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Abstract—Privacy-preserved tracking of WiFi-enabled devices
such as smartphones offers a highly scalable solution for large-
scale crowd movement studies. However, extracting knowledge
out of pedestrian-tracking data acquired this way is not simple.
This is, generally, due to the inherent inaccuracy of the measure-
ment technique.

Segmenting an individual’s trajectory data into periods of stops
and moves is a fundamental step in analyzing crowds’ move-
ment. Such distinctions allow us to answer advanced questions
regarding visited locations or even social behavior. Algorithms
previously designed for distinguishing movements from stay
periods, assume datasets are gathered using GPS, which offers
precise positioning. WiFi tracking, however, does not offer such
precision. The location of devices can at best be reduced to a
large area around the WiFi scanner.

In this paper, we study a set of established algorithms for
detecting periods of stops and moves from GPS-based datasets
and their applicability to WiFi-based data. Consequently, we
propose possible improvements to such algorithms considering
the inherent characteristics of WiFi tracking data.

Keywords: tracking data, trajectory data mining, WiFi
tracking, mobility modeling

I. INTRODUCTION

When taking a birds-eye view at the motion of a person
in a crowd, it can be difficult to give it meaning. This
is especially true when traversing tracking data, composed
of a set of timestamped positions. These positions can be
abstracted to periods of stops and movements [1], [2], building
blocks with which we can answer many questions: “Where do
people go?” “How long do they stay there?”, “Can we infer
social relationships?”, “What can we do to stimulate certain
behavior?”, and so on.

In this paper, we concentrate on monitoring crowds of
people through Radio Frequency-based (RF-based) detection
of on-person devices, such as those using WiFi or Bluetooth,
and address the problem of separating stops from movements
in an individual’s trace. Since RF-based scanning introduces
considerable noise, identifying stops and movements in such
data sets is a nontrivial problem.

The problem has previously been solved for tracking datasets
containing many accurate positions of an individual (GPS
traces). A GPS device records positions along the path of
an individual with relatively high precision. Stops appear as
positions randomly placed within a restricted area. Clustering
methods are used to group such positions and obtain stop

periods. We have identified three methods: CbSmot [2],
Dbsmot [3] and Stay Point Detection [4] or [5] that are
previously defined for this purpose. These methods make use of
different properties of a trace: speed, direction and respectively
distance.

For city-scale crowd monitoring, tracking WiFi-enabled
devices [6] is the preferred method. The method assumes that
most people carry a WiFi-enabled device (e.g., a smartphone)
and by recording elements of the network frames transmitted
by these devices, according to the 802.11 standard, we can
track large crowds at a small cost. Except from having WiFi
enabled, the approach does not require active participation
from people in the crowd (which is necessary for GPS traces),
making it easy to deploy.

Unfortunately, for outdoor environments, WiFi tracking
datasets are often sparse and affected by various sources of
noise. This noise increases when trying to monitor large crowds
of people (caused by network congestion and the fact that
people obstruct RF signals). In the case of a device that is
sitting still between multiple sensors the noise in the data
can easily make it seem to have an erratic, moving behavior
between those sensors. In ideal circumstances, the device would
be detected by all sensors with every frame it sends, but we
have found this is rarely the case. When a device is moving,
the noise has an even stronger effect: a device can be first
detected by the sensor in front of it and then by the one behind;
Making it impossible to identify the direction of movement
from just two detections.

It is possible to place sensors far enough, so that erratic
behavior is not present. However, placing sensors such that an
area is fully covered and such that they do not have overlapping
detection areas is impossible. Even in ideal circumstances
geometry doesn’t permit non-overlapping discs of the same
size to completely cover an area. A sensor’s detection range
is not only irregular and difficult to accurately determine, but
also changes due to uncontrollable conditions, such as weather.

To our knowledge, we are the first to test the accuracy of the
methods for separating static from mobile periods on datasets
gathered using RF-signals (WiFi) detections. Some previous
work has managed to identify movements indoor based on
information that we found to be too erratic, received signal
strength indicator (or RSSI) [7]. Furthermore, we show that,
for these type of datasets, even a method that would label



the detections perfectly cannot reach achieve accuracy. This is
because of the low detection rate of the tracking method.

After we identify the method that provides the best results
(Stay Point Detection) we search for ways of improving
its accuracy. We experiment with different distance metrics
obtained from the tracking dataset itself.

