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A survey of techniques for automatically sensing the
behavior of a crowd
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Crowd-centric research is receiving increasingly more a�ention as data sets on crowd be-
havior are becoming readily available. We have come to a point that many of the models on
pedestrian analytics introduced in the last decade, which have mostly not been validated, can
now be tested using real-world data sets. In this survey we concentrate exclusively on automat-
ically gathering such data sets, which we refer to as sensing the behavior of pedestrians. We
roughly distinguish two approaches: one that requires users to explicitly use local applications
and wearables, and one that scans the presence of handheld devices such as smartphones. We
come to the conclusion that despite the numerous reports in popular media, relatively few
groups have been looking into practical solutions for sensing pedestrian behavior. Moreover,
we �nd that much work is still needed, in particular when it comes to combing privacy, trans-
parency, scalability, and ease of deployment. We report on over 90 relevant articles and discuss
and compare in detail 30 reports on sensing pedestrian behavior.
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1 INTRODUCTION
Crowd-centric research has been around for more than a decade and has gradually
become an established interdisciplinary �eld of its own. With a multitude of stakehold-
ers, a wide range of applicable scenarios, and many di�erent problems and approaches
toward solutions, it has also become a complex �eld of research.

For example, crowd-centric research covers indoor and outdoor pedestrian tracking,
ranges from small buildings to large shopping malls to huge festivals. A wealth of
models have been developed for purposes of merely understanding crowd behavior,
realistically simulating such behavior for visualization purposes, or actually predicting
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future behavior. �ere are a myriad of reasons for wanting to understand or predict
pedestrian behavior: safety, marketing, planning, and general management to name
but just a few.

In this era of data-driven research, there is an increasing trend toward developing
crowd-behavior models using real-world data. Unfortunately, as concluded from
a recent extensive literature survey [89], data-driven research for modeling crowd
behavior is by far common practice. �is lack of research can be explained by the
di�culty of obtaining data sets, especially for very large crowds. Furthermore, the
quality of available data sets is o�en unclear as cleaning and sanitizing raw data has
its own problems [13]. Yet, the need for high-quality data sets capturing the behavior
of crowds is undisputed.

In this paper, we investigate the various methods and techniques for capturing
crowd behavior through physical sensors that record spatio-temporal features such as
densities and movements. We exclusively focus on alternatives to CCTV and other
video-based techniques, in particular we consider radio-based infrastructures such as
WiFi-tracking systems and systems using Bluetooth beacons. Our goal is to provide
an overview of ways to automatically sense the behavior of a crowd. In particular, we
focus on automatically detecting information on positioning, tracking, and measuring
collections of people. �is is what we refer to as sensing crowd behavior. �is sensing
is not to be confused with crowdsensing, which is a form of urban crowdsourcing, a
method of using a person’s phone as a sensing node that gathers data about surround-
ing phenomena [27]. �roughout this survey, crowd sensing always refers to sensing
a crowd, unless stated otherwise.

Until recently, many sensing solutions relied on custom nodes or networks of
devices. �e current trend is to leverage the sensing capabilities of wearable devices
and notably smartphones using participatory applications. For example, it is now
relatively easy to detect the presence of nearby devices, obtain movement or location
data, or to acquire all sorts of local environmental data. Combining such data with
information from social media turns a smartphone into an extremely powerful and
versatile multi-sensing device.

We distinguish three di�erent categories for using a wearable multi-sensing device.
First, in the case of human-centric (also called people-centric) sensing, the goal is to
collect data on personal traits: movement, activity, stress, and so on. Second, with
environment-centric sensing, the goal is to capture information on the surroundings
of a person, such as data on weather, pollution, tra�c, etc. Finally, the third category
involves crowd-centric sensing, which emphasizes collecting spatio-temporal data on
the behavior of groups of people typically aiming at estimating the size of a crowd,
local densities, �ows, and so on. In this paper, we concentrate on crowd-centric
sensing.

Admi�edly, the boundaries between these categories are not always clear, in partic-
ular when considering that in many cases the same sensors are used. Nevertheless,
when concentrating on the purpose of sensing, distinctions arise. For one, in the case
of crowd-centric sensing it is not an individual person who is generally the object of
study, but rather the crowd as a whole. As a result, there is generally more emphasis
on gathering aggregated statistics and the tolerance for having to deal with noisy
data is much higher than, for example, with human-centric sensing. Likewise, where
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scalability is an inherent design issue for crowd-centric sensing, this is generally much
less the case for environment-centric or human-centric sensing. Scalability can easily
lead to radically di�erent designs if one is targeting the behavior of millions of people.
�us, while some of the challenges we identify in this survey have a common ground
with other sensing domains, the fact that they are targeted to capturing the behavior
of crowds raises many new interesting research questions.

We identify two types of systems for crowd-centric sensing: application-driven
and infrastructure-based systems. Application-driven systems essentially make use
of wearable devices for sensing the behavior of a crowd. A typical example is using
smartphones to collect data on the number and location of neighboring devices.
Infrastructure-based systems typically use statically placed sensors that scan for
wearable devices (and no more than that). A well-known example is the use of Wi-Fi
scanners for detecting the presence and recurrence of Wi-Fi-enabled smartphones. Of
course, hybrid forms exist as well. Both types of systems can be either participatory or
opportunistic and can be applied to several types of indoor and outdoor environments.
Our survey focuses on the whole spectrum of solutions and identi�es their architectural
approaches and challenges.

Social media traces, collected from speci�c platforms (e.g. Foursquare) or using
dedicated applications, can also provide crowd-related data. �is is a di�erent approach
than the one we are focusing on and warrants a separate survey centered more on data
analysis. We concentrate only on minimal intrusion sensors for detecting the physical
presence of devices and do not dwell on the semantics of social media. Nonetheless,
we included application-driven sensing systems that analyzed social media data in
addition to the dataset collected using the mobile devices sensors because they used it
to validate their �eld experiments.

�e sensing modalities employed by the systems we surveyed are also used for
localization and tracking of individuals. Although we also mention notable papers
on these topics, our target is the systems that collect spatio-temporal datasets that
can describe crowds. �e papers that just analyze crowd data without describing the
sensing part (technologies, experiments, methods) are not the focus of this paper.

We reviewed 93 papers on topics related to sensing crowds, falling into the categories
described below. Most of them present sensing systems that collect and analyze
mobility data. Although they rely on �eld experiments using mobile applications or
deployed sensors, none consists of an operational system used on a daily basis. �e
sensing solutions that were operational a few years ago such as the mobile applications
CitySense [51], VibN [58] and CoenoSense [92] are no longer available on current
mobile platforms. We distinguish the following types of papers:

• Papers on urban sensing systems, such as pedestrian monitoring using applica-
tions or sensing infrastructures. In most cases, analysis focuses on pedestrian
�ow throughout the city and on determining popular places.
• Papers on indoor sensing systems. �ese mostly concern infrastructure-based

systems for tracking people inside buildings. �e data can be used for analyz-
ing �ows, pa�erns and densities but usually the authors focus on only one
type of pa�ern. �ey also present pre-experiment tests and calibrations.
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• Papers on event monitoring, both indoor and outdoor, and at varying scales.
�ese type of papers focus both on the experiment and on the analysis of the
collected data.
• Papers on frameworks for participatory sensing applications
• Position papers on sensing architectures and related topics such as privacy,

evaluation methodologies, and heterogeneity of sources.
Less than half of the urban and indoor-sensing and event-monitoring papers are

completely focusing on sensing mechanisms for crowds, a subset we will refer to as
spot-on papers. �ese present real-life deployments and their subsequent analyses.
�ey provide details on the sensing technologies, methodologies and implementation,
thus representing the main focus of our survey. �ese systems are subject to various
challenges and trade-o�s particular to sensing crowds. We have classi�ed them based
on how they address these issues. �is classi�cation performed in Section 6 covers
the main architectural and nonarchitectural criteria for acquiring crowd mobility data:
security and privacy, ease of deployment, scalability, incentives, transparency, and
resource consumption. Accuracy is another criteria we considered but it is di�cult to
quantify in a rating due to the variety of analysis methods and metrics encountered
in the surveyed papers.

We reviewed and classi�ed papers related to crowd sensing following a survey
methodology which consisted of �ve phases: paper selection, general characteristics
classi�cation, crowd-sensing characteristics classi�cation, spot-on systems identi�ca-
tion and comparative evaluation of all representative papers. �e di�erences between
the second and the third phase consist of the type of information we extracted from
the papers. In the second phase we identi�ed characteristics such as technologies,
experiments, purpose and bene�ciaries. In the third phase we proposed seven main
features relevant for crowd-sensing systems and evaluation criteria for the sensing
architectures.

�is methodology in�uenced the organization of the paper. Aside from the next
section in which we describe notable surveys on topics related to sensing crowds and
mobile sensing, the rest correspond to the phases with described. In the third section
we discuss the main aspects related to crowd sensing and the features we identi�ed.
In the following two sections we apply our classi�cation criteria on the applications
and infrastructures presented in the set of papers we selected. In Section 6 we discuss
the most representative papers and compare them based on the features presented in
Section 3. We conclude in Section 7 by discussing our view on the current state of
crowd sensing and the trends and challenges we noticed in the papers we surveyed.
Further information can be found in Draghici [21].

2 EXISTING SURVEYS
�e literature provides surveys on the sensing domain, and on mobile sensing in
particular. Crowd research has focused on surveying analysis methods [47, 96] and
crowd management [89], but has so far barely covered sensing. Most surveys address
only computer-vision solutions and mostly ignore processing data from other sources.

Surveys most related to our work are relatively recent and concentrate on mobile
sensing, best practices and future challenges. An older, in hindsight visionary paper on
mobile sensing is given by Abdelzaher et al. [1], who introduced the term mobiscopes.
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�ey discuss many of the problems and challenges that still need considerable a�ention
to date.

Lane et al. [44] express in a compelling survey their vision for the future of sensing
based on mobile phones. �e paper presents three general architectural components
for mobile sensing systems, originating from the following questions:

• How do we sense people and environment traits (the Sense component)
• How do we interpret the collected data (the Learn component)
• What to do with the results (the Share component).

It is important to note that this paper was published when the era of smartphones
had just begun (Android was released in 2008, IPhone a year earlier). �e survey
includes several scales for both participatory and opportunistic sensing: individual,
group, and community. Many of the raised research questions are closely related
to sensing crowds, such as the testing and validation or dissemination of results.
Researchers now have to shi� their testing methods from simulation (like they did
for wireless sensor networks) to �eld experiments and need the resources and time
to conduct tests involving vast numbers of users. �e authors identify a variety of
health, �tness, well-being, tracking, and mapping applications used by millions of
users worldwide, yet observe that applications on monitoring the environment and
crowd are considerably less.

In a more recent survey, Higuchi et al. [32] present a general overview of the
application domain, including crowd scenarios. In contrast to Lane et al. [44], the
authors consider opportunistic sensing systems to be participatory systems. Most of
the survey discusses processing and analysis methods for data collected for various
purposes, with li�le a�ention for sensing techniques. �ere are some aspects that
are closely related to sensing crowds, such as the basic architecture for opportunistic
sensing systems, the privacy challenges, and the problems of coverage and data quality.

Ganti et al. [27] refer to a broad spectrum of applications that rely on collecting data
using smartphones sensors. Crowdsensing in their case refers to the use of the devices
of crowd members for gathering data, not on collecting spatio-temporal information
about the crowds of pedestrians. �ey o�er a high-level view of mobile crowdsensing
architectures and stress the fact that the sensing applications are independent and
isolated from one another. �is leads to di�culties in scalability (the number of
applications that can be installed and run at the same time), it can a�ect the e�ciency
(duplicate sensing and processing) and even a�ects the development and deployment
process. We may add that it also a�ects the analysis process, since each party uses
its own servers and processing methods. �e authors argue that we need a uni�ed
architecture and API for developing crowdsensing applications, which is rather di�cult
to impose and achieve. In recent years several researchers proposed such frameworks
and systems [43, 68, 90], but they have yet to a�ract a substantial user base.

Unlike the mobile sensing or mobile crowd-sensing surveys, Teixeira et al. [81]
consider a variety of sensing approaches. �ey provide a comprehensive survey
focused on systems that sense spatio-temporal properties. �ey also identify static and
dynamic measurable human traits and discuss the existing systems and techniques
for acquiring data about them.
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A crucial aspect of application-driven sensing systems is preserving the privacy of
their participants. �e presence of customizable policies is also a very good incentive,
and this makes privacy a priority in participatory mobile systems. �is topic is very
well characterized by Christin et al. [17] and Christin [16]. Both surveys build their
threat model and analysis on a proposed system architecture with three types of
stakeholders. In the earlier survey they o�ered an overview of the application domain,
the sensing modalities, and examples of possible threats and countermeasures. In the
succeeding survey they concentrate more on the existing privacy-preserving solutions
for all the architectural layers of a participatory system. �ey stress that even for
the more popular trends, privacy continues to pose numerous challenges. Ethical
issues, which are mostly related to privacy, are also an important aspect that many
application designers neglect. Shilton [76] presents a thorough survey of the ways in
which participatory data is used, addressing the privacy challenges from other angles
than Christin [16].

Mobile sensing is also discussed by Guo et al. [29] and by Macias et al. [52], both
o�ering speci�c de�nitions related to mobile sensing and then presenting challenges,
application domains and sensing modalities. Guo et al. [29] are concerned with mobile
crowd sensing and computing, in which the systems combine data from participatory
sensing applications with that from social media services. In their extensive survey,
they do not speci�cally focus on the means for sensing the behavior of crowds. Macias
et al. [52] consider that mobile sensing systems include those relying on external node
in wireless sensor networks, not just those using mobile phone applications. Finally,
Restuccia et al. [70] provide a survey on incentivizing users in the case of participatory
sensing. �ey also do not focus speci�cally on sensing the behavior of a crowd.

3 KEY FEATURES OF CROWD SENSING SYSTEMS
In this survey we focus on systems that sense the behavior of crowds, in particular
those systems that are an alternative to video-based solutions. We focus on the
particularities of crowd-centric sensing solutions and their similarities and di�erences
with traditional sensing systems. We also identify the main properties that should be
taken into account when designing a system for sensing the crowd. In Section 6 we
discuss such existing systems from the perspective of these properties.

