing detections is, thus, confined to each scanner and
limited in time, allowing nothing else than anonymized data to
leave the scanners. Note that in order to ensure that this procedure
is performed correctly, we need to demand that scanners are tamper-
proof.

Blind server. The server should not store, nor handle privacy-
sensitive data that it can understand. This requirement offers pro-
tection against SPs who could try to infer additional information
from the data they handle. Nevertheless, we assume that the server
executes its tasks correctly.

Outputs. The system should allow consumers to learn statistical
counts on crowds, as this is the intended functionality of the system,
but nothing else. Also, the system should enroll only consumers
that have a publicly verifiable identity, such as a public key certified
by a trusted certificate authority.

Noncolluding entities assumption. The SP does not collude
with any of the enrolled consumers, this being a common request
of multi-party computation constructions. In essence, SP and con-
sumers are not allowed to cooperate outside the protocol for mutual
information enrichment. This also implies that the SP is not allowed
to enroll itself as a consumer.

4 OUR CONSTRUCTION
In this section, we start by presenting a state-of-the-art existing
method for counting footfall in a privacy-preserving way. On top
of it, we introduce a novel mechanism for separating, on the spot,
sensed devices into nonstationary and stationary, as demanded by
their definition. In this process we make use of an instrument obliv-
iously built under encryption that makes the distinction possible
and that we also introduce in this section.
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4.1 Statistical counting with Bloom filters
For computing statistical counts on crowds, Bloom filters (BFs) have
been proposed [20]. BFs [7] are probabilistic data structures used
for representing sets in a space-efficient way. They consist of arrays
with𝑚 positions, initially all set to 0, defined along with 𝑘 different
hash functions. To add an element in the set, the 𝑘 hashes of the
element are computed and the positions in the BF corresponding to
the results are set to 1. Checking whether an element is a member
of the set is done similarly, by computing the 𝑘 hashes and verifying
that corresponding BF positions are all set to 1. False negatives are
not possible, since if an element was written in the BF, the positions
definitely remain set to 1. However, false positives are possible
since a position can be set to 1 by the hashes of different elements,
a probability of false positives 𝑝 being expected when 𝑛 elements
are present in the BF.

We leave security requirements aside for a moment to make
clear the functionality under the hood. We will get back to them
in subsection 4.3, where we present a multi-party cryptographic
construction fulfilling these requirements, along with a detailed
description of the actions executed by each party.

In the context of crowd monitoring, the set of detections in an
epoch is encoded into a BF. Later on, based on the count of 1’s
in the BF 𝑐𝑡 , one can get an estimation 𝑐 of the cardinality of the
original set of detections, as Swamidass and Bald propose in [22], by
computing the formula in eq. (1). This estimation is highly accurate,
as shown by Papapetrou et al. in [15].

𝑐 = −𝑚
𝑘
ln

(
1 − 𝑐𝑡

𝑚

)
(1)

Thus, for a scanner 𝑠 and an epoch 𝑒 , the computation on the
corresponding BF of 𝑐 ≈ |D𝑠,𝑒 |.

4.2 Combing: Separately counting
nonstationary from stationary devices

Estimating statistical counts using eq. (1) is intended for footfall
insights. However, the computed values of 𝑐 cover the sensed de-
vices altogether, including stationary devices that are not part of
the actual footfall, whereas footfall is much better represented by
the nonstationary devices alone.

An ideal solution would be able to simply tell nonstationary
from stationary devices detected in an epoch, as indicated by the
choice of 𝑡 and 𝑐𝑒 in Definition 3, and write them in two different
BFs. Then, the corresponding granular statistical counts could be
computed by separately applying eq. (1) on the two BFs. Yet, in our
case, we are dealing with a single BF containing all the detections
in an epoch. We aim to start from the bottom up and leverage this
single BF into something close to the two BFs in the ideal case
above.

The BF-equivalent of a device being detected in an epoch is rep-
resented by the 𝑘 positions indicated by the hashes computed on its
address. If the same device is detected by the same scanner across
multiple epochs, still the same 𝑘 positions will correspond to it.
Intuition says that positions corresponding to stationary devices
will be written in BFs, over time, more often than positions corre-
sponding to nonstationary devices. This leads us to envisioning an
object called a comb to help us make this separation.