II. WIFI TRACKING DATASETS AND THEIR NOISE

WiFi tracking data is gathered by using several sensors.
These sensors are configured to record the time at which they
receive an 802.11 frame (usually a probe request) along with
the anonymized id (hash of the MAC inside the frame) of
the device sending it, used to differentiate between different
devices. The location is added in the form of a sensor id. The
location of sensors is known and by using the sensor id we can
determine an approximate position of the transmitting device.

Sensors capture frames from signals that reach them and
can be correctly interpreted. The WiFi protocol is designed
to transmit data at a range of about 100m. However, weather,
geography, interference with the environment, as well as many
other factors influence the distance and the shape of the area
in which a frame can be received. In contrast, GPS datasets
have an accuracy in the order of few meters.

A large variation in software, hardware and manufacturing
techniques adds to the noise already generated by the environ-
mental effects on the WiFi signal. These differences affect the
frequency with which probe requests are sent. More so, there
can be multiple probe request frequencies for the same device.
This change has been analyzed previously [8] and it has been
shown that even the state of the screen (whether it is on or off)
has an influence. We should also expect frequency changes
based on the battery level or even installed applications. In
contrast, for GPS the recording frequency can be very high
and constant over time.

Detection frequencies can be improved by placing sensors
inside buildings. In the work of [1] the authors claim to have
90% of detections with less than one second between them.
Our dataset, gathered outdoors, during a large gathering, has
only 20% of detections with less than one second between
them.

To acquire large scale data, we performed a data collection
experiment during a festival that gathers more than 150,000
people. When crowds of this size gather in a small area, WiFi
quality becomes an issue, as control frames can easily cover
a large part of the bandwidth. Because of this, many probe
requests are lost due to collisions.

To illustrate how noisy our WiFi tracking dataset is, we
extracted a few detections from one device. This device was
selected because it has a very large number of detections at
only three sensors and is present throughout the entire scanning
period (meaning it is most likely immobile). The device has
an almost equal number of detections at two of the sensors
(about 30,000 each) and very few at the third. This leads us to
believe the device is located between two of the sensors, let’s
call them A and B.
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Fig. 1: Noisy Detections

In Fig.1 we can see that the device is rarely detected by
both sensors at the same time, seeming to move back and forth
between the two. A similar behavior has been observed in [9]
where it was referred to as “ingpong effect. Less than 4% of
detections are recorded at both sensors simultaneously and less
than 0.5% have the same sequence number, meaning they are
detections of the same network frame.

We found that for this device, the RSSI values (ranging
from -20 to -80) have a high variation. The RSSI measures
the strength with which a signal is received, in theory it
correlates with the distance between the sender and receiver.
We calculated the standard deviation and obtained a value of
eight. Even worse, for the rest of devices that we identified
as immobile, the standard deviation is equal to nine. This
shows how inaccurate RSSI can be. Because of this and the
manufacturing differences, the RSSI value cannot be used to
increase the positional accuracy of detections.

The RSSI value of each frame is more accurate if the
sensors are placed inside a room [10]. The authors measure
relationships based on how much time people spend together
inside a dining hall. The authors use RSSI values for multi-
lateration to determine which people dine together. Multi-
lateration requires simultaneous detections. We note that the
authors claim 95% of their detections have a frequency of
under two minutes, while we only have 83% of our detections
with less than two minutes between them.

III. RELATED WORK

There has been a large amount of research analyzing
WiFi traces to extract information on crowds. Initially, this
information consisted mostly on determining the size of the
crowd [11] and verifying how it can be used to estimate the
actual number of people. From an analysis perspective, there is
a hard limit on how much information we can gain by simply
counting.

More advanced information can be extracted by using domain
knowledge. This is shown in [12] where they use domain
knowledge on schedules and behavior or hospital personnel
and paths of people inside a hospital to determine facility
planning. However, domain knowledge is often limited and
offers only application-tailored solutions that rarely work in
the general case.

Analysis can be performed at low resolution, avoiding the
need to deal with noise. This is the case of [13] where people
are grouped based on several factors: SSIDs sent with the probe
requests (we avoid the use of SSIDs as they divulge private
information [14]), previous knowledge on SSIDs and, binary



matrices, built for every individual, with rows representing
locations and columns representing time slots. These time slots
are set to one hour.

Analysis of movement data offers a large potential. The
authors of [15] managed to identify not only relationships,
but the strength of relationships both for humans and animals.
Even more, [16] showed they can identify groups by simply
matching the times at which people enter and exit a room.
This is in-line with the same reasoning we have for separating
moves from stops.