3.1 Architectural considerations
Both application-driven and infrastructure-based systems are relying on a centralized
architecture with devices performing the sensing (or some of the processing), and
transmi�ing the data to a server for storage, analysis, and presentation. For both types
of systems, coping with heterogeneity is important. In application-driven systems,
the sensing devices are the main source of heterogeneity: di�erent platforms have
di�erent sensing APIs and restricting policies, but also di�erent sensing, processing,
and communication hardware. Blunck et al. [11] also consider the users as a source of
heterogeneity due to demographics and variations in application and device usage.
For the infrastructure-based systems, heterogeneity comes mainly from the sensed
devices, such as di�erences in signal strength or scanning periods.

One type of infrastructure that is not employed in crowd-centric or human-centric
sensing is the one consisting of a wireless sensor network (WSN). While suitable for
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environment and home monitoring, WSNs either do not have the necessary capabilities
or have too high deployment costs for the mobility and coverage needed for sensing
crowds. While WSNs can be well suited for scenarios with a limited number of users
(such as a museum [56]), scaling to city-wide crowd sensing (as in the case of a festival
experiment [10]) is not yet possible from a technological and logistics standpoint.
In contrast, mobile sensing systems come with a di�erent set of challenges, as we
describe below.

Zooming in on the architecture, we encounter several processing, storage, and
communication models. Processing is performed either locally on the device, remote
on the server, or on both. For application-driven systems, the policies dictating this
choice are generally driven by energy-consumption requirements. How the collected
data is stored depends on the storage capabilities of the device but also on the privacy
policies of the application. While the processing model is �xed, the storage model
can generally be customized by the user. We encounter these models also in other
sensing systems, but there are subtle di�erences. For instance, in a participatory
sensing application for �tness, the user may opt to store the data only locally and
never transmit it to a server for further processing. �is is obviously not an option in
face of building a global view on crowd behavior.

Awareness of energy and resource consumption also in�uences the communication
mode and sensing strategies. Sensing can either be performed continuously in the
background or triggered by an input from the user. Energy-aware applications adjust
the sampling rate or even the sensors used in order to reduce the consumption.

Typically, sensing devices are assumed to always have Internet connectivity and to
almost instantly transmit data to the server. When continuous connectivity cannot be
guaranteed, data is gathered a�er an event from local storage, as in [78]. An obvious
drawback is that no real-time feedback on global crowd behavior can be provided to
participants.

Mobile applications for sensing the crowd present more diverse communication
strategies than the infrastructure-based systems. �ey are usually closely connected
with the sensing model and can be triggered either by the device, by the server or
in some cases even by another device. A device may wait for tasks from the server,
start the data collection and return the results or may simply publish data, without a
speci�c request, whenever a Wi-Fi connection is available.

3.2 Sensing modalities
�e sensing literature o�ers comprehensive surveys [27, 52, 81] on the technologies
used for acquiring data on human and environment traits. �e systems for sensing
the crowd leverage some of these technologies to obtain data about the presence, the
count, and the movement of people. We identi�ed several sensing modalities and their
corresponding technologies. Table 1 presents the technologies behind these modalities
and the number of surveyed solutions for each of them.

• Motion sensors: mostly the accelerometer, but also the compass and the
gyroscope. Smartphones are currently equipped with more complex sensors
such as pedometers, but none of the solutions we surveyed use them yet.
�ese solutions directly access the accelerometer and other basic sensors for
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Application 10 (0.37) 5 (0.19) 16 (0.59) 7 (0.25) 3 (0.11) 11 (0.41)
Infrastructure 17 (0.42) 21 (0.53) 3 (0.07) 0 (0.00) 0 (0.00) 8 (0.20)

Table 1. Common crowd-sensing technologies from a sample of 67 systems (27 application-
driven, 40 infrastructure-based), together with the number (and fraction) of surveyed solutions
employing them. Some of the systems use multiple technologies.

step counting, motion detection or for estimating the walking trajectories
using pedestrian dead reckoning techniques.
• Location providers: all the outdoor mobile solutions we surveyed obtained

their location, when needed, through GPS. �e mobile devices’ APIs also
provide the location based on Wi-Fi and cellular networks, and for higher
accuracy o�en in combination with GPS.
• Media providers: cameras and microphones for capturing photos, videos and

audio samples or even speakers for transmi�ing audio tones [36].
• Proximity detectors: long-range and short-range radios are used to detect

nearby devices. Usually Wi-Fi for high-power long-range radio and Bluetooth
for low-power short-range radio.

Choosing the right modality is important, if only for reasons of energy consumption,
costs of resources, data granularity, and implementation and deployment restrictions.
Some, such as energy impact and implementation restrictions, are more relevant to
application-driven solutions. �e energy consumption is dependent on the type of
sensors, the hardware platform and the operating system, the API of the mobile device,
and on the collection method.

Some crowd-sensing solutions based on participatory applications enhance their
analysis by combining data from several modalities with social media information.
CrowdSense@Place [15] crowd sources the gathering of data about the urban environ-
ment, and while it is not strictly a system for sensing the crowds, with a signi�cant
user base it can provide information on crowd densities and movement pa�erns.
In Chon et al. [15] this system was used in an experiment with just 85 participants,
yet they managed to gather data about visit counts and app usage. Note that this
kind of information cannot o�er any global indication about a crowd. �is hybrid
approach can be applied to sensing crowds especially in the case of city-scale events
or for determining popular places, but we have not yet encountered crowd-sensing
frameworks and applications that support it.

3.3 Maturity of crowd-centric sensing solutions
Crowd-centric sensing handles large numbers of participants, heterogeneous devices
and various types of environments, imposing challenges on the testing and evaluation
processes. Some of the sensing technologies described above have been employed,
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tested, and optimized on tracking and localization of individuals. For handling crowds,
the collected data must be representative and valid for more than just an individual.
�e systems for sensing a crowd relying on outdoor experiments outnumber the ones
analyzing data sets collected through small-scale lab experiments and simulations. In
the papers we surveyed, the testing and evaluation mostly depended on the purpose of
the presented solution. Some were built just as a basis for a particular type of analysis,
some for demonstrating the feasibility of a particular technology or for comparing
technologies (such as by Abedi et al. [2] and Schauer et al. [74] who compare Bluetooth
and WiFi). Others have been developed for monitoring for only a certain amount
of time, such as during speci�c events of various scales, from indoor exhibitions or
conferences to city-scale festivals.

Usually, crowd-centric solutions consist of the following stages: pre-experiment
calibration, deployment (i.e., actual sensing), and �nally data analysis. Most papers
do not address the �rst stage, with a few exceptions in case of infrastructure-based
systems using radio-based modalities.

�e deployment stage consists of one or more �eld experiments, either instrumented
or not. In the former case, the experiment consists of the monitoring of a few volunteers
(usually less than 20) equipped with phones or other sensing devices, sometimes
following a speci�c script. In noninstrumented cases, either an application is made
available to any user, or sensing devices are deployed to monitor any person passing
by. While the la�er deployment usually produces the largest data sets, these data
sets are also more problematic to analyze and validate. Moreover, such experiments,
especially those covering a large area or with a large number of users (typically over
1000) are more prone to data-quality problems and unexpected events.

One of the challenging parts of the validation process is collecting ground-truth
data necessary for evaluating the accuracy of the experiment. For instrumented
approaches with a few dozen participants, it is relatively easy to determine the ground
truth, even by using human observers. For more complex experiments, ground-
truth data is collected either by video monitoring (e.g. [41, 92]), manual observations
([15, 31, 35, 53, 63, 65, 67]), additional sensing modalities such as GPS [61, 88], motion
detectors [26], location-speci�c modalities (such as turnstiles [22] or boarding-pass
scans [74]), or social media check-ins [14, 15]. Almost half of what we termed spot-on
solutions on sensing crowds do not even present a ground-truth strategy, comparing
their results with various statistics (e.g., known distributions on cell-phone usage) or
identifying relevant pa�erns (rush hours, diurnal pa�erns).

Despite the staging costs (devices, rewards for participants), the instrumented
experiments seem to be the common method for demonstrating the feasibility of a
certain crowd-analysis method or the collection accuracy of a certain sensing modal-
ity. �e question remains though whether these sensing mechanisms scale. For
infrastructure-based systems we have the problem of coverage and deployment costs.
For application-driven approaches we have nontechnical challenges such as a�racting
users, or additional technical challenges regarding privacy, security, and resource
consumption.
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3.4 Features for evaluation
Security and privacy. �e idea of a system that continuously collects data on pedes-

trians raises ethical, privacy, and security concerns. �reats can be both internal
and external and can target the sensing, the data collection (task communication
and results reporting), the local and remote storage and even the presentation (e.g.
when querying for statistics of currently ’hot’ places). �e Privacy criterion in our
classi�cation encompasses anonymization, security and access and sharing policies.

In participatory sensing applications, privacy guarantees that users have control
over their data. �eir collected and inferred information is protected and not avail-
able to other users or parties. For such applications anonymization is not always a
requirement, especially for localization and tracking applications, but is preferable in
case of collecting data on crowds.

In infrastructure-based crowd-sensing systems people have much less control over
their participation. In this case, anonymization is o�en a requirement and consists
of stripping the data sets of context and demographic information. Some of the
systems we reviewed used address hashing (see Table 4), a technique that is possible
to de-anonymize unless it is coupled with other privacy-preserving schemes [14].

Incentives. Sensing the behavior of a crowd generally requires participation of many
people. When this participation has to be solicited, incentives become important.

�e incentives mechanisms for application-driven systems are the ones usually
employed in participatory systems. Restuccia et al. [70] provide a recent survey
and Lee [45] an in-depth study of the economic models. Arakawa and Matsuda
[4] present a study of gami�cation mechanisms for urban participatory sensing as
an alternative to monetary incentives. Crowd-centric application-driven systems
usually rely on nonauction-based mechanisms and provide monetary incentives or
application-speci�c ones which include gami�cation, integration with social media,
access to certain content or analysis results (e.g., the user sees how crowded a speci�c
place is only if he agrees to share his location). �e incentives, while closely coupled
with the privacy concerns, are also important when talking about the deployment
or how the application is made available to the users. Embedding solutions into an
existing festival app [10] can make a huge di�erence in comparison to a separate
app [79].

Ease of deployment. We also consider the way the system is deployed, its main-
tenance requirements, distribution, and marketing e�orts. �e sensing systems we
reviewed presented very brie�y the server-side deployment or costs, the deployment
discussions focusing on the sensing devices. Mobile-driven solutions need to make the
application available through o�cial channels, such as Google Play on Android and
rent server resources in the cloud. �e amount of e�ort shi�s from the deployment
to the implementation and maintenance side. For infrastructure-based systems the
deployment is more costly since most cases require custom sensing devices covering a
large area, but need less marketing and implementation e�orts, and if properly placed,
can produce large data sets immediately, while application-driven systems require a
time to build the user base.
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Scalability. We consider a sensing system scalable if it can be easily adapted and
without signi�cant costs, to support larger areas, more users, and extended periods of
time. �is aspect considers both the impact scaling has on sensing infrastructure costs
and on processing and storage resources. Some of the sensing systems we analyzed
were also designed for a small number of participants or low densities, the analysis
becoming less accurate when this number increased. Also, for mobile-driven systems,
the analysis and �ltering need to account for similar reporting from persons close-by.
�e stress on the server-side systems due to an increase of data that needs to be
received, stored, and processed is not discussed in the reviewed sensing solutions.

�is topic is addressed in a few papers only. For example, Kannan et al. [36] include
a formal discussion on the scalability of the tone-based crowd-counting system they
propose. �ey also discuss the ease of deployment and energy e�ciency criteria.

Transparency. What is the level of awareness of the user about the sensing campaign
and data collection? Sensing infrastructures that just monitor passing-by devices are
considered to be almost entirely transparent to the users, in contrast to mobile appli-
cations that constantly require interaction with the user. Transparency is particularly
challenging in application-driven systems in which usability comes into play while
ensuring minimal e�ect on other applications and resources. Transparency is also
a�ected by the sensing modalities used in the smartphone app. Due to security rea-
sons, the mobile platforms’ APIs impose restrictions on accessing and enabling these
modalities, which a�ect the transparency by requesting user input.

Resource consumption. A serious research challenge in many sensing systems, and
also in those for sensing crowds, is controlling resource usage. �is holds not only for
devices but also for server-side resources, being closely connected to scalability, trans-
parency, and accuracy. Application-driven systems usually tackle energy e�ciency
by implementing policies for minimizing the consumption, for example dynamically
adapting the rate for acquiring the location based on the user’s movements [8, 33].

Related is the system’s complexity: a good application that needs resources for
collecting �ne-grained mobility data, provides incentives and presents results, is
preferred to a simple application that collects less accurate data sets and does li�le to
a�ract the users.

Accuracy. For systems on localization and tracking of individuals, positioning accu-
racy is a main concern. On the other hand, in crowd-centric systems we see a large
spectrum of characteristics considered by their researchers and developers (as dis-
cussed in Section 5.3), and the metrics are more varied. Most of the spot-on papers we
surveyed presented their analysis results but in various degrees, some just presenting
counts or simple statistics about the device vendors. �is criterion encompasses the
types of analysis, the �ltering needed to clean up the data, the metrics and (if any) the
validation mechanism. In addition to the evaluation results we consider whether or
not their choice of technology and deployment is capable of providing representative
data sets. For instance, we have seen signi�cant changes for radio-based modalities
due to rapid changes in mobile platforms. We discuss accuracy throughout the next
sections applied to the systems we surveyed but due to its variance we do not employ
a rating system as for the rest of criteria.

11



4 APPLICATION-DRIVEN SENSING
4.1 Architecture
In this section we �rst introduce a complete architecture for application-driven crowd-
centric systems, which encompasses building blocks for both device and the back
end, as illustrated in Figure 1. We then provide examples of existing systems that
successfully implemented similar architectures. We consider a simple stakeholders
model in which we have:

• active participants - the application’s users
• passive participants - the pedestrians detected by the application (not available

for all the sensing modalities)
• campaign administrators - the teams in charge of development, deployment,

support and analytics
• bene�ciaries - domain experts, researchers, or end users accessing the results.
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Communication
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Fig. 1. General architecture for application-driven crowd-centric systems.

4.1.1 Components of the client. A mobile application generally consists of back-
ground components and UI components. A few solutions provided only the back-
ground components, as services that can be used by various applications. Decoupled
and modular architectures are more versatile and can be integrated with multiple
applications. For instance, a service that provides sensing and communication can be
used by applications designed for di�erent events or festivals, or various applications
created for the same event [79].

Sensing. Most important is the sensing component, since it is the one collecting
the raw data from the sensors or communication interfaces (for proximity detection).
�e application can additionally include energy-aware policies such as dynamically
adjusted sampling rates based on the movement type or context, or merely sampling
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on demand. Applications using multiple sensing modalities can also perform sensor
selection in order to alternate the sensors having a low energy cost with the high-power
radio or location providers, possibly trading energy for accuracy.