Definition 4. For a scanner 𝑠 , an epoch 𝑒 and a BF of length𝑚

containing the detections made by 𝑠 during 𝑒 , we define the comb
as an array of the same length𝑚, for which each position indicates
whether the corresponding position in the BF should be taken
into account when counting nonstationary or stationary devices.
The comb is built across 𝑐𝑒 epochs preceding 𝑒 by summing up,
positionwise, the BFs built at 𝑠 during those epochs; the result is
similar to a counting BF [12].

We present in Fig. 2 an example of a combing process when
considering nonstationary devices as those being detected by a
scanner 𝑠 in less than 20 out of the 24 epochs preceding the current
epoch 𝑒 . Applying the comb on a BF produces two BF-like structures
corresponding to supposedly nonstationary and stationary devices.
Subjecting these structures to eq. (1) generates the estimated counts
𝑛𝑐 and 𝑠𝑐 , which approximate the statistical counts |ND𝑠,𝑒 | and
|SD𝑠,𝑒 |.

< 2
0

5 21 2 0 27

1 1 0 1 0

1 0 0 1 0 0 1 0 0 0

... ...

... ...

......... ...

Comb

BFs,e

Eq. 1Eq. 1

sc ≈ |SDs,e| nc ≈ |NDs,e| 

< 2
0

< 2
0

>=
 20

>=
 20

t = 20
ce = 24

Figure 2: Combing a BF for 𝑡 = 20, 𝑐𝑒 = 24, in order to compute
the statistical counts of nonstationary and stationary devices
seen by scanner 𝑠 during epoch 𝑒.

We stress that these structures are not BFs by definition, as they
are generated according to some conditions that do not necessarily
translate into a separation of elements but rather into a separation
of positions. Their statistical properties (e.g., the number of 1’s),
though, are relevant for statistical counts. Yet, the accuracy of the
estimations may be different from in the ideal case (i.e. separate
actual BFs), as we know that more elements can be hashed to the
same position and deciding how to label that position (i.e. non-
stationary or stationary) can potentially have an impact. We will
analyze these aspects in detail in Section 5.

4.3 Anonymized counting under encryption
BFs, despite being different from detections in the clear, their rep-
resentation of data still leaves the stored 0’s and 1’s visible. As the
identifier space (i.e. MAC address space) is easily enumerable [6],
BFs storing such elements are susceptible to brute-force attacks, in
which an attacker can check, in limited time, the presence of each
possible identifier by iteratively computing the 𝑘 hash functions
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and verifying the corresponding positions. Therefore, BFs should
not be allowed to live as they are for more than an epoch, nor
outside the scanner that generates them. Still, in order to build a
comb, we need to combine data from multiple epochs, data that
should have been already discarded. To overcome this problem, we
consider the option of encrypting data before discarding it in such
a way that it allows the operations that we need to perform on it,
but this time under encryption.

Homomorphic encryption [17] is a type of encryption that allows
mathematical operations directly on the encrypted data, without
the need for decryption. The results under encryption are the same
as if the operations were performed on data in the clear. In particu-
lar, in our system, in order to build the comb, we need an encryption
scheme allowing additions under encryption. Also, to be effective
for BFs, which only contain 0’s and 1’s, the scheme should be prob-
abilistic, such that encrypting the same value multiple times yields
different ciphertexts. Lastly, the scheme should be asymmetric, such
that an SP in possession of a public key can encrypt and perform
operations under encryption to address consumer queries, but that
only the intended consumer holding the corresponding secret key
can decrypt the received results. ElGamal [11] is a scheme bearing
all these properties, and we choose to use the additively homomor-
phic version of it in our system.

Let us now assemble the components and present how the whole
process of anonymized counting takes place.

Preamble. Consumers enroll in the system by presenting their
public key to the SP, which stores it on the server and forwards it
to the scanners.

Sensing. Each epoch, scanners perform sensing and write detec-
tions in a BF. At the end of an epoch, they encrypt a copy of the BF,
positionwise, for each enrolled consumer, using their public key.
They discard the original BF and send the resulting encrypted BFs
(EBFs) to the server.

Querying. A consumer interested to find out insights on footfall in
the vicinity of a scanner 𝑠 within an epoch 𝑒 informs the SP of her
interest. She specifies, along with the query, the number of epochs
𝑐𝑒 preceding epoch 𝑒 for which she would like to have a comb built.

