
Automated Lane Detection in Crowds using Proximity Graphs
Stijn Heldens

s.j.heldens@utwente.nl
University of Twente

the Netherlands

Claudio Martella
claudio.martella@vu.nl

VU University Amsterdam
the Netherlands

Nelly Litvak
n.litvak@utwente.nl
University of Twente

the Netherlands

Maarten van Steen
m.r.vansteen@utwente.nl
University of Twente

the Netherlands

ABSTRACT
Studying the behavior of crowds is vital for understanding and
predicting human interactions in public areas. Research has shown
that, under certain conditions, large groups of people can form
collective behavior pa�erns: local interactions between individuals
results in global movements pa�erns. To detect these pa�erns in
a crowd, we assume each person is carrying an on-body device
that acts a local proximity sensor, e.g., smartphone or bluetooth
badge, and represent the texture of the crowd as a proximity graph.
Our goal is extract information about crowds from these proximity
graphs. In this work, we focus on one particular type of pa�ern:
lane formation. We present a formal de�nition of a lane, proposed
a simple probabilistic model that simulates lanes moving through a
stationary crowd, and present an automated lane-detection method.
Our preliminary results show that our method is able to detect
lanes of di�erent shapes and sizes. We see our work as an initial
step towards rich pa�ern recognition using proximity graphs.

CCS CONCEPTS
•Information systems → Spatial-temporal systems; Clustering;
•Applied computing→ Law, social and behavioral sciences;

KEYWORDS
Crowd Behavior Identi�cation, Lane Detection, Proximity Graph,
Clustering

1 INTRODUCTION
Di�erent studies (see survey by Castellano et al. [3]) have shown
that, while the behavior of individuals in public areas is o�en er-
ratic and unpredictable, the behavior of large crowds as a whole is
predictable and can be modeled. Crowd simulation models are plen-
tiful, examples are models based on �uid dynamics [9, 11], cellular
automata [23], or dynamic systems [12].

Helbing et al. observed that crowds have a tendency to form
collective movement pa�erns [13]. �e pa�erns are not globally
planned or externally organized, but emerge naturally from the
local interactions between individuals. Examples are circulation
of �ow at intersections, clogging at bo�lenecks, and formation of
lanes in crowded areas. Automated detection of these pa�erns is
crucial for understanding, analyzing, and predicting the behavior

Copyright is held by the author/owner(s).
UrbComp’17, August 14, 2017, Halifax, Nova Scotia, Canada.

Figure 1: Long exposure shot at busy train station reveals
lane formation. Photo by David Ili�, CC-BY-SA 3.0 license.

of crowds in large open areas. One can think of a large number
of applications [27], for example, improve safety at sport matches,
music concerts, or public demonstrations, provide guidelines for
urban planners to improve design of public spaces, or automate
detection of anomalies.

Previous a�empts at automated detection of these pa�erns utilize
surveillance cameras combined with image processing techniques
(see references in Section 7). �ese techniques are, however, inher-
ently limited to the perspective of one camera. In our work, instead
of employing cameras, we assume each person is wearing a device
that acts as a local proximity sensor: each sensor can detect other
sensors nearby. �ese devices can be implemented using readily
available hardware such as smartphones or electronic badges [18].

Each detection between two devices corresponds to an edge in a
graph which changes over time, a so-called proximity graph [20]. A
proximity graphs characterizes the texture of a crowd and describes
how individuals navigate through the space. While a single camera
can only cover a small area, proximity graphs provide a holistic
view of large areas.

Extracting global movement pa�erns from proximity graphs
is challenging since each device provides only local information.
�e fundamental problem that we tackle is how to uncover global
pa�erns based on local detections.

ar
X

iv
:1

70
7.

01
69

8v
1

 [
cs

.C
V

]
 6

 J
ul

 2
01

7

UrbComp’17, August 14, 2017, Halifax, Nova Scotia, Canada S. Heldens et. al.

In this work, we focus on one particular type of pa�ern: the
formation of lanes. Lanes o�en appear in crowds when groups of
people traverse a densely crowded space, for example, in a narrow
shopping street or at a busy train station (Figure 1). We propose
an automated lane-detection method based on proximity graphs.
Our method combines techniques from graph embedding with a
density-based clustering algorithm to identify lanes. To evaluate our
method, we present a model that simulates lanes moving through a
stationary crowd. Preliminary results show that our method is able
to detect lanes of di�erent sizes and shapes. Overall, our work can
be seen as the �rst step towards rich motion pa�ern recognition
using proximity graphs.

�e remaining sections are structured as follows: Section 2
presents background information, Section 3 describes our lane-
detection method, Section 4 proposes the simulation model, Section
5 & 6 present results, Section 7 describes related work, and Section
8 is dedicated to conclusions and future work.

2 LANES AND CROWDS
Althoughmany de�nitions exist, a crowd can generally be described
as “a large group of individuals gather together in the same physical
area for some duration of time”. Crowds o�en appear at busy
public locations, such as train stations, airport terminals, football
stadiums, theaters, city squares, or shopping malls. �e behavior
of the crowd is the results of the interactions between individuals.
According to Helbing and Molnar [12], these interactions are local:
each individuals in�uences only the people nearby. Describing a
crowd using only local information is thus a natural representation.