Processing. �e processing component is optional, some solutions preferring to do
the processing only at the server in order to have a lower impact on the device’s
resources. Others perform some basic �ltering and anonymization of the data before
sending it. We also encountered systems performing a signi�cant amount of processing
on the device, for instance Miluzzo et al. [57], which executes audio classi�cation and
activity recognition based on motion sensors. �eir approach is driven by privacy
considerations, the raw data being stored only temporarily while processed and the
server receiving only the results of the processing for further analysis and integration
with other data streams.

Privacy enforcement. �e optional privacy enforcement component generally con-
sists as a series of mechanisms for implementing privacy policies during the sensing,
processing, or communication. Typical examples include constraints on the area in
which sensing is active or on how a certain modality is used. When applications use
several sensing modalities, they o�en implement an on-demand policy for obvious
privacy-sensitive modalities (such as camera and microphone), and a continuous
collection policy for motion sensors or location providers.

Data storage policies are usually driven by the privacy se�ings of the system,
se�ings that are either established by the application logic or con�gurable by the
user. Storage policies are o�en coupled with processing, especially in applications
that collect audio streams, �lter them of any identi�cation content and then remove
the raw samples, storing just the processed data.

�e communication component may also strip the reported data of identi�cation
features, the most common procedure being to hash the addresses involved or to
not send details about the user and its device. How e�ective such policies are is
questionable (see e.g., Vanhoef et al. [82]). �is anonymization step, employed by most
infrastructure-based systems for sensing the crowds, is not that o�en encountered
in participatory applications. �e fact that they use social-media integration as an
incentive makes their users share their identity with the back-end services. In these
cases, the server needs to protect the stored data and to guarantee not sharing the
information to third parties without the user’s authorization. In fact, some studies
suggest that users are not that concerned with sharing their location history or other
sensor data when they are in public places [9, 15, 57].

Communication. �e communication component is responsible for reporting data
to the server, and receiving tasks or other information related to the collection cam-
paign. Depending on the implementation, the sensing component may use some of
this component’s functionalities, for example when it needs to use communication
interfaces to detect neighboring devices. Likewise, some systems use short-range
communication not just for detection but also for enabling collaboration between
devices.

�ere are a few infrastructure-based systems that lack a communication component,
saving collected data on local storage in order to be accessed only a�er the event [78].
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Also, several participatory applications designed for sensing personal traits may not
include a communication component. However, the nature of the crowd-related data
requires collecting and aggregating samples from multiple users and locations. Even
when the system is completely decentralized and the mobile device collects data in an
ad-hoc manner from the devices it encounters, it will eventually need to communicate
its �ndings to a logically centralized service.

Presentation and user-controlled se�ings. �e design of the user interface is mostly
driven by transparency, usability, and incentive requirements. Interestingly, most
applications do not provide information on current crowd conditions and instead
focus more on gathering input (including gami�cation) and provide only general event
information [10, 79, 92].

Even when users do not have access to the sensing campaign results, they must be
informed of the collection for reasons of imposed resource usage and invasiveness on
privacy. A user should have the option to opt-out entirely of the collection process,
be o�ered support for con�guring issues like sampling rate, turning on and o� the
sensing, deciding how long the data is locally stored, or if the communication is
performed only when connected to open networks, to name a few. Most applications
in our survey o�er such capabilities.

Incentives. Incentivizing users remains a challenging area, notably in participatory
systems [70]. For sensing crowds, incentivizing tactics generally encourage participa-
tion in data collection by engaging the users either with application-speci�c features
or with gami�cation mechanisms. Out of the app-driven solutions we have surveyed,
just one application had incentives as a primary design feature [9, 10], o�ering a
virtual-trophy collecting game. �e authors also show a high interest in studying in-
centivizing mechanisms and even surveyed the users about the gami�cation elements
they included.

A few applications used incentives as a means just to reward volunteers in a �eld
experiment. Monetary incentives are a viable option as well, but we have not seen
them be integrated into real deployments of mobile crowd-sensing applications.

External services and applications. Many systems for crowd sensing can be inte-
grated with other services or applications for presentation purposes, storage, sharing,
or authentication. For example, applications that o�er real-time information on crowd
densities are o�en linked to the Google APIs for map integration and location aware-
ness. �e application may also o�er options for synchronizing data with services such
as Dropbox, or to share information via social media.

4.2 Components at the server
Crowd-management solutions can be logically split into four major subsystems [89]:
sensing, mining, prediction, and intervention selection. Many of the solutions that we
have included in our survey also address elements of subsystems other than the one
for sensing. However, in this paper we con�ne ourselves exclusively to the sensing
subsystem. In this section, we zoom into this subsystem’s organization at the server
side.
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Communication. �e communication component is primarily responsible with asyn-
chronously receiving data from the devices. Depending on the design tactics, the
server may send requests (tasks) for triggering data collection or for obtaining col-
lected data. It can also answer to requests for processed or aggregated data. �is is
the case with applications that provide information on crowd conditions (e.g., the
densities in a given area during the last week) or use the user’s server-side stored data
in their local processing (e.g., for pedestrian dead-reckoning techniques).

Privacy enforcement. Privacy policies can be enforced at both the client side and
the server side. For crowd-centric sensing we generally do not need the identities of
participants. At the client side, data can be stripped of identi�cation before being sent
to the server. Otherwise, hashing methods can be applied on the server. When the
system is designed to know a user’s identity, it can enforce access policies for their
data. When querying for crowd conditions, the client receives just aggregates (e.g.
visit counts in a certain area in a given time frame) and never information on speci�c
people.

Clearly, to what extent privacy enforcement at the server is e�ective remains an
open question, certainly in light of potential security a�acks. None of the surveyed
sensing systems had by far an adequate solution.

Control, storage, and processing. �e control component is the one responsible for
the system’s logic tier. It sends tasks to the application through the communication
component, it interprets the requests from the application and it controls the processing
stages: �ltering, data-mining, visualizations. In general, it forms the core of the crowd-
management system.

Presentation and external services. �e system can also o�er a presentation com-
ponent, which provides statistics and visualizations of the collected data via a web
interface. �ese can be publicly available or just private to the users, crowd operators,
and developers. Similar to the mobile application, the presentation component can
be integrated with external services for maps, location information or even graph
plo�ing tools.

4.3 Sensing modalities
�e applications designed for sensing crowd characteristics use mostly one or two
sensing modalities; location providers being the easiest and straightforward option.
As seen in Figure 2, out of the 27 application-driven systems we have surveyed, most
of them use GPS or motion sensors. For energy considerations, some combine the
location acquisition with the data from motion sensors (mostly accelerometer and
compass) in order to dynamically adjust the location provider’s collection rate. �e
strategies for adjusting the sampling rate consider the user’s speed (type of movement),
traveled distance and the heading.

While in theory these strategies should work, the implementation of such policies
needs to adapt to the restrictions of the current mobile platforms. �e mobile market
is extremely dynamic and heterogeneous, and the available APIs constantly add
more restrictive policies to protect privacy or reduce energy consumption. One such
restriction is available on Android, where the sensor data can be continuously collected,
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but is not transmi�ed to any server when the screen is o�. �is is an impediment
for the applications that need to acquire the location a�er a certain number of steps
or traveled distance. �e four systems that considered such strategies [8, 33, 40, 58]
either used an older, less restrictive platform [40, 57] or implemented a prototype used
in a small-scale instrumented experiment. Höpfner and Schirmer [33] propose several
workarounds, even one based on static movement pro�les and show promising results
in the evaluation against the SDK’s default policy. �eir implementation requires
almost half of the number of SDK requests but have lower positioning accuracy (e.g.,
11m instead of 4.5m or 7.5m). �e latest version of EnTracked [8] has a more in-depth
analysis of this trade-o� between reducing the energy consumption while giving up
some of the positioning accuracy.

4.4 Frameworks
In our study we have encountered mostly frameworks that are only indirectly linked
to sensing crowd behavior. �ese frameworks are built primarily for participatory
sensing. �ey address energy e�ciency, privacy, and participant recruitment. We
have also encountered papers o�ering frameworks and at a conceptual level [28, 32],
or valuable insight on architectural tactics for mobile sensing [39].

One of the most relevant examples for our study is Medusa [68], which allows
developers to de�ne tasks that can be used for sensing characteristics of a crowd. �is
framework supports all the sensing modalities we have presented in Section 3 and
its authors also discuss place-centric applications using them. Since it all amounts
to scripting the collection tasks, it also eases the development of a crowd-centric
application that uses location providers and network sensors to detect densities and
�ows, or audio samples to estimate congestions. By default, the framework preserves
the anonymity of the users and devices involved in the collection campaign, but the
users can choose to reveal their identity, and in these cases we can collect social traits
of the crowds such as gender and age distributions. Unlike most app-driven solutions
we have analyzed, Medusa is a standalone, open-source and ready-to-use framework
with both client-side and cloud components.

�e sensing application developed and employed by Wirz et al. [92] is integrated
with a back-end framework for storing and processing collected data. �is framework,
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Coenosense [91] receives location updates from the application, and was actually
designed and employed for sensing crowds. It supports only the location-provider
sensing modality, and functions in a straightforward way, without initiating sensing
tasks or participant recruitment. �e sensing application is responsible for enforcing
the collection and privacy policies, while the framework receives anonymized samples
for storage and real-time processing. �e la�er includes visualization, providing heat
maps on crowd pressure (available only to the event managers). �e processing and
visualization mechanisms work only with aggregated location updates, restricting
its usage to applications that collect these. Unlike Medusa, Coenosense is not open
source and not freely available for download.

Rachuri et al. [69] propose METIS, an adaptive platform that o�ers support for of-
�oading the sensing tasks of social-sensing applications. In METIS, sensing o�oading
is made possible by the existence of a sensing infrastructure in addition to the mobile
application. �e system is designed for detecting interactions between its users by
combining audio recordings, Bluetooth-based proximity detections and motion-sensor
data. Since some sensing modalities are more energy consuming then others the
system can distribute some of the sensing tasks to the sensors already placed in the
environment. For instance, in buildings equipped with Bluetooth sensors, the system
would use their detections while the client-side applications will provide the rest of
the data streams (audio or motion). �e overall goal of this platform is to reduce
energy consumption and make the application as light as possible. To illustrate, the
authors show that energy consumption can be very close to that with just using the
phone without sensing and the Wi-Fi on. Even though METIS provides a signi�cant
optimization of the energy consumption, the fact that it relies on networks of external
sensors poses a major disadvantage. �is imposes constraints on the area in which
we can take advantage of the o�oading (e.g. in their experiments they used an o�ce
building) and also increases the deployment and maintenance costs for the entire
sensing system. �e nature of the applications for which METIS is designed requires
privacy controls and policies both on the client and at the back end, but the authors do
not address the privacy issues. �eir research goal goes beyond mere indoor detection
of crowd pa�erns (groups, interactions between groups), by analyzing the data based
on user pro�le and membership to certain teams and communities. In their �eld
experiment they use METIS as a surveillance platform to determine how o�en the
users interact within their group and with colleagues from other projects.

Mori et al. [59] provide a more generic approach for sensing applications, inspired
from their work with wireless sensor networks. �ey o�er both client-side and
server-side support for creating and managing sensing tasks. One of the key ideas
of its design is the collaboration between the nodes, which makes it very suitable
to crowd-centric sensing. Like Medusa, it o�ers a description language for creating
sensing queries (tasks) but with a di�erent distribution model. �e queries fall into two
categories, single-node and multi-node and clients are periodically interrogating the
server for them. While its design is promising, especially its support for inter-device
communication using radio modalities, large-scale testing and deployment have not
yet taken place.

�e reason why we consider crowdsourcing frameworks in our discussion is their
support for various sensing modalities and device discovery. Using the former, we can
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aggregate data such as locations and use them for analyzing crowd properties instead
of individuals. �e la�er, when supported, enhances the role of the devices: obtaining
data about the presence of other proximal devices.

A framework primarily focused on discovering and managing devices is Crowd-
watch [43]. It combines high-power radio and low-power radio in a hierarchical
architecture for discovering participant devices and selecting them for the data collec-
tion process. �e framework has so far been evaluated just in simulation, but never
deployed. �e authors do not properly evaluate crowd dynamics, but only brie�y
mention the discovery latencies. By-and-large, the system seems designed for wireless
sensor networks rather than for a system using smartphones. It is debatable whether
this approach truly o�ers advantages. For wireless sensor networks it is relatively
straightforward to estimate the energy savings of the devices when using this hierar-
chical communication scheme, especially when they run only this application. For
mobile devices these savings are much harder to assess, considering the fact that other
applications may need Internet connectivity, so it is already enabled, or the user has
the habit of having the Wi-Fi always turned on. Moreover, the authors do not consider
the side e�ects of their discovery protocols, the fact that switching o� the Wi-Fi or
Bluetooth interfaces would a�ect the other applications using them.

Bakht et al. [6] proposes C�est, another solution that combines low-power and
high-power radios for opportunistic discovery and cooperation between nodes, focused
on energy-e�ciency. Unlike Crowdwatch, it was tested not only in simulation, but
was also deployed on a small testbed of rooted Android phones, which revealed several
challenges. In the implementation they needed to adapt the scheme to the Bluetooth
interface’s restrictions, such as the lack of support for broadcast.

Diverging from the centralized model of the previous frameworks, Xiao et al. [95]
claim that the current approaches for sensing applications that harness the power of
crowds do not scale well with thousands or more participants. Under the assumption
that the heterogeneities of mobile platforms place great stress on the development
and deployment phases, the authors propose a system relying on virtualization. �ey
use a proxy virtual machine for each device, which handles the data processing and
the communication with the virtual machines of each application (one per user),
all residing in the cloud. Such an approach has advantages in terms of usability
and privacy, the users installing only one crowd-sensing service instead of multiple
applications and having their data processed and stored in their own virtual machines.
�e authors do not discuss how well the system performs and deals with privacy when
it comes to aggregating data from all its users. Like Crowdwatch, this system is not
yet implemented.