Response. The response to a query is prepared by the SP on the
server. The server generates the comb by summing up positionwise,
under encryption, the EBFs generated by 𝑠 in the 𝑐𝑒 epochs preced-
ing 𝑒 , making use of the homomorphic property of the encryption
scheme. It delivers, as a response, the EBF from scanner 𝑠 and epoch
𝑒 , along with the generated comb. Before that, it shuffles the posi-
tions of both structures to make sure that any BF-related meaning
is lost. Note, though, that the shuffling of the comb should mirror
the shuffling of the EBF, because the order of the positions may
not be important for combing, but the correspondence between the
positions of the two is still needed.

Result. The consumer, being in the possession of the secret key,
decrypts the shuffled EBF and comb, performs the combing accord-
ing to a threshold 𝑡 that she desires and applies eq. (1) to estimate
the statistical counts.

5 EVALUATION
In this section, we start by running a set of preliminary experiments,
testing our intuition that positions in a comb corresponding to sta-
tionary devices are set to 1 more often than positions corresponding
to nonstationary devices, thus allowing their separation based on
a threshold. We continue by presenting an error analysis to un-
derstand how to setup the system in order to minimize counting
errors. Then, we perform an evaluation using a real-world dataset
to see how well the system can separately count nonstationary
from stationary devices. Finally, we do an actual implementation,
including the encryption layer, and analyze its performance.

5.1 Preliminary experiments
BFs are generally configured to support a number of inserted ele-
ments𝑛 while satisfying a desired probability of false positives 𝑝 . To
meet these conditions, the length𝑚 of the BF should be calculated
as −𝑛 ln𝑝/(ln 2)2 and the optimal number of hash functions 𝑘 as
− log2 𝑝 . For example, to accommodate a maximum of 100 detec-
tions at a probability of false positives of 0.01,𝑚 should be 959 and
𝑘 should be 7. In this subsection, we stick to these parameters to run
some preliminary experiments. For hashing, we use, with different
seeds, MurmurHash3 [4], a fast hash function, noncryptographic,
but suitable though for our purpose since BFs and combs are going
to be encrypted anyway. As identifiers, we generate random MAC
addresses coming from a uniform distribution.

The idea of a comb comes from the intuition that positions where
stationary devices are mapped in BFs, are written more often than
those where nonstationary devices are, making their separation
possible based on a threshold. Following this intuition, we run a set
of preliminary experiments. We build a comb for 𝑐𝑒 = 24 epochs,
andwe choose, for separation, a threshold 𝑡 of 20 epochs. For this set
of experiments, the epoch length is not important, but we choose 𝑐𝑒
as 24 having in mind epochs of 5 minutes and, thus, a total interval
of two hours for building the comb. We fix the number of devices
per epoch, denoted as 𝑑 , first to 50, then to 100, from which 10
are stationary and the rest nonstationary. We make the stationary
devices appear in a random number of epochs between 𝑡 and 𝑐𝑒 .
Each epoch we fill, up to 𝑑 , with nonstationary devices. For 𝑑 = 50,
each nonstationary device appears once; for 𝑑 = 100, we make 10
of them appear randomly between 1 and 𝑡 − 1 times and the rest
once. We show the results in Fig. 3, where we display the values
found in the comb on the 𝑥 axis and their mean frequency out of
100 runs on the 𝑦 axis (i.e. how many positions are in the comb for
each value).

We can see from both experiments that indeed writings in the
comb are concentrated separately, according to the inserted non-
stationary and stationary devices. If we were to apply this comb on
a BF containing the detections from an epoch, the positions whose
corresponding comb values are found to the left of the dashed
line would be considered as belonging to nonstationary devices,
whereas those on the right would be considered as belonging to
stationary devices.

Yet, we can see a difference between the results of the two ex-
periments. For 𝑑 = 50, the threshold clearly separates the values
corresponding to the two types of devices, as the frequency is 0
for values such as 17, 18 and 19. For 𝑑 = 100, although apparently
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Figure 3: Frequency of comb values when sensing 50 and 100
devices per epoch for 𝑐𝑒 = 24, using BFs configured for 𝑛 = 100
and 𝑝 = 0.01. The dashed line marks the threshold 𝑡 = 20.

this was the figure for which the system was configured, we can
see the curve corresponding to nonstationary devices expanding,
through some of its positions, beyond the dashed line, into the
territory where positions are marked as stationary. This overlap
can incur errors on the counts, and it can visibly get even bigger
for lower thresholds or when there are more nonstationary devices
appearing more often. Opting for a value of𝑚 higher than is usually
computed would alleviate the problem, and it comes natural since
the comb combines detections from multiple BFs, leading to much
more collisions than expected for a single BF. We elaborate on this
matter below.