Martella et al. [20] proposed the idea of representing the texture
of crowds using proximity graphs. Formally, a proximity graph is a
form of spatio-temporal graph where nodes represent individuals.
Time is discretized into �xed-sized timesteps and two nodes are
connected by an edge at a timestep if these two individuals have
been within physical proximity of each other during that time, i.e.,
their distance has been less than some predetermined distance. Note
that proximity graphs do not store any absolute localization data,
they only describe the local “view” of each individual. Furthermore,
we assume edges do not store any information on the physical
distance between nodes. Previous work [18] focused on methods
for extracting proximity graphs from real-world noisy data obtained
using proximity sensors.

Figure 2 shows an arti�cial example of the proximity graph for
a crowd. Points represents individuals and arrows indicate their
direction and speed of movement. �is particular example show
non-random behavior: a lane has emerge since nodes are �owing
from the bo�om-le� corner to the right-hand edge. According to
Helbing et al. [13], the formation of lanes in crowds is a naturally
occurrence. Individuals moving towards a target navigate the en-
vironment according to their own personal preferences. However,
while moving through a dense crowd, they o�en need to step aside
to prevent collisions with others. To minimize these interactions,
it is bene�cial for the walkers to follow behind someone moving
in the same direction. �e result of this local behavior is stable
“highway”-like lanes through the crowd.

One quick glance is su�cient to recognize that the highlighted
nodes in Figure 2 have formed a lane. However, this observation is

Figure 2: Example of lane in a crowd from top-down view.

informal and relies on the intuition of the observer. Based on this
intuition, we can de�ne three criteria for a lane.
(R1) Members of a lane move in a similar direction and have

a similar speed. However, since each individual only in-
�uences its local neighborhood, each lane member should
have a movement vector similar only to surrounding mem-
bers. �e lane as a whole can have curves and movement
speed is not uniform. �ough these changes are gradual
and do not happen abruptly. Lanes move similar to how a
river �ows through a landscape.

(R2) A lane must be connected. In other words, if one were to
create a link between each pair of lane members that are in
proximity of each other, the result must be one connected
unit. A lane never consist of multiple disjoint segments.

(R3) A lane is de�ned by its border, not by its contents. We
identify lanes due to the abrupt transition between the
movement inside and outside the lane. However, this bor-
der might not always be well-de�ned and can be ambigu-
ous. �is happens, for example, when someone leaves or
joins the lane, thus blurring the line between the lane and
the crowd.

3 ALGORITHM FOR LANE DETECTION
Our goal is to design an algorithm that extracts lanes from prox-
imity graphs. First, we discuss the challenges of designing such an
algorithm. Second, we present our lane-detection solution.

3.1 Challenges
�e input of our lane detection algorithm is a proximity graph with
nodes {v1, . . . ,vn } and edges E where (vi ,vj , t) ∈ E indicates that
nodes ni and nj were close to each other at timestep t . �e output
should be, for each timestep t , the lanes detected at that moment
in time. An important decision is how to deal with nodes that are
not part of a lane, such as isolated nodes or stationary crowds. We
have chosen to assign each of these groups to their own cluster.
�is simpli�es the problem of lane detection into a unsupervised
classi�cation problem where the goal is to partition the nodes into
“coherent” clusters for every moment in time. Each cluster consists
of people showing similar behavior.

Automated Lane Detection in Crowds using Proximity Graphs UrbComp’17, August 14, 2017, Halifax, Nova Scotia, Canada

3.1.1 Analysis of Proximity Graph. Our initial a�empts at lane
detection were built on the following premise: choose time window
W , aggregate data for everyW consecutive timesteps into a single
dataset, and partition the resulting graph. However, this showed
poor results since graph partitioning algorithms rely heavily on
the presence of high density within each cluster. Proximity graphs
have spatial nature in their topology, resulting in low intra-cluster
density. In our experience, o�-the-shelf graph partitioning algo-
rithms and community detection algorithms tend to split long lanes
into several separate clusters.

�e fundamental problem is that the de�nition of lanes roots
deeply in the notion of “distance” and “velocity”, which are di�cult
to formalize for proximity graphs. To be able to de�ne these terms
more explicitly, we embed the nodes into a two-dimensional space.
An important observation is that the location determine by such
embedding does not need to be highly accurate. For lane detection,
only the local neighborhood of each node is relevant, so it is suf-
�cient if the position of each node is accurate relative only to the
nodes that surround it.

We found that techniques from graph drawing are suitable to
calculate the embedding. Since proximity graphs change over time,
the embedding is repeated for each timestep to adapt the previous
embedding to the new topology. �is adaptation produces move-
ments of the nodes over time. �e nodes can be clustered based on
their position and velocity.

3.1.2 Selection of Clustering Algorithm. Choosing the right clus-
tering method is non-trivial since lane detection present a trade-o�
between two problems: transitivity and ambiguity.