We based our experiments on datasets that have a lot in
common with the one from [17], in which the data is gathered
during a multi-stage festival in Denmark. Their dataset is
gathered with a different RF protocol, namely Bluetooth.
Bluetooth functions at a smaller range, resulting in an increase
in accuracy and noise reduction. However, because Bluetooth is
turned off by default in most consumer products, their dataset
has fewer detections. For a festival of a similar size with the
one we analyze they detect ten times fewer devices.

IV. DETECTING MOVEMENTS

The raw tracking data consists of a set of timestamped
locations. Due to the sparsity of data, and considerably long-
time intervals between detections, even when represented on
the map, in time, it is difficult to make sense of the data in
this raw form.

There has been a large amount of research on making sense
of GPS data, and a vital processing step is to extract static/-
movement periods from the dataset. Having this separation
permits one to detect flows, places of interest and it sets the
groundwork to be able to answer more complex questions.

A major difference between GPS and WiFi-based movement
data is the precision level. While GPS data has an accuracy of
5 meters or less, WiFi detection range can reach 200 meters.

We identified three algorithms [2], [3], [4] used to separate
GPS detections in static and movement periods. These algo-
rithms use clustering techniques to group detections that are
close to each other. The clusters found represent periods when
the device is static or inside a building. Points that do not fall
into any cluster represent movement. This approach performs
well on GPS data because when a device is static most of
the detections fall within a small neighborhood. Using WiFi
tracking this neighborhood would be considerably wider. We
applied these algorithms on WiFi datasets to inspect how well
they perform. The main difference in implementation would be
to replace the WiFi sensor ids in the dataset with their position.

More specifically, these algorithms are:
• Cbsmot [2] has its base in the dbscan algorithm. It

forms clusters only of consecutive detection and considers
both distance and time when building the clusters. The
interesting use of time and distance translates in clusters
forming when the speed is low.

• Dbsmot [3] is a variation and extension of dbscan. It forms
clusters by taking consecutive detections and considering
the change in direction. The assumption is that if a device
is static it appears to change direction frequently, as

detections are positioned randomly around it. In contrast,
during movement the same direction is kept.

• Stay Point Detection [4] or [5] is one of the simplest
algorithms, it makes an intuitive assumption, if one of
the following detections is further than a threshold from
a pivot location, the person must have moved. With each
movement the pivot gets updated.

The algorithms we have chosen, make use of different
attributes of movement which can be extracted from trajectory
data (distance/speed/direction). By comparing their perfor-
mance, we can see which one better fits the characteristics of
our WiFi generated dataset.

V. METHOD COMPARISON

A. Dataset

We have placed 40 WiFi sensors in the city of Assen, The
Netherlands during the TT Festival1 and collected WiFi tracking
data for each festival day in the years 2015, 2016 and 2017.
Details on the datasets can be found in [6]. The results presented
in this paper are based on the data from 2016.

The sensors were configured to capture any probe requests
frame they received. Once a frame is received a detection is
created with a time stamp t, the device id d (in the form of
a salted hash of the MAC address inside the probe request
frame), the id of the sensor s that received it and the sequence
number n extracted from the frame.

B. Comparison

To compare the algorithms, we use a part of the dataset for
which we have ground truth. During the Assen 2016 festival
we walked around the area carrying nine WiFi enabled devices
(phones and tablets). We recorded GPS positions from the
devices as well as made notes on our movements. Out of
these positions we manually construct a list of times when we
are moving and times when we are static. The resulted list
represents the ground truth.

The algorithms we use have multiple parameters: Cbsmot has
an maximumDistance and minimumTime which can be set to
control a maximum speed; Dbsmot has a value that represents
the minimalDirectionChange and the minimal size of a cluster;
Stay Points requires the setting of only a minimalDistance,
as large as to be considered a movement. After static and
movement periods are separated we remove all static periods
which are shorter than a mergeTime value. These short periods
are not significant. To explain, consider a person going by
bus to a shop. We are interested on the big activities such as
shopping, but ignore possible unintended ones, like the bus
stops. The small stops would clutter our results and make it
more difficult to extract knowledge.

We use the three methods to extract static/moving periods
for these nine devices. We then compare the extracted periods
with the ground truth. Having only two classes, this could
be considered as a binary classification problem. We mark
movement as positive and stopping periods as negative. We

1https://www.ttfestival.nl/en/ (27-June-2017)
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Fig. 2: Comparing algorithms

count the seconds when the periods match and mark them as
true positives/negatives (TP/TN). The same is done for false
positive/negatives (FP/FN). Using these values, we calculate
the F1 Score for each of our nine devices using the formula in
equation 1. The F1 score represents an accuracy measure that
considers both precision and recall. We used multiple values
for each of the knobs presented above and selected the settings
for which the mean F1 score is the highest. The results can
be seen in Fig.2.