5.2 Error analysis
We stated earlier that a higher value for𝑚 should be used. In princi-
ple, with an infinite𝑚, each device, no matter its type, will write at
positions never written by any other devices. As a result, the values
at the positions in the comb would be exactly equal to the number
of occurrences of the devices pointing to them. Thus, applying the
threshold would make a perfect separation, as if we would have
used from the start two separate BFs for nonstationary and station-
ary devices. In practice though, we cannot choose𝑚 infinite for
performance reasons that we will further explain in Section 5.4, so
we expect to see comb positions written by different devices. We
call such an event a collision.

We remind that statistical counts of nonstationary and station-
ary devices are computed by applying eq. (1) on the two BF-like
structures resulting after combing. The only thing from the formula
that makes the counts differ from those in the ideal scenario (i.e.
two separate BFs) is the change of 𝑐𝑡 (i.e. 𝑐𝑡𝑠 for stationary and 𝑐𝑡𝑛
for nonstationary) inflicted by values of 1 being misplaced by the
comb into the other BF-like structure due to collisions. We present
how combing happens at position level in Fig. 4.

Depending on what devices generate them, we have the fol-
lowing taxonomy of elementary collisions: (1) between stationary
devices, (2) between a stationary and a nonstationary device and
(3) between nonstationary devices. Each of the three can affect in
different ways the counts of nonstationary and stationary devices,
also linked with which device writes (or not) at a collision-related
position in the BF to which the comb is applied.

vciComb ... ...

vbiBF ... ...

 
sti = (vci >= t)

!sti & vbi... ... sti & vbi... ...NBF SBF

posi

posi

posiposi

Figure 4: Moving value 𝑣𝑏𝑖 from a colliding position 𝑖 in a BF
to the nonstationary (NBF) or stationary (SBF) BF-like struc-
ture, based on the relationship between its corresponding
value in the comb 𝑣𝑐𝑖 and 𝑡 .

(1).When two stationary devices generate the collision on the comb,
the concerned position will be marked as stationary as both devices
appeared at least 𝑡 times and their combined writings will definitely
lead to a sum at least as large as 𝑡 . No matter which of the two
devices appears (or not) in the analyzed epoch, combing will not
produce any change in 𝑐𝑡𝑠 , nor in 𝑐𝑡𝑛 , and, thus, no impact on 𝑠𝑐 ,
nor on 𝑛𝑐 , as long as there is no other nonstationary device writing
at that position. In case any nonstationary device writes at that
position, 𝑐𝑡𝑛 will decrease by 1; in addition, in this particular case,
if none of the stationary devices appears, 𝑐𝑡𝑠 will increase by 1.

(2).A positionwhere a stationary and a nonstationary device collide
will always be marked as stationary. As in the above case, the
presence of another device writing at the same position with a
stationary device can only increase the already greater or equal with
𝑡 sum. If there is no nonstationary device writing at that position in
the analyzed epoch, 𝑐𝑡𝑠 and 𝑐𝑡𝑛 will not change, no matter whether
the stationary device appears or not. If any nonstationary device
writes at that position, 𝑐𝑡𝑛 will decrease by 1 as the position is
marked as stationary; moreover, if in this situation the stationary
device does not show up, 𝑐𝑡𝑠 will increase by 1, falsely believing
that the device was present.

(3). When two nonstationary devices collide on a position, the
position can be marked as nonstationary if the count of epochs
in which at least one of them appears is lower than 𝑡 , otherwise,
the position is marked as stationary. The lower the 𝑡 , the higher
the chance of marking the position as stationary in case of such a
collision. If the position is marked as nonstationary, there will be no
impact whatsoever, no matter what nonstationary devices write at
it. Note that stationary devices cannot be expected to write at that
position, otherwise they should have been part of the collision. If the
position is marked stationary and at least one nonstationary device
writes at that position in the analyzed epoch, 𝑐𝑡𝑛 will decrease by 1
and 𝑐𝑡𝑠 will increase by 1.

To summarize, when collisions occur, 𝑐𝑡𝑠 tends to increase and
𝑐𝑡𝑛 tends to decrease. The systematic effect of this is a potential
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overcounting of stationary devices and undercounting of nonsta-
tionary devices.