4.5 Applications
Cenceme [57] is one of the �rst participatory applications speci�cally designed to
support multiple sensing modalities. While the platform on which it was implemented
is obsolete, its features and the entire design and evaluation approach are still relevant.
Cenceme addresses design considerations such as the limitations of mobile platforms.
�ey also perform extensive tests not only on power and resource consumption but
also on the impact of various factors on the sensing results. �e integration of �ve
sensing modalities and the modular design are the strong points of this system. Privacy

18



and scalability are not very clearly addressed, although privacy is considered in its
storage policies. Raw audio and acceleration samples are stored locally �rst until
they are processed, a�er which results are uploaded to the server, together with
the device’s locations and Bluetooth addresses of discovered devices. It is not clear
whether communication is secured or if scanned addresses are hashed. Scalability
both on the client side and at the back end is not discussed.

A follow-up, VibN [58], was designed for sensing crowd densities and presenting in
real-time available hot spots. �is Live Points of Interest feature is the main incentive
for users to share not only their location but also audio samples.

Crowdsense@place [15] is a more recent system, similar to VibN in terms of pur-
pose and use of modalities. It also provides crowd density information on points of
interest, but has a di�erent data collection and processing approach. VibN aimed
at collecting some user demographics and basic daily usage pa�erns. In contrast,
Crowdsense@place collected much more data, aiming at identi�cation of popular
places, visit pa�erns, the way the application was used, and in which contexts the
data was collected and shared.

Citysense [51] analyzes in real-time information about points of interests, in partic-
ular nightlife a�ractions such as restaurants and clubs, and presents the users a map
of busy places. Both the application (Citysense) and the platform used for collecting
and aggregating location data (Sense Networks Macrosense) are no longer available
and accompanying research appears to have been discontinued. Density analyses and
privacy policies were their distinguishing points. Its clear focus and tight integration
of functionalities presumably contributed to its popularity and the li�le need for
built-in incentives.

Early on, Kjærgaard et al. [40] proposed EnTracked, a system designed to manage
several sensing modalities in an energy e�cient manner in order to track individuals.
While the purpose of this system is not directly connected to crowd sensing, its sensor
management mechanisms and application logic are still relevant. Entracked’s design
was closely coupled to the mobile platform used in experiments, a platform no longer
available today. A new EnTrackedRT version was also implemented in Android and
used in [8]. �e newer system has more sensor management strategies and performs
be�er (more energy e�cient and robust) than the previous one on both the Android
platform and on the older Nokia one.

�e systems and applications discussed so far, with only one exception, are either
not implemented or currently not available to the general public. Sensing-driven
crowdsourcing also has success stories, for instance Noisetube [20], a participatory
application for noise pollution mapping. It is available for the main mobile platforms,
has tens of thousands of users and it is open source, encouraging researchers and
developers to use it to further analyze the data or to integrate their apps to it through
the available API. Since the system collects locations, the data can be used for place-
centric crowd analysis, speci�cally densities.

5 INFRASTRUCTURE-BASED SENSING
In addition to using essentially on-body sensors such as mobile phones, systems for
sensing a crowd can also consist of sensors placed external to crowd members. We
refer to these systems as being infrastructure-based. �ey rely mostly on statically
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Table 2. Notable frameworks, applications, middleware systems for sensing using the crowds.
Not all of them are designed primarily for sensing crowd properties, but they could be employed
for it too. C stands for Client ; BE for Back end.

System Main purpose C BE Energy Privacy Status
Medusa Sensing-driven

crowdsourcing;
task management
and participant
recruitment

Yes Yes Resource usage
policies for low
ba�ery

Privacy
controls
worker
anonymity

Available

Metis Social
context-aware
sensing; sensing
o�oading

Yes No O�oads to a
sensing
infrastructure

Not
considered

Implemented,
not available

Coenosense Crowd monitoring No Yes No
energy-aware
strategies; high
consumption
due to GPS
sampling rate

Anonymous
data transfer,
full user
control over
data

Implemented,
not available

[59] Sensing
applications
middleware; task
description
language

Yes Yes E�cient node
selection

Not
considered

Implemented,
not available

Crowdwatch Crowdsourcing
framework;
participant
discovery

Yes Yes Considered in
the evaluation,
inconclusive
results

Not
considered

Not
implemented

[95] Sensing-driven
crowdsourcing

Yes Yes Less
communication
on the device

Storage and
processing
users’
containers

Not
implemented

Cenceme People-centric
sensing; presence
sharing

Yes Yes Power
consumption
benchmarks

Privacy
controls

No longer
available

VibN Place-centric
sensing; urban
POIs

Yes Yes 30 mins
duty-cycle

Secure com-
munication,
privacy
controls,
anonymized
data

No longer
available

Entracked People-centric
sensing; energy
e�cient tracking

Yes No Dynamic
sampling rate
strategies

Not
considered

Implemented,
not available

Crowdsense
@place

Place-centric
sensing; visits per
location

Yes Yes Dynamically
adjusted sensor
sampling

Privacy
controls

Implemented,
not available

Citysense Place-centric
sensing; urban
POIs

Yes Yes Not considered No details;
data
anonymity
claims

No longer
available

placed sensors that vary from custom devices to Wi-Fi routers or standard computers.
As we have discussed in the previous section, for application-driven systems it is
challenging to come to a user base that can gather enough relevant and su�ciently
accurate data. In contrast, for infrastructure-based systems participants have li�le to
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no interaction with the sensors or knowledge of the sensing campaign. Nonetheless,
they have their own challenges regarding the quality and relevance of acquired data.

In the discussions and classi�cations performed in this section we consider several
types of papers:

• Spot-on: the papers describing systems speci�cally designed for collecting
data about crowds. �ey present both the collection mechanism and resulting
data sets but also statistics and visualizations for describing a crowd’s state.
• Hybrid: they are spot-on for crowdsensing but rely on both an infrastructure

of nodes (usually Wi-Fi access points) and on a mobile application. Jamil et al.
[34], Kjærgaard et al. [38], Kjærgaard et al. [41], Kjærgaard et al. [42], and
Kjærgaard and Blunck [37] present such systems.
• Related: similar sensing mechanisms as the spot-on papers, having the po-

tential of being used for crowd sensing, but having a slightly di�erent target
domain.

We also consider systems related in terms of architecture but that focused more on
other aspects. For example, some papers consider proof-of-concepts for radio-based
capabilities. Others focus on novel localization and tracking techniques. In one case,
a Bluetooth-based system designed for urban tra�c monitoring with sensors placed
on tra�c lights and lamp posts was also able to collect data about the crowds of
pedestrians [66].

O’Neill et al. [65] and Nicolai and Kenn [63] are among the �rst using Bluetooth
for crowd sensing, in particular measuring the fraction of detectable devices. �is
type of measurement is of interest also for systems dedicated to indoor commercial
venues, such as that of Phua et al. [67]. �e la�er study the feasibility of Bluetooth
for acquiring data on shopping behavior. �ey detected that over 30% of all devices
had Bluetooth enabled, were able to determine the average visit duration and even
correlate demographics to having Bluetooth enabled or not. Takafuji et al. [80], Wada
et al. [84], and Zhao and Shibasaki [97] use laser-range scanners for indoor tracking
and localization. �e �rst system using Wi-Fi signal-strength measurements for indoor
tracking was proposed by Bahl and Padmanabhan [5]. �eir positioning accuracy was
further improved by studies such as Evennou and Marx [23]. Rouveyrol et al. [72]
demonstrate the ease by which Wi-Fi routers can be infected to tracking individuals
in a stealthy and light way.

Roggen et al. [71] and Wirz et al. [93] used on-body sensing devices equipped
with accelerometers in order to study behavioral properties of a crowd. �ey used
movement classi�ers for detecting both individual activities and collective behavior:
group formation detection and group detection. Although these systems are built for
determining some characteristics of the crowd, their contributions lie more in the
analysis part than in the sensing. �e experiments were performed in small indoor
areas using a few volunteers equipped with sensors. While the ground truth is easier to
obtain in such scenarios, they are far from a wide, outdoor area deployment scenario.
Moreover, it would be more easy to appeal to a larger user base by using smartphones
or wearables such as smartwatches instead of their custom sensing devices placed on
a participant’s leg.
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5.1 Architecture
Infrastructure-based sensing systems, like most application-driven systems, have a
centralized design. However, key design issues for application-based solutions are
less relevant when an infrastructure is in place. For example, application-driven
systems o�er various types of policies for data collection, storage, processing, and
communication, driven by energy e�ciency, resource consumption, and privacy
considerations. In infrastructures with static sensing devices connected to a power
source, energy e�ciency is no longer an issue. Likewise, ensuring privacy becomes
generally easier for the simple reason that there is no application on the smartphone
that needs to be trusted when it comes to crowd sensing. (Nevertheless, it is still
surprising to see how much sensitive information is being leaked even by standard
protocols [7].)

Most of the systems discussed in this section rely on static nodes that detect de-
vices in their proximity. We also considered as infrastructure-based the systems
that employed mobile phones carried by volunteers. �e solutions that �t into this
category are those that do not concentrate on the application but on the collection
process, and they provided very li�le information about the so�ware running on the
devices [62, 86, 87]. On the other hand, we consider solutions such as Chon et al.
[14] to be application-driven as they focused on the application’s implementation, its
functionalities and its user interface and then tested it using volunteers.

Two of the systems also relied on badges, Bluetooth LE ones in Jamil et al. [34] and
Wi-Fi ones in Acer et al. [3]. For the la�er, the choice of using badges was motivated by
event-speci�c analysis purposes. �e system used �xed Wi-Fi scanners and collected
two data sets, one with the mobile devices they detected and one with the badges
provided to certain categories of participants.

�e majority of the infrastructure-based systems in our survey use the sensing
devices just for collecting data and uploading it to the server. We observe li�le variety
in their policies. Sensing is enabled at deployment time and generally performed at
�xed sampling rates, without the need for triggering tactics regarding sensing or
communication: context enabled or demand driven (the server issues collection tasks
or relays tasks provided by other users). Note that when relying on mobile phones
for sensing behaviors, the system is dependent on the messages that are sent by the
phones, which may be done at highly irregular intervals. Processing is performed
at the server, mostly a�er a sensing campaign. Communication between the server
and sensors is performed continuously, and generally data is stored at the server. In
application-driven systems the client-side storage aspect has a signi�cant role mostly
due to privacy issues. Depending on the application’s features, the use of local storage
can minimize the interactions with the server, for instance when users visualize a
track of their locations in the last two hours. In infrastructure-based systems storage
policies are usually dictated by the hardware design and so�ware implementation
choices of the sensing devices. Moreover, the device’s main role is to merely sense the
presence of the crowd and not to provide feedback to its owner.

In terms of stakeholders we have passive participants, campaign administrators,
and bene�ciaries, with roles similar to those for application-driven systems. Instead
of active users we may have, for the solutions relying on dynamic measurements,
volunteers carrying sensing devices. �e sensing devices are owned, controlled and
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accessed by the collection campaign administrators or the bene�ciaries and do not
require any features for interacting with the participants. In the systems we surveyed
many were proof-of-concept, designed for experimentation. For those, the bene�ciaries
and campaign administrators roles merged.

5.2 Sensing modalities
In Section 3 we presented the main sensing modalities used for collecting data about
crowds. Mobile phones generally use the location provider, but also other modalities
when energy consumption is at stake. In infrastructure-based systems, all spot-on
solutions use only proximity detectors.

Unlike ranging sensors such as lasers or external motion detection sensors, the
radio-based sensors do not actually detect a person’s presence but rather their devices.
Bluetooth was the most common technology employed before the growth of the
smartphone market share. Currently, due to the limitations imposed on the Bluetooth
interface by the phone manufacturers, the increase in Wi-Fi usage and the widespread
of hotspots in outdoor environments, we see a strong shi� toward using Wi-Fi signals
for detecting devices. It is unclear whether this trend will persist, yet combining
Bluetooth and Wi-Fi systems seems a viable solution.

Many sensing infrastructures are designed for indoor environments. Indoor sensing
systems are less related to crowds: they focus mainly on positioning and counting
users. However, we identi�ed some solutions [25, 26, 35, 73] designed for larger
indoor venues and for detecting crowd movements and pa�erns. Regarding sensing
modalities, indoor solutions prefer Bluetooth, laser ranging, or RFID, while only Wi-Fi
and Bluetooth are used outdoor. Indoor solutions can also be application-driven or
hybrid, detecting the hotspots placed in the building [38, 41, 69].

5.3 Crowd properties
We observed that the surveyed systems approach the sensing layer both in a top-down
and in a bo�om-up fashion. With top-down approaches, which crowd properties need
to be obtained are generally well de�ned, and appropriate choices for the employed
technologies are made. In the bo�om-up approaches, the sensing modalities and
overall infrastructure are put to test. �e system is evaluated based on the crowd
properties it can sense. Regardless of the approaches all surveyed systems describe
the crowd’s state through spatio-temporal characteristics. Some also infer behavioral
primitives and social information. �e categorization of the properties relevant to our
survey is the following:

Spatio-temporal.

• Dimensional properties
– Count: the number of devices that belong to crowd members.
– Size: population size estimation. One of the problems with describing

the crowd based on nonvideo modalities, is the accuracy. Radio-based
modalities detect an unknown fraction of crowd members. Systems such
as those of Liebig et al. [48], Naini et al. [62] and Fukuzaki et al. [26] use
statistical models to estimate the total number of people in the monitored
area.
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– Density: how packed is an area, measured by counting the number of
people within a space and at a speci�c time [74]. In all the systems we
surveyed density was an extension of the count analysis, visualized as
dynamically changing heat maps. Weppner and Lukowicz [87] o�er a
more complex approach using also signal-strength measurements.

• Movement properties
– Flow: the movement of a group of people between certain areas of interest.

For some solutions the �ow is more speci�c, referring to the number of
people moving from one entrance to one exit of the monitored area in a
given time frame [74]. Fukuzaki et al. [25, 26], Ruiz-Ruiz et al. [73] and
Kalogianni et al. [35] focus on the �ows in and out a monitored site.

– Routes: on which paths the crowd moves between the areas of interest. It
is particularly useful in case of urban pedestrian tra�c monitoring and
event management.

– Speed: the speed of a crowd between the areas of interest. Some systems
measure the speed for determining the transportation mode.

Social.

• Behavior: group dynamics, congestion detection, queuing, clogging. A few
papers focus on detecting group-related behavior such as their formation,
mobility, the interaction between groups, cohesion and �uctuations in their
members. Wirz et al. [93] have identi�ed several behavior primitives related to
group of individuals, including leadership, dispersion and �ocking [38, 41, 42].
�eir sensing systems are designed for indoor environments and are a hybrid
between app-driven and infrastructure-based architectures.
• Activity: stay or visit duration, �uctuation in the number of persons entering

and leaving the crowd, commuter pa�erns, and entering/exiting the monitored
areas. One solution [83] even analyzed the type of transportation used by the
participants to get to a festival.
• Other: role, social structure, relations, age distribution, gender distribution.