F1 =
2∗T P

2∗T P+FP+FN
(1)

As seen, the least accurate method is Dbsmot. The small
number of possible positions can explain this. Meaning that
direction changes are more frequent than in the case of GPS,
making static/movement separation difficult based on the angle
of movement.

Cbsmot and Stay Points offer similar results, however Stay
Points is much simpler and runs significantly faster.

We add ”perfect” to our results which is calculated by using
ground truth to mark detections as static or mobile. Because
detections have significant time gaps even a perfect labeling
cannot reach a F1 score of one.

VI. IMPROVEMENTS ON THE DISTANCE FUNCTION

The most accurate and simplest method to separate static
periods from moving ones is Stay Points. We aim to improve
this method by changing the distance function. In the original
algorithm, the distance function is the geographical distance.

The geographical distance is not ideal if we consider people
move inside a city. Their movement is limited to the network
of streets. Furthermore, the buildings block or even increase
the range of the WiFi signals, creating tunnel effects. This
means that two locations that are close geographically could
be separated by large buildings.

Considering that the set of sensors is limited there is only
a limited set of distances that need to be considered. By
applying a distance function on all sensor pairs, we obtain the
set of required distances. They can be modeled as a graph
that has sensors as nodes and where each edge has a weight
corresponding to the distance between the two sensors at its
end.

A. Definitions

We use the following notations:
S - the set of sensors {s1, ...sN} where one sensor is sp and

a subset of sensors is sP
D - the set of devices {d1, ...dM}
t - time, measured in seconds
Λ - the set of detections {λ1, ...λR} where a detection is a

tuple 〈s,d, t,n〉 (where n is the sequence number of the request)
Λ[s] - is the set of detections at sensor s. Analogous

notations Λ[d], Λ[t], Λ[n]. Similarly Λ[d][s] represents the set
of detections of device d at sensor s.

Λ = (λ1, ...λR) - represents a sequence of detections so that
they are ordered by device, time, sequence number and finally
sensor.

Λ[s] = (λ0...λP) - represents a sequence of consecutive
detections at sensor s. It is a subset of Λ in which ∀i;λi[s] = s
Analogous notation for Λ[d].

B. Sensor Neighborhood Graphs

We build the sensor distance graph (SDG). Let SDG = (S,E)
where each node is a sensor and edges have weights associated
with them based on a distance function. Furthermore, let ε be
a threshold that removes all edges with a weight higher (or
lower - depending on the distance function) from the SDG. We
call this new graph the Sensor Neighborhood Graph (SNG).
The basic idea is that we identify movement if a device is
detected by two sensors that are not connected by an edge in
the SNG.

We found a set of distance functions which can be used to
build the SDG and SNG:

a) Geographical Distance (DIS): The weight of every
edge is the geographical distance between the sensors at its
ends. Smaller distances mean the sensors are closer, as such
the SNG contains the edges with the weight smaller than ε .

E = {(si,s j,wi j)|∀si,s j ∈ S;wi j = GPSdistance(si,s j)} (2)

b) Consecutive detections (CON): It is reasonable to
assume that a person being still or moving between two sensors
would generate consecutive detections, one at the first sensor
and one at the second. We count the number of such occurrences
for all pairs of sensors. Sensors close to each other have many
such consecutive detections. The SNG is composed of edges
where the weight is larger than ε . This remains unchanged for
the next two methods.

C(si,s j) = {k|k ∈ [1,R];∃λk,λk+1 ∈ Λ;
λk[s] = si;λk+1[s] = s j;λk[d] = λk+1[d]}

E = {(si,s j,wi j)|∀si,s j ∈ S;wi j = |C(si,s j)|}
(3)

c) Simultaneous detections (SIM): Consecutive detections
in our dataset can have different timestamps. Here, we only
count detections with the same time stamp. This means a device
must be in range of both sensors.

C1(si,s j) = {k|k ∈C(si,s j);λk[t] = λk+1[t]}
E1 = {(si,s j,wi j)|∀si,s j ∈ S;wi j = |C1(si,s j)|}

(4)



d) Simultaneous detections validated with frame sequence
number (SEQ): Our dataset has a resolution of one second.
Because WiFi transmission frequency is higher, two different
frames from a device can be simultaneously detected at two
sensors. By recording sequence numbers, we can verify if the
same frame is detected.