We see that the choice of 𝑡 , which is a functional parameter dic-
tated by the consumer and her functionality needs, can, depending
on 𝑡 , influence the accuracy of counts in case of collisions between
nonstationary devices. We will have this in mind when evaluating
the accuracy of the system. However, most of the impact on counts
can be prevented by minimizing the probability of having collisions
in the first place. This can be done through a careful choice of BF
parameters.

We have alreadymentioned that a higher𝑚 is desirable, deviating
from typical BF configurations, which choose𝑚 and 𝑘 to match a
probability of false positives 𝑝 . Though, the probability 𝑝 ′ that a
position in the comb corresponds to a collision is different from 𝑝

and is the same as the probability that at least two elements write
at that position, which we display in eq. (2).

𝑝 ′ =

(
1 −

(
1 − 1

𝑚

)𝑘 )2
(2)

As our intention is to minimize 𝑝 ′ and not necessarily to match
𝑝 , besides already fixing𝑚 as high as performance requirements
allow, 𝑘 should be always chosen as 1.

5.3 Evaluation with real-world data
We proceed with an evaluation using real-world data, to assess how
well our mechanism is capable of separately counting nonstation-
ary from stationary devices when faced with real detections sensed
by an actual infrastructure of scanners. We are using a dataset
collected in 2017 by 30 scanners placed in the city of Assen, The
Netherlands. Scanning took place for 12 consecutive days, covering
the whole period of a large open-air festival. Scanners were placed
on the streets of the city center, gathering detections of devices
belonging to people in the outdoor crowds, as well as devices in
nearby buildings, capturing, thus, a wide range of stationary and
nonstationary behaviors. There were 26 million detections of de-
vices bearing 176 thousand different identifiers (i.e. MAC addresses
run through a one-way cryptographic hash function).

We fix the epoch length to 5 minutes, as it proved to be long
enough to ensure capturing probe requests from most devices si-
multaneously present near a scanner [13]. For this epoch length,
with few exceptions, detection sets from the dataset consist of less
than 1000 devices. Normally, when setting up BFs, for 𝑛 = 1000
and a low 𝑝 , e.g., 0.01,𝑚 should be ≈ 10000 and 𝑘 = 7. Neverthe-
less, we increase𝑚 to 100000 (i.e. 10 times higher) and use 𝑘 = 1,
as discussed in Section 5.2. We will later show in Section 5.4 that
this high value of𝑚 still allows even resource-constrained scan-
ners to produce EBFs for at least two consumers within 5 minutes.
Lastly, we fix 𝑐𝑒 to 24 (i.e. 2 hours). Two hours of detections should
provide enough information to decide whether a device is nonsta-
tionary or stationary, in the context of an open-air urban festival
and considering pedestrian dynamics in such conditions.

For the following experiments, we consider a scanner placed in
the most crowded area of the festival, which gathered a total of 1.6
million detections. For each epoch, we group these detections in
detection sets that we encode into BFs. Then, for each BF, we create

its associated comb corresponding to the previous 𝑐𝑒 epochs. In par-
allel, we calculate and store the actual frequency of occurrence for
each device that we write in the comb. To evaluate the accuracy of
counts of nonstationary and stationary devices from an epoch, we
compare two things: (1) the results, rounded to the nearest integer,
obtained by combing that epoch’s BF (i.e. using our mechanism)
with (2) the counts obtained by separating devices sensed in that
epoch based on the previously stored actual frequency of occur-
rences (i.e. obeying Definition 3). Note that there may be cases
when carry-on devices end up being considered stationary when,
for example, they spend more than 𝑡 epochs in one place. This is
consistent with our evaluation because, by definition, those devices
are indeed stationary.

We select a sequence of five of the very crowded encountered
epochs, as an extreme scenario seen by the system. Each epoch
contains around 1000 detections. We first plot, in Fig. 5, the split
between nonstationary and stationary devices counted by using
our mechanism, when setting the threshold 𝑡 to 20, 10 and 5, re-
spectively.
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Figure 5: Separate counts of nonstationary and stationary
devices for 𝑐𝑒 = 24 and different values of 𝑡 .