�e roles of the participants in the crowd can be deduced from their stay dura-
tions or �ow [35, 73]. �e roles can be speci�c to the monitored environment
(e.g., employees, students, visitors) or of interest for the monitored event (e.g.,
returning visitors, one-time visitors).

Some systems also look into individual tracks, a property not related to the crowd
state, but which can be easily extracted from the data set collected by the proximity
detectors. In Table 3 we have marked with a t in the routes column the systems that
are limited just to individual tracks and do not further analyze their aggregates.

While dynamics are the �rst properties that come to mind when describing or
analyzing crowds, social aspects might be of interest as well, such as demographics,
grouping, and other relationships. �e social relations and demographic data can be
deduced either in a privacy-intrusive way, as in Barbera et al. [7] or by employing
noncomputational means such as questionnaires or purposefully select the participants
in the sensing experiment as in Jamil et al. [34].

�e system presented by Barbera et al. [7] sni�s probe requests and retrieves not
only the MAC addresses but also the preferred network lists (PNL), allowing to derive
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social structures. It is possible to infer relationships between people based on the
networks they shared and the type of those networks. �e la�er is deduced from the
name of a network (e.g., revealing that it is a workplace, a public place, a cafe etc.).
�e authors also analyzed the social in�uence of the vendor adoption by correlating
the distribution of mobile-phone vendors with social relationships. �is collection
campaign raises privacy concerns since the authors placed laptops in certain locations
and sni�ed packets without removing the information that can identify and track
individuals. �e sensing mechanism employed by Jamil et al. [34] raises less privacy
concerns. During a large outdoor festival, over 700 Bluetooth Low Energy (BLE) tags
and 24 smartphones were handed out to volunteers from various social groups. �e
authors achieved 80% accuracy in detecting groups, and performed group analysis by
looking at routes, visit durations for certain a�ractions and cross-interactions, �ows,
and cohesion. �ey also mined community-related demographic data using the gender
and age information collected from the volunteers.

5.4 Privacy
As discussed in Section 3, one of the functional features we look for in crowd-sensing
systems are privacy policies. Most application-driven systems o�er a form of privacy
control either through user se�ings, secure communication, or anonymous data
collection. �e topic of privacy is also thoroughly covered in participatory sensing
studies [16, 17, 75–77].

�e proximity-based systems mode of operation raises more ethical concerns than
those using other modalities (e.g., location-based applications) since participants are
generally not aware of the collection campaign. One may consider that the tracking
risk is an issue just in infrastructure-based crowd-sensing systems, but it is also in
application-driven systems. Chon et al. [14] observed this by using just 25 users
walking around Seoul for seven weeks. �ey used an application that detected packets
from surrounding phones and they were able to track a few devices for more than
eight hours a day.

�e papers we surveyed describing infrastructure-based systems for sensing the
crowds address privacy issues only brie�y. �e privacy requirements we consider for
these systems are to not leak personal data and to prevent identi�cation and tracking
of individual users. �ese led to functional requirements such as secure transmissions,
secure server-side storage, data collection restrictions (collect the minimum amount
of data necessary for extracting characteristics about the crowds), and anonymization
of device information.

�e systems we surveyed use proximity-driven modalities for detecting mobile
devices. �e minimal information needed is a device identi�er (typically its MAC
address) and a detection timestamp. Less than half of the solutions we surveyed
performed anonymization of the address. Others [83] considered that not using the

2Localized �ow through entrances
3�ey claim to analyze movements between buildings, but show no results
4Flow analysis is claimed but the results show just a small tracking experiments focusing on detection rate
of a few phones
5�e density and group behavioral analysis is mentioned just as a purpose for the data sets, the paper
focuses only on the sensing part
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Table 3. Crowd state properties analyzed by the papers discussed in this section. Spot-on and
hybrid papers are first, ordered chronologically, followed by related papers grouped by their
addressed topic. C stands for Count, D for Density, F for Flow, R for Routes, and S for Speed.

Solution Dimension Movement Social
C D F R S Group Activity

[78] X - X - - - Stay duration
[86] X X - - - - -
[37, 38, 41,
42]

- - - - - Flock detection Leadership &
Following pa�erns

[61] X - - t X - -
[83] X X X - - - Stay duration;

returning visitors
[2] X - - - X - -
[7] X X - - - - Social relations;

social structure
[12] X X - - - - -
[22] X - X X - - Stay duration; walk

duration
[87] X X - - - - -
[25] X X X - - Stay duration
[73] X X X1 - - - User roles; stay

duration
[74] X X X - - - -
[26] X - X - - - -
[34] X - - - - Detection;

interactions;
cohesion

Congestion; social
structure; stay
duration

[35] X X X2 - - - User role3

[46] X X X4 t X - -
[60] X X - - - - Commuter

detection
[62] X X - - - - -
[13] X - - t - - -
[85] X X - - - - -

[65] X - - - - - -
[63] X - - - - - -
[49] X - X X - - Stay duration
[48] X - X - - - -
[3] X X - - - X5 -
[67] X - - t - - Stay duration;

demographics
[72] - - - t - - -
[66] X - - - - - -
[93] - - - - - Detection -
[71] - - - - X Detection �euing
[80] - - - t X - -
[84] - - - t - - -
[97] X - - t - - -
[5] - - - t - - -

device’s name is enough for preserving privacy. Another concerning case is the
WiFiPi experiment [12], in which the event organizers had access in real time to a
web dashboard with the list of all detected addresses and the devices’ manufacturers.
Some systems [7, 65, 67] had no concerns about privacy, using the device names,
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addresses or their SSID lists to extract social characteristics of the crowd (relationships,
demographics, vendor distribution).

In Table 4 we summarize the security measures applied in the collection, communi-
cation, and storage phases. We also include some architectural policies. Some systems
store data just locally to be extracted a�erwards. We observed that few systems used
secure transmissions for data uploads to the server. �ose that performed hashes,
either on the sensing devices or on the server did not discuss any other security issues
or if their measures are enough to protect privacy.

Table 4. Summary of the measures employed for preserving privacy in infrastructure-based
systems. For the systems with ’-’ do we have no information about the respective aspects

Solution Sensing device Communication Server and Storage
[78] Hashed MAC - SHA-256 Not supported -
[49] Hashed MAC - SHA-256 Not supported -
[61] No anonymization;

transmit data every 1s
Support for no
connectivity (data mule)

No anonymization

[83] No anonymization Not supported -
[2] No anonymization Not supported -
[7] No anonymization Not supported -
[12] No anonymization No encryption; periodic

uploads
No anonymization

[22] Hashed MAC - SHA-256 Not supported -
[48] Hashed MAC - SHA-256 Not supported -
[87] No anonymization Not supported -
[25] Hashed MAC - SHA-1 SSL Cloud
[73] No anonymization No encryption; triggered

when detecting a device
Hashed MAC

[74] No anonymization Not supported -
[26] Hashed MAC - SHA-256 SSL Cloud
[34] Scans for BLE tags every

5min
Only when Wi-Fi
available

No need for
anonymization

[35] Hashed MAC No encryption; periodic
uploads

-

[46] No anonymization Only via Wi-Fi; triggered
when detecting a device

-

[62] No anonymization Not supported Log �les provided by APs
admins

[60] Hashed MAC - SHA-256 SSH tunnel PSK; periodic
uploads

Institution-owned server

[3] No anonymization Not supported -
[13] No anonymization - Hashed MAC
[85] - - Anonymized MAC, no

info on the mechanism

Demir et al. [18] have analyzed the privacy policies of commercial Wi-Fi tracking
solutions from ��een major companies. �ey looked into their policies for data
collection, data transfer, data anonymization, storage, data retention and opt-out; only
two of the solutions covered all these policies. Most of the companies employed some
form of hashing for the MAC addresses they collected but their methods were too
weak and could be broken in a few minutes using just one high-end GPU. Just �ve
companies used secure connections and had data retention policies. An option we
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have not seen in the academic projects we have surveyed is the opt-out. �is permits
the users to enter their MAC addresses if they are not willing to be tracked. Most of
the commercial solutions had support for this option.

Recently, the OS vendors, including those for mobile devices, have included MAC
address randomization support in order to prevent tracking. Windows 10 for instance
uses a random MAC address for each new network it connects to and reuses it when it
connects again. Even though crowd-sensing systems do not intend to track individuals,
they rely on the unique IDs of the devices in order to analyze the �ow between certain
locations. If the addresses are randomized, even just for the scanning phase, it a�ects
the density and count analysis, and hinders the overall �ow analysis, �nding the
popular routes and so on. A recent study by Vanhoef et al. [82] shows that tracking is
possible even with these randomization mechanisms are in place by leveraging the
contents of the probe requests.

5.5 Wi-Fi-based systems
Many proximity-based modalities employ Wi-Fi technology. �e IEEE 802.11 standard
de�nes two scanning modes to which we refer as passive and active scanning. In the
former, the access points periodically announce their presence and the devices listen
to them. �ese beacons are sent approximately every 100ms on only one channel
so devices must listen to di�erent channels. Such a scanning technique is not very
adequate for high mobility scenarios like monitoring pedestrian tra�c in urban areas.
In active mode it is the device that periodically scans for access points. �is mode is
more appropriate for crowd sensing and all solutions we surveyed rely on it. IEEE
802.11 de�nes three types of frames: control, management, and data. Active scanning
relies on management frames, called probe requests, transmi�ed by the client devices
to discover access points (APs). Probe requests are sent regularly, at intervals up to
120 seconds, depending on factors such as vendor or power-state. Bonné et al. [12],
Maier et al. [54], and Musa and Eriksson [61] provide a more detailed overview of this
detection mechanism. Surveyed papers refer to sensing devices as Wi-Fi scanners,
monitors, or detectors and we will use these terms interchangeably.

�is scanning process and its threats to user privacy is an active research topic.
Recent experimental studies such as those conducted by Freudiger [24] quantify the
privacy risk and asses the address randomization e�ectiveness. �e probe requests
contain the MAC address of the sender and, optionally, the SSID of the AP they want
to associate with. �e sensing devices just receive these messages and retrieve the
address. In addition to the MAC address, some systems also collect signal-strength
measurements for be�er localization of the devices. While only one of our surveyed
solutions also retrieves the SSID information, the fact that the probe requests contain
this information raises serious privacy concerns, as explained by Lindqvist et al. [50].

Two of the spot-on systems conducted experiments utilizing both Wi-Fi and Blue-
tooth, and also provided a comprehensive description of the scanning strategies.
Schauer et al. [74] compared the accuracy and detection rate of both technologies in
an airport, having access to ground truth data from the boarding pass scans. �eir
evaluation shows that Wi-Fi is superior to Bluetooth for approximating the densi-
ties and the �ow of the crowd, and has a considerable higher detection rate (4%
Bluetooth/Wi-Fi ratio). Abedi et al. [2] had a di�erent approach, focusing more on
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the characteristics of these technologies. �ey tested the discovery time, detection
range, signal strength in various conditions, varying the environmental interference,
the antennas they used and the scanners’ placement in overlapping regions. �eir
experiments were conducted at a smaller scale than Schauer’s and the analysis was
limited to counting detected devices and classifying people based on their movement
speed (cyclist, runner, walker). Nonetheless, the observed detection rate between the
two technologies was similar.

Several factors in�uence the quality of the collected data set and its suitability for
dimension and movement properties: antenna range, device transmission power, envi-
ronment interference (objects, walls, number of people), probe-request transmission
rate and subsequently the discovery time, and scanner and device placement. Some of
them can be addressed in the pre-experiment phases either through simulations or
small-scale empirical tests. An example of the la�er is the probe-request transmission
rate, which varies between 1s and 120s. �is rate depends on the monitored area [30],
vendors, power states, screen status or if the device is already connected to an AP.

Discovering the transmission rate is not as easy as it would seem. One experiment
conducted by Li et al. [46] showed that iOS devices have a 70s to 1200s interval,
depending on the device’s state, Windows devices varied between 10s and 1200s, and
devices running Android between 1s and 2s. In contrast, Fukuzaki et al. [25] conducted
similar tests and found an approximate period of 480s for iOS and values between
15s and 250s for Android. On the other hand, Schauer et al. [74], had observed
in their tests that iOS devices send probe requests more frequently than Android
devices. �ese inconsistencies may be a�ributed to di�erences in the API versions
of the tested devices. We stress the fact that we have not only a heterogeneity in
the devices’ underlying hardware but also in the API versions they use, especially
for Android devices. Pre-experiment tests should be performed for evaluating the
sensing characteristics (discoverability, detection range) using various device models
and so�ware versions.

�e range of Wi-Fi systems, which is considerably larger than Bluetooth, depends
on the environment, usually outdoors being up to 100m or even more and indoors
being around 35m [2]. One of the criteria in any infrastructure-based sensing system
is the e�cient placement of scanners and sensors for covering an area. For the systems
designed for sensing movement properties such as �ow or routes, this task is particu-
larly challenging. In an urban environment, having the sensors placed too sparsely
considerably diminishes the accuracy for determining routes, since pedestrians may
take several paths to get from one point of interest to another. Even though it has
lower deployment and maintenance costs, spatial sparsity is not a viable option when
systems also collect signal-strength measurements for performing localization using
triangularization. On the other hand, having a denser network of sensors generates
overlaps, which means that the device is detected by two or more scanners at the
same time. Abedi et al. [2] see this as an opportunity to assess the movement type,
based on the time passed in the overlapping region, while Musa and Eriksson [61]
consider it as a negative factor in�uencing the system’s tracking accuracy.

�e data set can be a�ected by temporal factors, for instance the person may pass
the monitored area without the device transmi�ing any probe requests or the device’s
state and placement at that time reduces its transmission power. Also the Wi-Fi
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scanners and monitors may su�er unpredictable downtime, an issue rarely discussed
in our surveyed papers and which notably a�ects the short-term and medium-term
deployments. Bonné et al. [12] mentioned the technical di�culties they encountered
during their experiments which included even power failures.