C2(si,s j) = {k|k ∈C1(si,s j);λk[n] = λk+1[n]}
E2 = {(si,s j,wi j)|∀si,s j ∈ S;wi j = |C2(si,s j)|}

(5)

From the definition C2 ⊆ C1 ⊆ C. This means that the
weights for E2 are smaller or equal to the weights of E1
and both are smaller or equal to the weights of E. Because
the SNG contains only edges with high weights it would have
fewer edges in E1 than in E and likewise for E2. A SNG with
a small number of edges can be used to identify more refined
movements. However, having too few edges brings the risk of
identifying erratic behavior as movement.

Given the SNG, we modify the Stay Point algorithm to
detect movements when we have detections at two sensors that
are not connected by an edge.

VII. IMPROVEMENT EXPERIMENTS

We compared the graphs described in the previous section
to determine which is best suited for determining movement.
The graphs described are all complete, weighted graphs (have
an edge between any pair of nodes). To detect movements,
we need to find a threshold value, ε , for each of the graphs.
We consider detecting a movement if the weight of an edge is
larger (in the case of distance graph) or smaller (for the other
graphs) than this ε .

We compare the graphs by keeping only a subset of edges.
For graphs with zero edges, any noise in the dataset or any
detections at two sensors are identified as movement. In
contrast, when the graph is fully connected, we can’t identify
any movement and it appears like the devices are static. The
number of edges depends on the application. For instance,
when the purpose is to identify out-of-town trips we would
want a graph that has edges between all sensors in the same
city and no edges between sensors in different cities.

We sort the edges by weight (increasing for the distance
graph and decreasing for the rest), start with empty graphs and
add one edge at a time. We add the same number of edges to
the four graphs and count how many edges are in common.
The results can be observed in Fig.3. When the graphs are full
they all have the same edges. Therefore, the percentages all
converge to 100%. We added a random ordering of edges to
have a benchmark with which to compare (Rand-Rand). For
these graphs the percentage grows linearly with the number of
edges.

The most similar graphs are the consecutive and the
concomitant ones (CON-SIM). Consecutive detections contain
all simultaneous ones and the simultaneous detections represent
a third of them. The graph generated using sequence numbers
is the closest to the distance graph (DIS-SEQ). This is a strong
argument for the sequence number graph as it is intuitive
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Fig. 3: Comparing graphs by counting edges in common
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Fig. 5: Comparing graphs based on the total duration of stays

that geographical distance should play a primary role when
considering movements.

We selected 100 devices from the entire dataset and ran Stay
Point using the distance from the graphs. We added one edge at
a time to see the effect. We then counted how many movements
appear (Fig.4), as well as, how long the total duration of stays is
(Fig.5). In both figures the graph generated using the sequence
number stands out from the other three. We also note that the
difference between the graphs is small.

To understand the accuracy of our algorithm we manually
extracted two groups of 100 devices each from our dataset.
One group is made only of mobile devices (M) and the other
of static devices (S). We ran Stay Points on both groups using
all four graphs and adding one edge at a time. We then counted
how many devices our algorithm identifies as mobile (a device
is considered mobile if it has at least one moving period). For
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a perfect accuracy, the algorithm should identify all mobile
devices as mobile and no static devices as mobile. The results
are shown in Fig.6. The gray area represents the only part
when perfect accuracy is reached. This is possible only for the
graph created using sequence numbers.

We calculate the F1 score on our nine devices using the
distances from the graph created with simultaneous detections
with the same sequence number (SP Imp). We can see how the
results compare to the original Stay Point in Fig. 7. Similarly
with the previous results from Section V, we choose the setting
that offers the best mean F1 Score. Instead of setting the
minimalDistance, of Stay Point, we set the numberO f Edges.

VIII. CONCLUSION

Understanding movements in crowds is important. It opens
the way to a multitude of applications and enables us to improve
many things such as facility or urban planning.

The raw data needs to be processed. The first step is to
identify periods of movements and separate them from the
ones where a device is static. This permits us to answer more
advanced questions.

We showed how algorithms that separate GPS data into
static and moving periods work well with WiFi datasets. This
is important, because WiFi datasets allow a more scalable
solution for collecting datasets from crowd-movement.

Furthermore, we showed how we can use a distance function
that uses solely the tracking data to further improve the accuracy
of the best static/moving period separation method.
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