This figure allows us to understand what the threshold 𝑡 means
for the classification of devices. Choosing a lower 𝑡 determines
the mechanism to consider more devices as stationary, since fewer
detections are sufficient for passing the threshold. For 𝑡 = 5 for
example, the definition of stationary devices is broad and includes
from smart TVs that are present in most epochs to devices that
spend 25 minutes in the area and then leave. On the other hand,
for 𝑡 = 20 the definition is stricter and, thus, fewer devices are
considered stationary. Nevertheless, in our construction the choice
of 𝑡 and the interpretation of what nonstationary and stationary
devices are, fall onto the consumer, who proceeds according to her
needs; we will come back to this discussion later, in Section 6.1.

For the same sequence of epochs, we want to see how accurate
the split we have just presented is. We plot thus in Fig. 6, side by
side, actual counts and counts estimated by our system. The lower
part of the figure (left 𝑦 axis) shows nonstationary, while the upper
part (right 𝑦 axis) the shows stationary devices.

For these very crowded scenarios in the dataset and using ap-
propriately chosen system parameters, both nonstationary and
stationary devices are estimated with high accuracy. For 𝑡 = 20,
the estimated count of nonstationary devices is at most 1 device
away from the actual count (i.e. 967 instead of 966 devices leading
to an error of 0.1%, equivalent with an accuracy of 99.9%) and for
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Figure 6: Comparing real counts of nonstationary and sta-
tionary devices with counts estimated by the system.

stationary devices at most 2 devices away. For lower 𝑡 , the system
can perform accurate estimations too, though we can notice a small
decrease in accuracy. The highest error when estimating nonsta-
tionary devices for 𝑡 = 5 is 3.4%, corresponding to an accuracy of
96.6%. This is something we expected to see, as we have shown that
a lower 𝑡 increases the probability of collisions between nonstation-
ary devices, leading to more positions being marked as stationary.
To get a better feeling of this, we plot for the same sequence of
epochs, in Fig. 7, the absolute error of nonstationary and stationary
counts when 𝑡 equals 20, 10 and 5.
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Figure 7: Absolute error of counts of (non)stationary devices.

Constantly, the error is bigger for lower 𝑡 . We can also see a direct
correlation between the decrease of nonstationary counts and the
increase of stationary counts. Let us take a look, for example, at the
5th epoch. We interpret the numbers as follows. The collisions in
the comb led to a number of positions in the 5th epoch’s BF being
marked as stationary, despite nonstationary devices wrote there in
the comb as well. Not counting these positions as nonstationary
diminishes the count of nonstationary devices by 23. Counting the

exact same positions as stationary increases the count of stationary
devices by 20.

We move on now to analyzing the accuracy of counts of nonsta-
tionary devices for the whole period of the festival in the vicinity of
the most crowded scanner. Our purpose is to exclude from counts
stationary devices that are present most of the time (i.e. printers,
smart TVs, home appliances from nearby buildings, etc.). Even
though in principle such devices do not move, there may be situa-
tions when they do not transmit probe requests for a while or the
probe requests do not reach the scanner (e.g., a temporary power
cut, a device overload / malfunction, or simply a sudden signal
interference). This is why we consider 20 to be an appropriate value
for 𝑡 and we fix it like this. The rest of the parameters of the system
remain unchanged, including 𝑐𝑒 = 24. We present, in Fig. 8, the
counts of nonstationary devices estimated by our system through-
out all the epochs of the festival, as well as the absolute error for
each epoch.
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Figure 8: Estimated nonstationary devices and their absolute
errors during festival days and afterwards.

The graph covers a total of 2977 epochs spread across 11 days; it
does not include the first 24 epochs, as combs need 24 epochs to be
built. All estimations are at most 6 devices away from the actual
counts. For those epochs with an absolute error of 6 (i.e. 4 of them,
very crowded epochs with actual counts between 843 and 1112),
accuracy is higher than 99.2% for all of them. The mean accuracy
across all the epochs is 99.9%. Overall, in 93.9% of the epochs, the
estimation is at most one device away from the actual count; when it
is farther than one device away, it is for very crowded epochs where
the impact on accuracy is very low. We ran the same experiments
for estimating stationary devices and we confirm that the results
are similar, i.e. a mean accuracy of 99.6% (apparently lower, but due
to stationary devices being fewer and absolute error having thus a
higher impact) and estimations at most 5 devices away from actual
counts.
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5.4 Implementation & Performance analysis
We perform an implementation of the system and assess its per-
formance, covering the procedures done by the different involved
parties, including shuffling and operations done under encryption
according to the protocol. By going through this complete imple-
mentation process, we also validate that implementing such a sys-
tem is feasible.