Musa and Eriksson [61] is one of the most relevant papers on the challenges re-
garding tracking and is also the only infrastructure-based system that considers a
form of incentives. �eir three experiments were well tailored to the type of analysis
they wanted to conduct. For two of them they deployed six, respectively, seven Wi-Fi
monitors on moderately busy streets and on a high-tra�c road, collecting information
both on pedestrians and on car tra�c. For determining the accuracy of the trajectory
estimation and the discoverability of devices, they collected ground truth by travelling
several times in the monitored area, with various phones and phone placement and
di�erent transportation modes. In order to enhance the chance of detections, they con-
sidered three methods, two of them using AP emulation and one using RTS injections.
�e �rst two increase the number of detected devices and the la�er the number of
packets received from each of them. We see these as incentive mechanisms transparent
to the monitored participants, since they encourage the devices to associate with their
monitors. �ey either advertise their monitors as popular SSIDs or as SSIDs with
which the devices have connected in the past. All three techniques were tested with
AP emulation giving the best results.

�e hybrid systems of Kjærgaard et al. [41], Kjærgaard et al. [38], Kjærgaard et al.
[42], and Kjærgaard and Blunck [37] rely on a Wi-Fi infrastructure for positioning. �e
mobile applications detect the APs in their proximity and record the signal strength and
send the data to a centralized server. A Wi-Fi �ngerprinting step must be performed
prior to the experiments, which highly a�ects the scalability of these systems. In the
case of Kjærgaard et al. [41] and Kjærgaard et al. [38] the applications also collect
motion sensors data for a multi-modal analysis. �ey apply classi�cation algorithms
for detecting �ocking behavior [41, 42] and leadership and following pa�erns [37, 38].
�e systems performed very well, having good detection accuracy, but the tests were
conducted at a smaller scale, in indoor environments with only a few volunteers
(10-19).

Table 6. Details about the experiments of Wi-Fi based infrastructure sensing systems.

Solu-
tion

Time-
frame &
environ-
ment

Sensors Experiment & data set details Ground
truth

End purpose

[61]
ST, SO O�-the

shelf APs
(1) 5 nodes, campus, 9 months, 400k
unique MACs. (2) 6 nodes,
moderately busy roads, 12h, 20k
unique MACs. (3) 7 nodes, 2.8 km
high tra�c road, 12h, 23k unique
MACs; 68% mean probability of
detection

GPS traces Proof of
concept:
crowds tracking

[2] ST, SI &
SO

O�-the-
shelf
Wi-Fi, BT
scanners

Popularity assessment experiments
in 6 locations. 90% of observed
unique IDs were Wi-Fi addresses.

No Technology
comparison for
crowd
monitoring
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Table 6. Details about the experiments of Wi-Fi based infrastructure sensing systems.

Solu-
tion

Time-
frame &
environ-
ment

Sensors Experiment & data set details Ground
truth

End purpose

[7] ST & LT,
LO

Laptops,
1 �xed
antenna

11M probes, 160K unique devices, 8
events, 6 experiments, lasting from
40 min to 6 weeks

No Social study of
the crowds

[12] ST & LT,
LO

Raspber-
ryPI

(1) Festival, 3 days, 400mx500m
festival area, 138K unique devices.
A�er �ltering: 29k devices, 300k
datapoints. 29.3% detected people.
(2) Campus, 4 detectors, 3 months.
1383 daily unique device; no
analysis details

No Tracking the
visitors of mass
events

[25] MT, MI &
O

Raspber-
ryPI

(1) 3 days indoor. (2) 1 day outdoor.
No RSSI collection in either case.

Partially Disaster
prevention

[73] LT, LI Existing
APs

15 days, 798 APs, 22 buildings, 10ha
area. 109 measurements, 18K unique
devices

No Crowd behavior
indoors

[74] LT, MI Laptops 16 days, 2 laptops, Wi-Fi and BT
scans. 6,211 daily unique Wi-Fi
devices, 250 for BT

Venue
speci�c:
airport
gates data

Technology
comparison for
crowd sensing

[26] LT, MI Custom
sensors

2 months, 20 sensors, shopping mall.
30% recognition rate

Motion
detectors

Planning for
commercial
facilities

[35] ST, LI No info 20 monitors, 7 indoor campus areas,
1 week, detections every 10s.
Outliers: outdoor or forgo�en
devices. Data from the monitors
placed in 5 faculties, but was not
good enough for analysis (low
coverage). Ground truth not
covering the whole period; no
information on the questionnaire.

People
counting
app;
online
question-
naire

Proof-of-
concept:
Campus’s
rhythm

[46] ST, SO Raspber-
ryPI

2 separate experiments. Walking
type experiment: 14 nodes, 7
locations, 3 phones (one per vendor).
Density monitoring: 2 nodes, 30 h

Partially Proof of
concept:
crowds tracking

[3] MT, LI Raspber-
ryPI,
custom
Wi-Fi
badges

3 days event, 40K visitors, 6000m2
venue, 30 gateways; 85 visitors with
badges; badges’ probe sending rate
dynamically adjusted based on
detected motion; a�er �ltering: 2526
unique devices out of 290K, 61
badges out of 85

No Event crowd
dynamics,
behavior of two
groups of
people relevant
to the event

[13] MT, LO Custom
sensors

27 sensors. Data from multi-day
festival in city center. Focus on
mobile-device detection, path
detection

No E�ective
data-cleaning
techniques
before analysis

[85] LT, LI No info 13 days mass event in 2015. 31
Wi-Fi scanners, 9000m2. 209M
probes, 85M a�er �ltering, 300K
unique devices. Mapped 2/3 of the
visitors, 20% crowd density error.
Additional localization experiment
with one volunteer, 2 phones, 4.5m -
5.6m mean localization error

yes -
video, 1
camera,
manual
annota-
tions

Proof-of-
concept: crowd
monitoring
using Wi-Fi
scanners
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Table 6. Details about the experiments of Wi-Fi based infrastructure sensing systems.

Solu-
tion

Time-
frame &
environ-
ment

Sensors Experiment & data set details Ground
truth

End purpose

[5] ST, LI O�-the
shelf APs

Building �oor with 50 rooms. 3
Wi-Fi base stations. Validation
using preliminary measurements
and propagation model

Yes RF-based
indoor
localization &
tracking

[72] SIM, LO O�-the
shelf APs

Simulation based on real data set. 1
volunteer, 1 device, 50 h. Lab
experiment with modi�ed
o�-the-shelf routers. Performance
overhead measurements

No Proof of
concept:
tracking using
modi�ed
routers

In Table 6 we have summarized the experiments of the Wi-Fi based solutions we sur-
veyed, which, with the exception of Rouveyrol et al. [72] and Bahl and Padmanabhan
[5], are all spot-on when it comes to sensing crowds. We classi�ed the duration of the
experiments and the size of the monitored areas based on the observations for all the
systems we surveyed, including the participatory ones. Although for the app-driven
experiments we also had applications publicly deployed for many months, for the
rest of them, the time intervals and the area types had similar variations. None of the
surveyed sensing infrastructures was a permanent one, even though we suspect that
some [60, 73] remained in place even a�er the period covered in the analyzed data set.
�e duration of the experiment can be short term (ST) if it lasts less than 24h, medium
term (MT) between 24h and 7 days and long term when lasting for more than 7 days.
Few deployments lasted for more than 1 month. �e environment is classi�ed as being
small indoor (SI) for less than 100m2, medium indoor (MI) when dealing with a �oor or
a small shopping area, large indoor (LI) for several �oors or even buildings, exhibition
halls, and shopping malls. For outdoor events, we distinguish small outdoor (SO) such
as a playground, medium outdoor (MO) for example, when dealing with a relatively
small campus, and large outdoor (LO) for mass events, and entire city centers.

�e information logged by the sensing devices or uploaded to the server consists of
the detected address (or hashed address), a timestamp, the sensing device’s identi�er
and sometimes signal-strength information or the SSID obtained from the probe
request. �e timestamp is provided by the sensing devices, which have their clocks
synchronized through NTP or other means (for example, as with the app employed
by Bonné et al. [12]). In crowded scenarios, the collected RSSI data may be too noisy to
be useful in the data analysis phase [12]. Some systems also extract vendor information
from the �rst three octets of the MAC address, which represent the Organizationally
Unique Identi�er (OUI).

In Table 6 we have not included the calibration and pre-experiment phases. Schauer
et al. [74], Fukuzaki et al. [25], and Li et al. [46] performed probe requests transmission
tests using devices from various vendor and with di�erent operating systems. Fukuzaki
et al. [25] also tested the proportional dependence between distance and RSSI (clear
only for less than 15m range). Musa and Eriksson [61] tested the Wi-Fi behavior of
devices when various apps are running. Bonné et al. [12] measured the length of a
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detection round, which for them meant the minimum time interval for receiving at
least once packets from the device. All the on-device processing and data uploads to
the server relied on this interval, set at 130s. �e hybrid systems of Kjærgaard et al.
[38, 41, 42] required a Wi-Fi �ngerprinting step.

Weppner et al. [85] include a localization experiment in addition to the large mass
event deployment. Using data from one volunteer carrying two phones in shielded
and unshielded placements and visiting more than 60 locations, they assessed the
accuracy for two localization methods. �e multilateration method performed be�er,
having a 4.5 m mean error as opposed to the 5.6 m of the �ngerprinting method which
relied on �ngerprint maps of the scanners.

Although no information is given in the papers in terms of deployment and mainte-
nance costs we have observed that they employed either low-cost customized solutions
based on Raspberry Pi or low-end access points [61].

5.6 Bluetooth-based systems
Bluetooth is a well-established standard for proximity-sensing systems. �e broad
use of Bluetooth in consumer electronics, notably personal devices, makes it ideal
for applications that sense or track human presence. Since in our survey we focus
on sensing crowds, we looked more into Bluetooth-based systems for large, crowded,
outdoor areas than for indoor venues or building surveillance.

In order to communicate, Bluetooth devices pass through several steps, but for
sensing purposes, we need just the inquiry phase. In this step, a device referred to as
master sends inquiry requests and all nearby listening devices respond. �e response
contains the MAC address and some additional information such as the name and
class of the device. �e class can be used in �ltering the nonmobile devices. Master
devices deployed in the sensing infrastructure just detect passing devices through the
inquiry phase and do not establish connections with them.

�e problem with this sensing mechanism is that the phones reply to inquiry
requests only when they are in discoverable mode; it is not su�cient to just have the
Bluetooth interface enabled. Due to security concerns, the mobile OS vendors have
imposed certain restrictions and current smartphones have a limited discoverability
window (less than 5 minutes) and users must explicitly consent it. �e latest Bluetooth
experiments in crowd sensing, performed in 2014, show a very low percentage of
discoverable devices (under 10%) as opposed to Wi-Fi devices. What is interesting
though is that we do not see a signi�cant drop between older studies and newer
ones for this percentage. As can also be observed in Table 6, the rate was in the
same range even a decade ago. To what extent wearables are going to change this
situation remains to be seen (wearables generally require a Bluetooth connection to a
smartphone).

Bluetooth devices can communicate at a range between 10m and 100m, usually 10m
for mobile devices, more for laptops. With a lower range than Wi-Fi, Bluetooth-based
infrastructures must rely on a higher density of sensing devices, which can increase
the deployment and maintenance costs. As in the case of Wi-Fi, the sensors must be
connected to a power source, and preferably to an Internet connection for uploading
the collected data. When covering large areas without wired Internet connectivity,
Wi-Fi based systems rely on mobile data connections, as in the case of Bonné et al.
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[12], in which a phone was a�ached to every sensing node, 15 in total. Such an
approach may not scale well in terms of price for Bluetooth infrastructures. Some
Bluetooth-based systems log data locally on sensors and do not upload it in real time
to a server (see Table 4).

�e �rst Bluetooth-based crowd-sensing systems focused on its suitability for detect-
ing people, notably the rate of discovered devices. Nicolai and Kenn [63] performed a
�eld study in crowded commercial areas and measured rates between 2% and 6%. Un-
fortunately, they do not discuss the results in respect to the phone-market penetration
at that time, in 2006.

�e trend of transitioning from Bluetooth to Wi-Fi for crowd sensing can be observed
in the conclusions of several Bluetooth-based papers, not only in the comparative
studies of Abedi et al. [2] and Schauer et al. [74]. Phua et al. [67] conducted a ques-
tionnaire asking the participants whether or not they have both Bluetooth and Wi-Fi
enabled and whether they would use a free Wi-Fi public hotspot provided in the venue.
�e responses were in favor of Wi-Fi.

We can also see a transition to Bluetooth in the experiments conducted by some
researchers, for example in the case of Weppener et al. �ey relied on Bluetooth-
based systems [86–88] and in their recent paper [85] they deployed a Wi-Fi sensing
infrastructure during a 2015 mass event. In their latest approach they refer to Wi-Fi
and Bluetooth together in the �rst part of the paper, while the sensing campaign
focuses solely on Wi-Fi. Even though the data is collected in a similar fashion, they
seem to ignore the di�erences between these interfaces when it comes to being able
to discover devices. It seems improbable that using only Bluetooth they would have
been able to detect two thirds of the event participants, like they did in their Wi-Fi
experiment.

Bluetooth Low Energy (BLE) is another technology for proximity sensing, but
due to its novelty is still less prevalent in crowd-sensing systems. Jamil et al. [34]
discusses the only surveyed system that uses it. �e authors obtained high accuracy in
discovering tags given to hundreds of participants. BLE has a range similar to classic
Bluetooth but a di�erent mechanism for discovery and communication, leading to
lower latencies and be�er discoverability.

Table 7. Details about the experiments of Bluetooth based infrastructure sensing systems.

Solu-
tion

Time-
frame
& env.

Sensors Experiment & data set
details

De-
tected
devices

Ground
truth

End
purpose

[65] ST, SO Laptop 1 laptop, 3 BT dongles; 10
gatecounts in the city, 30
mins each; 2 �xed gatecounts,
long term; data from devices
completely scanned

8% Manual
observa-
tions

Measure the
percentage
of
discoverable
devices

[63] ST, MI
& MO

1 laptop,
1 phone

4 locations - di�erent types,
cities, countries; 1-2 hours on
di�erent days

2-6% Manual
observa-
tions

Measure
fraction of
discoverable
devices
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Table 7. Details about the experiments of Bluetooth based infrastructure sensing systems.

Solu-
tion

Time-
frame
& env.