Hashing that has to be done to find positions in a BF correspond-
ing to an element can be considered negligible, being in the range
of nanoseconds. The same holds for shuffling. The procedures we
expect to be the most resource consuming are those using homo-
morphic encryption. For evaluation, we instantiate ElGamal using
the NIST P-256 elliptic curve [1] and use the SCAPI2 library [10]
for homomorphic encryption support.

Scanner. For each enrolled consumer, a scanner must create an EBF
at the end of each epoch. Creating an EBF incurs a fixed amount of
work, equivalent with𝑚 homomorphic encryptions. We implement
this on a Raspberry Pi 4B, having a 1.5GHz 64-bit quad-core ARM
v8 Cortex-A72 processor, 8 GB of DDR4 RAM memory, a 16 GB
microSDmemory card and running Ubuntu 20.10 as OS.We perform
the encryptions in parallel using C++11 threads. For𝑚 = 100000, as
we used in the evaluation with real-world data, the scanner creates
an EBF in 125 seconds. To avoid lagging behind, a scanner should
create EBFs for all enrolled consumers faster than the length of an
epoch. Thus, for an epoch of 5 minutes, even a resource-constrained
scanner such as Raspberry Pi could support 2 enrolled consumers
at the same time while providing accurate statistical counts for
crowds up to 1000 devices per epoch.

Server. When a consumer launches a query, besides having to
deliver the concerned shuffled EBF, the server must create its corre-
sponding comb by performing (𝑐𝑒 − 1) ∗𝑚 additions under encryp-
tion. We implement and run this on a basic cloud server with 16GB
RAM and a 16-core Intel(R) Xeon(R) Silver 4110 CPU @ 2.10 GHz,
running Ubuntu 18.04 x86_64. The additions under encryption are
done in parallel using C++11 threads. For𝑚 = 100000,𝑚 additions
under encryption are performed in 8.6 seconds; for 𝑐𝑒 = 24, this
means that a comb can be created and delivered to a consumer in
approximately 200 seconds. Knowing that the server will have to
store EBFs, we check their size. In our implementation, we com-
pute the size occupied by an encryption to 678 B, meaning that, for
𝑚 = 100000, an EBF would occupy 67.8 MB.

Consumer. To be able to compute the statistical counts, the con-
sumer must first decrypt the shuffled EBF and its corresponding
comb by performing 2 ∗𝑚 decryptions. We consider a consumer
having a laptop running Ubuntu 20.04 x86_64, with 8GB RAM and
a 4-core Intel(R) Core(TM) i5-10210 CPU @ 1.60 GHz. Such laptop
can do the necessary decryptions (also in parallel), for𝑚 = 100000,
in 80 seconds.

6 DISCUSSION
6.1 On choosing 𝑐𝑒 and 𝑡

In order to separately count nonstationary and stationary devices
from an epoch, a consumer must decide on values for 𝑐𝑒 and 𝑡 .

2https://github.com/cryptobiu/libscapi

When choosing 𝑐𝑒 , a consumer must think about howmuch time
is needed in order to accumulate sufficient information to allow
deciding upon the (non)stationary nature of the sensed devices.
The choice of 𝑐𝑒 (i.e. lower or higher) directly limits the range for 𝑡 ,
allowing thus a lower or higher granularity for the interpretation of
stationarity. For monitoring crowds, 𝑐𝑒 should be chosen to cover
more time than people from the crowd typically spend in the sensed
area, such that an effective 𝑡 can be set. For example, if the scanner
is placed in a transit area, a lower 𝑐𝑒 may prove to be enough. If
the scanner is in a place where people tend to spend more time, a
higher 𝑐𝑒 is preferable.

After choosing 𝑐𝑒 , a consumer must set 𝑡 in order to perform
the combing. Before we go into details, it is worth noting again
that it can happen that probe requests do not reach the scanner in
some epochs due to various reasons, so this should be kept in mind
before considering 𝑡 . The consumer chooses 𝑡 according to her own
interpretation of what a nonstationary or stationary device is. For
example, for a 𝑡 close to 𝑐𝑒 , stationary devices will be those that are
detected almost always as present and nonstationary all the others.
For 𝑡 = 3 on the other hand, nonstationary devices will be mostly
those that pass through the scanner’s range without spending more
than a couple of minutes there and stationary devices all the rest.