Sensors Experiment & data set
details

De-
tected
devices

Ground
truth

End
purpose

[78] MT, LO Custom Festival, 48h, 40000km2 area;
1 measurement every 3
seconds; 870K records, 12,700
unique devices; removed
55%records due to cars

0.2% No Global
crowd
movements

[86] MT, SO Android
phones
(one
type)

3 volunteers each with 3
phones (2 in front pockets, 1
in back pocket); 3 days, 500m
long pedestrian zone,
Oktoberfest2010; crowd
density classi�cation
accuracy over 80%

- photos Crowd
density
estimation

[83] LT, LO Custom
sensors,
two
types

10 days, 22 locations;
extracted 152K trajectories,
80K users; visual counts 10
times, for 15 min each, in 8
locations

11 ±
1.8%

Visual
counts

Bluetooth
tracking for
mass events

[2] ST, SI &
SO

O�-the-
shelf
Wi-Fi
scanners,
BT
scanners

90% of observed unique IDs
were Wi-Fi addresses;
popularity assessment
experiments in 6 locations

- Technology
comparison
for crowd
monitoring

[49] SIM, MT
& MO

Custom
sensors

Simulation for a train station;
Zoo experiment: 5 sensors, 7
days, 7K detected devices;
sensors with 20m antennas
indoors and 100m outdoors;

- Analytic
method

Pedestrian
quantity
estimation

[48] ST, LI Custom
sensors

17 sensors, football stadium
during a match; 15m range;
47,589 data points, 553 unique
devices; average visited
locations/device: 4.37,
median: 2

14% No Sensor
placement,
pedestrian
quantity
estimation

[22] LT, LI &
MO

Custom
sensors

4 data sets: 7, 15, 17, 2
sensors; airport: 4months,
141K addresses, 16.5M
records; zoo: 14 days, 2K
addresses, 150K records; F1
arena: 2 days, 12K addresses,
792K records; stadium: 8
hours, 2.5K addresses, 24K
records

5%-12% Location
speci�c:
turnstile
data,
video

Bluetooth’s
potential for
acquiring
pedestrian
mobility
data

[87] ST, LI Several
types of
Android
phones

10 volunteers grouped in
pairs, moving on a
pre-de�ned path, some
stationary, some walking; 4h
of data, 3 days event, 1600m2
area, 1K+ visitors; various
crowd densities; 75%
classi�cation accuracy

- video Crowd
density
estimation

[67] ST, MI Laptop 3 days, 1 laptop placed at the
store’s entrance

30% Manual
observa-
tions,
surveys

Acquiring
shoppers
behavior
using
Bluetooth
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Table 7. Details about the experiments of Bluetooth based infrastructure sensing systems.

Solu-
tion

Time-
frame
& env.

Sensors Experiment & data set
details

De-
tected
devices

Ground
truth

End
purpose

[74] LT, MI Laptops 16 days, 2 laptops; Wi-Fi and
Bluetooth scans; 6,211 unique
Wi-Fi devices per day; 250
unique BT devices per day

- Venue
speci�c:
airport
gates
data

Technology
comparison
for crowd
sensing

[34] MT, LO Smart-
phones,
BLE tags

6 days event, 2M visitors; 732
volunteers wearing tags;
various demographics; 732
tags, 740k tag detections

98%
(tags)

None Event
monitoring,
group
dynamics

[60] LT, LO Custom
sensors

1 month, 14 sensors placed on
billboards in Bonn; 5M data
points, 85K devices; 7-10%
detection rate for another
data set

- Similar
data set

Mobility
pa�erns,
commuter
pa�erns

[62] ST, LO Phones Festival, 280,000m2; 10 agents,
13h; discovered 2637 out of
3326 BT devices; dynamic
measurements

8.20% Entrance
scanners

Population
size, density
estimation

[66] LT, LO O�-the-
shelf

3 weeks; 123 intersections
with inductive loop detectors;
28 BT scanners placed on
tra�c lights/lamp posts; per
scanner: 21 simultaneous
connections, 3 antennas, 56
bit encryption

- Inductive
loop
detectors

Multi-modal
tra�c
sensing

In Table 7 we present the details about the Bluetooth-based experiments in a similar
manner as for the Wi-Fi systems (see Table 6). We use the same abbreviations for
the length and the se�ing of the experiments. Since many of the surveyed Bluetooth
papers focused on the detection rate, they also provide clear statistics about it. In
contrast, only three of the Wi-Fi papers o�ered this information: Bonné et al. [12]
(29.3%), Fukuzaki et al. [25] (30%), and Musa and Eriksson [61] (68%).

Only four of the papers describing Bluetooth solutions o�ered information on
calibration or pre-deployment phases. One relevant example is provided by Mueller
et al. [60], who conducted experiments for determining the best placement for the
sensors. In this case, where the sensors were placed on billboards, the factors of
interest were the signal a�enuation caused by the surrounding material and the
mobile network reception quality. �e hybrid system using BLE tags proposed by
Jamil et al. [34] required lab experiments for measuring the energy consumption of
scans of di�erent durations and the detectability of the tags. �e tests were performed
on smartphones with various models and manufacturers. One of the earliest Bluetooth
studies [65] had preliminary stages that helped them re�ne their collection method
(add more dongles, record less information). Another early system [63] conducted lab
experiments to measure the discovery duration.
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5.7 A few notes on ground truth and visualizations
�e infrastructure-based papers we surveyed present instrumented or noninstru-
mented experiments. In the �rst case we have small-scale lab experiments, usually
indoor, with volunteers following certain scenarios. �ey have the bene�t of providing
ground truth data in an easy manner, sometimes just by manual observations. Such
experiments are also suitable for the pre-deployment phases we have discussed earlier
or for testing certain analysis methods. Unfortunately, noninstrumented experiments,
especially those conducted at a larger scale, are hard to validate in the absence of
another source of data (e.g. CCTV video streams). In some cases the researchers can
leverage venue-speci�c information, such as airport security data [22, 74] or turnstiles
(as done by Ellersiek et al. [22]).

For large areas, some systems relied on short-term data acquisition for validation
purposes. For instance, Versichele et al. [83] computed the detection ratio during
10 video-based experiments, each lasting up to 15 minutes. �e systems relying on
volunteers for observing the participants also collected validation data during a limited
period of time. Kalogianni et al. [35] designed a people-counting application and also
surveyed random participants. Musa and Eriksson [61] traveled in the monitored area,
recorded the GPS traces of their devices and determined the tracking accuracy for
those devices. In other cases such as Mueller et al. [60] validation was performed
using data from other similar deployments. �e process of acquiring ground truth
can be particularly labor intensive, as in the case of Weppner et al. [85]. Over 40,000
annotations needed to be manually processed from 71 ground-truth images collected
from a camera covering almost the whole monitored area during the entire duration
of the event.

It may be questioned to what extent some ground-truth collection methods are
actually valid. Naini et al. [62] validate their population size estimations using data
collected at the entrances and exits of the event premises. Since their choice of
technology was Bluetooth, they placed phones that count the number of Bluetooth
discoverable devices. �e problem is that a phone visible at the entrance may not be
visible two minutes later or the other way around.

Real-time visualizations and analysis were less addressed in the infrastructure-based
systems than in the application-driven ones. Only three spot-on systems included it
[12, 26, 46], and a few others had a design that could support it. None of these systems
mentioned real-time feedback to the public through websites or dedicated applications.
In other sensing domains, such as pollution tracking, sharing the results with the
community and a�racting the interest of the public is one of the priorities [19].

6 CROWD-CENTRIC SENSING SYSTEMS
�irty of the application-driven and infrastructure-based sensing systems we have
discussed in the previous sections are very relevant for sensing the crowds due to
the quality of their collection campaigns and the relevance of the data set. With few
exceptions [3, 12], they also include the analysis of the crowd dynamics. We consider
them spot-on to the purpose of our survey, as previously argued in Section 3.

Table 8 lists them based on their purpose and design. �e diagrams will compare
all of them with the exception of Abedi et al. [2] and Schauer et al. [74], discussed in
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Section 5.5. Most of the criteria do not apply to them due to their focus on the sensing
technologies and their approach for the experiments.

Table 8. Spot-on papers

Solution
App-driven Infrastructure-based, Hybrid

Mass events Urban-
centric

Mass events Indoor events Urban-
centric

[58] - X - - -
[78] - - X - -
[86] - - X - -
[36] X - - - -
[41] - - - X -
[61] - - - - X
[83] - - X - -
[2] - - - - X
[7] - - X - X
[12] - - X - -
[15] - X - - -
[22] - - X X -
[79] X - - - -
[87] - - X X -
[92] X - - - -
[10] X - - - -
[14] - X - - -
[25] - - - - X
[64] - X - - -
[73] - - - X -
[74] - - - X -
[88] X - - - -
[34] - - X - -
[46] - - - - X
[55] X - - - -
[60] - - - - X
[62] - - X - -
[3] - - X X -
[13] - - X - X
[85] - - X X -

An ideal system for sensing crowds provides data and communication privacy
to the monitored participants and incentives to a�ract a large user base. It also
scales both in area size and density of participants without a considerable increase
in development, deployment and maintenance costs. �e analysis methods support
various density scenarios. �e sensing application does not have considerable impact
on the device’s ba�ery or a�ects other running apps. �e users are aware of the data
collection performed by the application, and are in control of its sensing se�ings and
permissions. Moreover the usability of the application is not hindered by frequent
requests for user input. All these traits are present in various degrees in the spot-on
systems. Real systems need to trade some characteristics for others based on the
crowd properties they want to asses, the level of accuracy, the sensing technologies
and the desired interaction with the users.

We use a rating system for six features relevant to crowd sensing systems: privacy,
incentives, scalability, ease of deployment, resource consumption and transparency.
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�e diagrams in this section depict the trade-o�s between the six features. Other
characteristics such as the quality of the data set, the coverage, the accuracy of the
detections or the usability of the applications are either not discussed in the papers or
they vary too much to have a common comparison ground for numeric ratings.

�e ratings vary between 0 and 3 and are scaled to the worst and the best imple-
mentations we have seen in the surveyed systems. When distinguishing between the
ratings we also consider the concern of the authors for that particular topic. Table 9
summarizes the meaning of these ratings. For transparency, resource consumption
and ease of deployment the middle ratings depend on each system’s implementation.

For infrastructure-based systems, Resource consumption refers only to the scanned
devices and with only one exception [61], all the surveyed systems have the higher
rating. Musa and Eriksson [61] employ mechanisms for increasing the packets sent
by the devices, thus enhancing the number of detections.

�e applications employed for events and urban sensing have more varied ratings
for Resource consumption. �e system with the highest rating is proposed by Kannan
et al. [36]. It is designed for counting and density, and achieves good accuracy with a
very low power consumption. �is system is the only one of the spot-on systems that
employs a tone counting mechanism. Unfortunately the solution does not seem to
scale to thousands of users.

Transparency refers to the interaction between the monitored participants and the
system. We do not include data transparency since most of the papers do not discuss
it or share any results or information on the collection campaign (only 14 out of over
90 systems we surveyed actually share any data with the participants).

We grouped the systems based on their purpose, modalities and the monitored
environment (indoor/outdoor), as re�ected in Table 8. �e application-driven ones
had more diverse ratings while for infrastructure and hybrid ones some of the criteria
were constant. For indoors, all the spot-on systems relied on an infrastructure-based
or hybrid architecture, and with no incentives and less interest in privacy, as shown
in Figure 5.

For mass events, which consist of thousands of participants and cover large areas or
have high densities, the applications were fairly easy to deploy, being less cumbersome
to market as o�cial apps than to make them available through o�cial app stores. �e
la�er o�en form a hindrance due to their various regulations (Weppner et al. [88]
discusses some of these restrictions). On the other hand, the infrastructure-based
systems were considerably more di�cult to deploy as we show in Figures 3 and 4.
�ey have lower ratings especially for events rather than for urban monitoring, as
seen in Figure 6, mostly due to the monitored areas’ limitations. Also, the lack of
Internet connectivity forced the use of local storage, making deployment and data
collection less scalable. �e easiest deployment for infrastructure-based systems was
in the case of the building monitoring performed by Ruiz-Ruiz et al. [73], in which
they leveraged the existing and already dense Wi-Fi infrastructure.

�e applications provided a more consistent enforcement of privacy than their
infrastructure-based counterparts. Out of the thirteen event-related infrastructure
systems(both indoor and outdoor), only �ve had the highest rating while the rest
having 0 or 1, depending on their discussions on this subject.
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Table 9. Criteria for comparing the spot-on papers

Rating 0
(worst)

Rating 1 Rating 2 Rating 3
(best)

Privacy No security and
privacy mechanisms
and policies; no
discussion; e.g.
[7, 87]

Some privacy
mechanism but not
enough + no discus-
sion; no mechanism
implemented +
discussion; e.g. [12]

Standard measures;
not a primary con-
cern; e.g. [79]

Ensures privacy:
anonymity, commu-
nication security;
high concern;
[25, 58]

Incentives No incentives; no
discussion; e.g. [64,
78]

Provides incentives;
no details about
them or their ef-
fectiveness; e.g.
[88]

Provides incentives;
not very e�ective;
not a primary con-
cern; e.g. [79, 92]

Provides incen-
tives; e�ective;
research and tests
on incentivization
mechanisms; e.g.
[10]

Scalability Hard to extend the
system to more
users or cover a
larger area; e.g. [41]

Scalable in some de-
gree, more close to 0;
e.g. [14]

Scalable, not a main
focus of the paper
or not directly dis-
cussed; e.g. [22]

Highly scalable; de-
signed for scalabil-
ity; discussed in the
paper; e.g. [10, 58]

Trans-
parency

�e participants
need to o�en inter-
act with the system;
e.g. [79]

Active participation
is required, e.g. [58]:
the participants
start the media
recordings

Unclear, but may
be transparent, e.g.
[64]: seems trans-
parent but not dis-
cussed, it’s based on
sound recording so
it might require per-
missions to trigger it

�e participants are
not required to do
anything or they are
not aware of the
collection campaign;
e.g. [55]

Resource
consump-
tion

High energy con-
sumption, many
resources involved;
no sensor sampling
strategies; e.g. [64]

Unclear, but most
likely high, e.g. [55]:
collected ba�ery lev-
els, observed that
the ba�ery dropped
20% in 2 h, con-
trolled the submit
rate based on the
critical places

Unclear, but most
likely low, e.g. [88]:
uses Bluetooth and
GPS but imple-
mented dynamic
sampling policies
and geofencing

E�cient use of re-
sources; e.g. [83]

Ease of de-
ployment

Requires a lot of
e�ort (technical,
logistic, marketing)
and high costs in
equipment, develop-
ment, maintenance;
e.g. [15, 61]

Most likely de-
manding, e.g. [14]:
they added kernel
drivers, required
rooted phones

Most likely not
very demanding,
e.g. [92]: developed
an app based on an
existing framework
and collaborated
with the event
organizers for dis-
tributing it as the
o�cial event app

A simple app and a
server rented in the
cloud or using ex-
isting infrastructure
and just obtaining
the data; e.g. [73]

Some of the spot-on solutions also collected ground truth data which permi�ed
them to validate the data sets using relative error [88], correlation coe�cient [92],
tracking accuracy [46] or detection rate [34].

�e spot-on systems with notable good accuracy, in-depth experiments (varied
scenarios, multiple type of mobile devices) and complex analysis (e.g. considering

40



Privacy

IncentivesTransparency

Resource
consumption

Ease of
deployment Scalability

P I T R D S
[36] 3 0 3 3 2 2
[79] 2 2 0 2 1 2
[88] 3 1 3 2 2 3

(a) Bluetooth, audio

Privacy

IncentivesTransparency

Resource
consumption

Ease of
deployment Scalability

P I T R D S
[92] 3 2 3 1 2 3
[10] 0 3 3 1 2 3
[55] 3 1 3 1 3 3

(b) GPS

Fig. 3. App-driven systems used in mass events

energy consumption, scalability) are Kannan et al. [36] for crowd counting, Weppner
and Lukowicz [87] for density estimation, Nishimura et al. [64] for congestion classi�-
cation and Kjærgaard et al. [41] for �ock detection. Regarding the la�er, the �ocks
and other pa�erns such as leadership and following, make the topic of the systems
described by Kjaergaard et al. in [37, 38, 41, 42]. Due to their similarities in the sensing
system and the emphasis on the processing part, we included only one of these papers
in the spot-on papers category. �ey provide high detection accuracy, especially when
combining modalities - Wi-Fi APs detections with motion sensors [42]. Also on �ocks
analysis, Wirz et al. [94] provides algorithms based on GPS traces to detect them with
a high accuracy of around 78%. �e data set was collected using an instrumented
experiment with volunteers carrying smartphones with dedicated sensor logging
so�ware, thus not making the focus of our spot-on papers classi�cation.
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Privacy

IncentivesTransparency

Resource
consumption

Ease of
deployment Scalability

P I T R D S
[78] 3 0 3 2 2 2
[86] 0 0 3 3 3 2
[83] 1 0 3 3 0 3
[62] 0 0 3 3 1 1

(a) Bluetooth

Privacy

IncentivesTransparency

Resource
consumption

Ease of
deployment Scalability

P I T R D S
[12] 1 0 3 3 1 3
[34] 3 1 1 3 0 1
[13] 3 0 3 3 1 3
[85] 2 0 3 3 1 3

(b) Wi-Fi

Fig. 4. Infrastructure-based systems in mass events

In the absence of ground truth, the validation of the data set is tricky and its quality
is deduced based on the crowd properties it can describe, for instance counts and
densities. A notable mention is Blanke et al. [10] who capture the density and �ows
during a large festival with hundred of thousands of participants. Using the same data
set the authors also obtain high map reconstruction accuracy in Blanke et al. [9], an
analysis-oriented paper. �eir experiment owes its success to the use of incentives
and providing the o�cial application of the event.

In some cases, the data set is not enough and the researchers also rely on simulations.
For instance, the application-driven system deployed by Stopczynski et al. [79] did
not manage to a�ract enough users and they extrapolated the coverage through
simulations. �e authors discuss vital points regarding the challenges of their chosen
technology (Bluetooth), compare the application-driven and infrastructure-based
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Privacy

IncentivesTransparency

Resource
consumption

Ease of
deployment Scalability

P I T R D S
[41] 0 0 3 2 2 0
[22] 3 0 3 3 1 2
[87] 0 0 3 3 2 1
[73] 3 0 3 3 3 3
[3] 0 0 2 3 1 2

Fig. 5. Infrastructure-based systems for indoor events

approaches and are optimistic about Bluetooth’s potential for crowd mobility sensing
despite their aforementioned disadvantages. In the case of Mallah et al. [55], the spatio-
temporal data was used just for checking the ba�ery consumption and the analysis
part (group detection) relies on simulations for comparing clustering algorithms. �is
is also one of the papers that o�ers incomplete details on the sensing part, such as
how they computed the positioning accuracy and what exactly were the incentives.

7 DISCUSSION AND CONCLUSIONS
Counting pedestrians has almost become commonplace, and using techniques such as
Wi-Fi scanning or Bluetooth tracking is gaining widespread popularity. However, we
have been able to �nd only relatively few groups that report on real-world experiments
with automatically sensing the behavior of crowds. �is is somewhat surprising
considering the open-ended issues that our study reveals. For one thing, we have not
been able to identify any solution that adequately addresses all aspects of transparency,
incentives, privacy, scalability, ease of deployment, and resource consumption. For
example, where app-driven solutions are generally best at preserving privacy, they
do require that users actually install a solution on their phone, in turn hindering
practical scaling and requiring incentive mechanisms. Likewise, infrastructure-based
systems have the advantage of transparency and scalability, but one may consider it
troublesome to see how li�le a�ention is paid to handling privacy.

In practice, we see that large-scale solutions are being applied for gathering data
from crowds. For example, many modern festivals use electronic bracelets that combine
the function of ticket, wallet, and tracking device. In many cases, tracking is limited
due to the use of passive RFID technology, which requires readers that operate at
relatively close distance. However, applying alternative technologies such as UHF
RFID and active RFID allows reading at larger distances. Also, connecting RFID
wristbands to smartphones opens up paths for tracking users, notably in combination
with social-media scanning. Unfortunately, up to this day there are no detailed reports
on how these or other techniques are actually being deployed. Based on this survey,
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Privacy

IncentivesTransparency

Resource
consumption

Ease of
deployment Scalability

P I T R D S
[61] 0 2 3 2 0 3
[7] 0 0 3 3 2 3
[25] 3 0 3 3 1 2
[46] 0 0 3 3 1 2
[60] 3 0 3 3 0 2

(a) Infrastructure-based

Privacy

IncentivesTransparency

Resource
consumption

Ease of
deployment Scalability

P I T R D S
[58] 3 1 1 2 2 3
[15] 3 2 2 2 0 1
[14] 3 2 3 2 0 1
[64] 0 0 2 0 2 2

(b) Application-driven

Fig. 6. Urban crowd-centric systems

we can only suspect that even in these cases there is still much to improve, notably
concerning privacy, but also technical issues such as accuracy, transparency, and
resource consumption.

When it comes to accuracy, we have seen very mixed reports to the extent that
we were not able to include it as a criterion for evaluation in Section 6. A major
problem is acquiring ground truth. We have seen only few studies paying explicit
a�ention to decently validating their results, which is in line with conclusions drawn
by Wijermans et al. [89]. Despite the di�culties, we believe it is necessary to pay
a�ention to this issue, if only using additional, independent measurements to identify
anomalies in the original data set.

It seems that only by combining app-driven and infrastructure-based solutions will
we be able to come to decent solutions for sensing crowds. In essence, such solutions
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would combine the power of local measurements (i.e., by end users) and global ones
(through traditional scanning techniques). Privacy would be much in the hands of the
user, although unintrusive scanning techniques do require that data is anonymized
or even immediately processed to a su�cient aggregation level so that the original
measurement can be subsequently discarded. Transparency in a hybrid solution can be
addressed through techniques that are bundled upfront into the smartphone without
requiring a special application to be downloaded. Instead, the user would simply need
to con�gure her phone by switching certain services on or o�. Furthermore, with
further expansion of Wi-Fi and Bluetooth in public and private places, the ease of
deploying infrastructure-based solutions is certainly expected to improve, making a
hybrid solution scenario even more plausible.

By and large, we conclude that automatically sensing crowds has already come a
long way, but that there are signi�cant challenges to be addressed before we can speak
of satisfactory solutions.
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map construction for short-term city-scale events. In 1st International Conference IoT in Urban Space.
ICST, 25–31.

[10] Ulf Blanke, Gerhard Troster, Tobias Franke, and Paul Lukowicz. 2014. Capturing crowd dynamics
at large scale events using participatory gps-localization. In 9th International Conference Intelligent
Sensors, Sensor Networks and Information Processing (ISSNIP). IEEE Computer Society Press, Los
Alamitos, CA., 1–7.

[11] Henrik Blunck, Niels Olof Bouvin, Tobias Franke, Kaj Grønbæk, Mikkel B Kjaergaard, Paul Lukowicz,
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hard Tröster, and others. 2013. Time-lag method for detecting following and leadership behavior
of pedestrians from mobile sensing data. In International Conference on Pervasive Computing and
Communications (PerCom). IEEE Computer Society Press, Los Alamitos, CA., 56–64.

[39] Mikkel Baun Kjærgaard and Marco Kuhrmann. 2015. On architectural qualities and tactics for mobile
sensing. In 11th International Conference �ality of So�ware Architectures. ACM Press, New York, NY,
63–72.

[40] Mikkel Baun Kjærgaard, Jakob Langdal, Torben Godsk, and �omas To�kjær. 2009. Entracked: energy-
e�cient robust position tracking for mobile devices. In 7th International Conference on Mobile Systems,
Applications, and Services (MobiSys). ACM Press, New York, NY, 221–234.

[41] Mikkel Baun Kjærgaard, Martin Wirz, Daniel Roggen, and Gerhard Tröster. 2012. Detecting pedestrian
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[71] Daniel Roggen, Martin Wirz, Gerhard Tröster, and Dirk Helbing. 2011. Recognition of crowd behavior
from mobile sensors with pa�ern analysis and graph clustering methods. arXiv preprint arXiv:1109.1664
(2011).

[72] Pierre Rouveyrol, Patrice Raveneau, and Mathieu Cunche. 2015. Large Scale Wi-Fi tracking using a
Botnet of Wireless Routers. In Workshop on Surveillance & Technology.

[73] Antonio J Ruiz-Ruiz, Henrik Blunck, �or S Prentow, Allan Stisen, and Mikkel B Kjærgaard. 2014.
Analysis methods for extracting knowledge from large-scale WiFi monitoring to inform building
facility planning. In International Conference on Pervasive Computing and Communications (PerCom).
IEEE Computer Society Press, Los Alamitos, CA., 130–138.

[74] Lorenz Schauer, Martin Werner, and Philipp Marcus. 2014. Estimating crowd densities and pedestrian
�ows using WiFi and Bluetooth. In 11th International Conference on Mobile and Ubiquitous Systems:
Computing, Networking and Services. ACM Press, New York, NY, 171–177.

[75] Katie Shilton. 2010. Participatory sensing: Building empowering surveillance. Surveillance & Society
8, 2 (2010), 131–150.

[76] Katie Shilton. 2012. Participatory Personal Data: An Emerging Research. Journal of the Association for
Information Science and Technology 63, 10 (2012), 1905–1915.

[77] Katie Shilton, Je�rey A Burke, Deborah Estrin, Mark Hansen, and Mani Srivastava. 2008. Participatory
privacy in urban sensing. In InternationalWorkshop onMobile Device and Urban Sensing. IEEE Computer
Society Press, Los Alamitos, CA.

[78] Hendrik Stange, �omas Liebig, Dirk Hecker, Gennady Andrienko, and Natalia Andrienko. 2011.
Analytical work�ow of monitoring human mobility in big event se�ings using bluetooth. In 3rd
International Workshop on Indoor Spatial Awareness. ACM Press, New York, NY, 51–58.

[79] Arkadiusz Stopczynski, Jakob Eg Larsen, Sune Lehmann, Lukasz Dynowski, and Marcos Fuentes. 2013.
Participatory Bluetooth Sensing: A Method for Acquiring Spatio-Temporal Data about Participant
Mobility and Interactions at Large Scale Events. In International Conference on Pervasive Computing
and Communications (PerCom) Workshops. IEEE Computer Society Press, Los Alamitos, CA., 242–247.

[80] Takumi Takafuji, Kazuhisa Fujita, Takamasa Higuchi, Akihito Hiromori, Hirozumi Yamaguchi, and
Teruo Higashino. 2014. Indoor Localization Utilizing Tracking Scanners and Motion Sensors. In 11th
International Conference Ubiquitous Intelligence and Computing. IEEE Computer Society Press, Los
Alamitos, CA., 112–119.

[81] �iago Teixeira, Gershon Dublon, and Andreas Savvides. 2010. A survey of human-sensing: Methods
for detecting presence, count, location, track, and identity. Comput. Surveys 5 (2010), 1–77.

[82] Mathy Vanhoef, Célestin Ma�e, Mathieu Cunche, Leonardo S Cardoso, and Frank Piessens. 2016. Why
MAC Address Randomization is not Enough: An Analysis of Wi-Fi Network Discovery Mechanisms.
In 11th AsiaConference Computer and Communications Security. ACM Press, New York, NY, 413–424.

[83] Mathias Versichele, Tijs Neutens, Ma�hias Delafontaine, and Nico Van de Weghe. 2012. �e use of
Bluetooth for analysing spatiotemporal dynamics of human movement at mass events: A case study
of the Ghent Festivities. Applied Geography 32, 2 (2012), 208–220.

[84] Yusuke Wada, Takamasa Higuchi, Hirozumi Yamaguchi, and Teruo Higashino. 2013. Accurate
positioning of mobile phones in a crowd using laser range scanners. In 9th International Conference
on Wireless & Mobile Computing, Networking & Communication. IEEE Computer Society Press, Los
Alamitos, CA., 430–435.

[85] Jens Weppner, Benjamin Bischke, and Paul Lukowicz. 2016. Monitoring Crowd Condition in Public
Spaces by Tracking Mobile Consumer Devices with Wi� Interface. In Joint Conference on Pervasive
and Ubiquitous Computing (UbiComp) (adjunct publications). ACM Press, New York, NY, 1363–1371.

49



[86] Jens Weppner and Paul Lukowicz. 2011. Collaborative crowd density estimation with mobile phones.
In 2nd International Workshop on Sensing Applications on Mobile Phones. ACM Press, New York, NY.

[87] Jens Weppner and Paul Lukowicz. 2013. Bluetooth based collaborative crowd density estimation with
mobile phones. In International Conference on Pervasive Computing and Communications (PerCom).
IEEE Computer Society Press, Los Alamitos, CA., 193–200.

[88] Jens Weppner, Paul Lukowicz, Ulf Blanke, and G Troster. 2014. Participatory Bluetooth scans serving
as urban crowd probes. IEEE Sensors Journal 14, 12 (2014), 4196–4206.

[89] Nanda Wijermans, Claudine Conrado, Maarten van Steen, Claudio Martella, and Jie Li. 2016. A
landscape of crowd-management support: An integrative approach. Safety Science 86 (2016), 142–164.

[90] Martin Wirz, Tobias Franke, Eve Mitleton-Kelly, Daniel Roggen, Paul Lukowicz, and Gerhard Tröster.
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