A consumer can potentially compute even more sophisticated
counts, such as the number of devices spending some time in the
range of a scanner but not being almost always present (e.g., by
subtracting stationary devices estimated for a 𝑡 close to 𝑐𝑒 from
those estimated for 𝑡 = 3). Though, the relevance, as well as the
accuracy of such arithmetically estimated counts remain yet to be
investigated.

6.2 Security analysis
Our system achieves the security goals proposed in the threat model,
under the assumption of noncolluding entities. By achieving these
goals, our construction becomes secure against honest-but-curious
(HBC) adversaries, as we present below.

Detections are encoded into BFs and then immediately discarded
at scanner. BFs are encrypted at the end of an epoch, and only
then they can leave the scanner. Anonymization on the fly is, thus,
satisfied. Moreover, scanners cannot learn anything more than they
already see by sensing, as they do not handle any external data.

By handling only encrypted data that it cannot decrypt and by
creating combs obliviously under homomorphic encryption, the
server is blinded and, thus, cannot learn anything from data dealt
with in the process.

Consumers can see, in the clear, shuffled BFs and combs. Such
data is meaningless when it comes to the privacy-sensitive detec-
tions that were previously stored in it, since it was shuffled and it
lost any such meaning in the process. The only meaning left is given
by its statistical properties, that is a targeted need for estimating
statistical counts.

Security of the system can be broken if the implementation de-
viates from the system model, the attacker does not follow the
protocol (i.e. becoming malicious instead of HBC) or the noncol-
luding entities assumption is broken. For example, if the server
becomes malicious and does not shuffle an EBF, a consumer could
find out, through brute-force, the elements encoded in the BF. Also,
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if the SP colludes with a consumer, even without beingmalicious, an
HBC server could see what is stored in the EBFs of that consumer.

Finally, our system discards the privacy-sensitive detections and
produces only statistical counts on crowds. In future work we plan
to investigate whether these counts themselves may allow a pos-
sible inference of privacy-sensitive information (e.g., when the
monitored crowd consists of a single person) and, if so, what we
can do to prevent it (e.g., not producing any result in such cases).

6.3 Limitations on number of consumers
Homomorphic encryption is known to be resource-demanding.
With our resources, we were able to set up the system such that
it computes highly accurate statistical counts for the considered
dataset and for high, as well as low thresholds. However, our limited
resources could support a limited number of consumers. For an
epoch of 5 minutes, scanners could support 2 consumers, while the
server could produce counts for one consumer within an epoch.

More consumers can be supported by the same hardware if𝑚
is reduced. We tried to fix 𝑚 to 10000, therefore supporting 10
times more consumers. Accuracy was still very high for 𝑡 = 20 (i.e.
> 98% for counting nonstationary devices from the sequence of 5
epochs). However, accuracy decreased quicker for lower 𝑡 ’s, which
we expected since the lower value of𝑚 also meant more collisions.
To ensure the accuracies obtained by using𝑚 = 100000 but while
supporting more consumers, more powerful hardware is needed.

7 CONCLUSION
In this paper, we proposed a system that can separately count non-
stationary from stationary Wi-Fi devices when monitoring crowds.
Unlike previous attempts, our system performs the separate counts
in an anonymized way, protecting, thus, the privacy-sensitive de-
tections of devices belonging to individuals. The system encrypts
and then immediately discards in-the-clear detections, afterwards
operating only on encrypted data that it cannot decrypt. As a result,
it supports decisions on the stationarity of devices built upon infor-
mation spanning extended periods of time, which were previously
not possible without privacy infringement risks. Moreover, the sys-
tem allows users to define themselves (and count accordingly) what
nonstationary and stationary devices are, based on the frequency
of detections in a given period of time and a custom threshold to
use for separation.

We implemented the system using a Raspberry Pi as a scanner, a
cloud environment as a server and a laptop as a consumer, and we
fed it with real-world data from an open-air festival. Our system
achieved a mean accuracy of 99.9% when estimating nonstationary
devices sensed by a scanner placed in the most crowded area of the
festival throughout the whole period of sensing. For the same scan-
ner, 93.9% of the estimations were at most one device away from the
actual count. These results show that highly accurate anonymized
counting of nonstationary Wi-Fi devices is possible when dealing
with real-world detections of crowds and while fully protecting the
privacy-sensitive data of the individuals being monitored.
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