On the one hand, lanes can be of any arbitrary shape and they
are o�en elongated. �is means many nodes within a lane are only
indirectly connected to each other. If there is a strong relation
between nodes a and b and between b and c , then the nodes a, b,
and c all belong to the same cluster, even if the relation between a
and c is weak. Transitivity must be taken into account.

On the other hand, real-world crowds o�en act chaotic and
clustering based on individual links between nodes is sensitive to
noise. For example, consider the scenario where a person leaves
the lane and joins the stationary crowd. During this transition,
this person will have both a strong relation with the lane and the
crowd. �e clustering method should correctly interpret these
ambiguous links: a single“bridge” between two clusters should be
not be su�cient evidence that the clusters should be merged.

Centroid-based clustering methods, such as k-means [10], Mean
shi� [4], or EM [21], are not suitable for lane detection due to
transitivity. Lanes lack a “center”, making detection of elongated
lanes impossible. Hierarchical methods, such as SLINK [24], are
un�t due to ambiguity since a single “noisy” link can cause a lane
to be undetectable.

�e clustering method that respect both aspects of lane detection
is density-based clustering. �is class of algorithms is built on the
idea that clusters correspond to dense groups of points that are
separated by sparse regions. �ese algorithms detect clusters of
any arbitrary shape, thus incorporating transitivity. �ey also deal
well with noise, since a few outliers do not yield su�ciently high
density. High quality results were obtained using DBSCAN [6].

3.2 Algorithm Description
Our lane-detection method consists of two stages: graph embedding
and density-based clustering.

Graph embedding. For the �rst stage, we embed the nodes
into two-dimensional space using the traditional force-directed
algorithm by Fruchterman and Reingold [7]. Force-directed graph
embedding is a well-studied topic and many algorithms exist [15],
but all follow a similar approach. Forces are assigned among pairs
of vertices: a�ractive force between pairs connected by an edge
and repulsive force between remaining pairs. �e behavior of the
system is simulated until an equilibrium state is reached.

In our method, nodes are initially randomly placed and forces are
simulated until equilibrium is reached. For subsequent timesteps,
we use the resulting positions from the previous run as initial
positions for the next run. �is allows for incremental update of
the node’s positions and results in movement of the nodes over
time. Computational cost is low since few iterations are needed per
timestep to reach equilibrium.

Density-based clustering. Next, we cluster the nodes using
DBSCAN [6], since it has proven to provide high-quality results [5]
and scales to large datasets [28]. DBSCAN takes two parameters:
a radius value ε and the minimum number of points MinPts that
should lay within this radius. More speci�cally, let di j (t) measure
the “similarity” between nodes vi and vj at time t . Clearly, di j (t)
can be de�ned in many di�erent ways. We discuss several options
for di j (t) in Section 5. �e ε-neighborhood of a node vi at time t is
the set of all nodes vj such that di j (t) < ε .

A node is referred to as a core node if the size of its ε-neighborhood
is at leastMinPts . Intuitively, core nodes are all data points “near
the core” of the cluster since they have many neighbors in their
proximity. Non-core nodes are found at the “border” of a cluster.

DBSCAN starts at an arbitrary nodev . Ifv is a not a core node, it
is labeled as noise and the procedure repeats at the next unlabeled
node. Ifv is a core node, a new clusterC is created containing node
v . �e cluster is now iteratively expanded by repeatedly adding
every unlabeled node which is within ε distance of any core node
already in C . Once the cluster is complete, the entire procedure is
repeated for the next unlabeled node.

�ere are di�erent ways to handle noise points a�erwards. We
have chosen to assign each noise node to its own singleton cluster.
Note that DBSCAN is not deterministic, non-core nodes can be
assigned di�erent clusters depending on the order in which nodes
are processed. We randomize the processing order for each run.

4 SIMULATION MODEL
To evaluate the quality of our lane detection algorithm, we require a
simulation model which accurately models lanes in a crowd. Many
models for crowd simulations have been proposed, most notably
the social force model [12] and its many variations (see survey by
Castellano et. al. [3]). However, while these models simulate real-
istic crowd dynamics, the behavior that emerges is not controlled.
For example, the social force model [12] shows lane formation, but
these lanes form organically and are not planned. To evaluate the
accuracy of our lane detection method, our simulations need lanes
to form according to some given ground truth. To the best of our
knowledge, no such model currently exists.

UrbComp’17, August 14, 2017, Halifax, Nova Scotia, Canada S. Heldens et. al.

Figure 3: Example of lane going through the crowd.

We propose a simple probabilistic model that exhibits controlled
lane formation. Our model is based on random walks on the two-
dimensional grid, i.e., each walker has integer coordinates. Initially,
walkers are randomly placed in certain areas. Time passes in dis-
crete steps. During each timestep, each walker can take one step
in one of the four cardinal directions (north, east, south, west) ac-
cording to prede�ned behavior. �ere are two types of behavior:
random walkers and lane walkers.

Random walkers model a nearly stationary crowd. We de�ne
a rectangular region in which random walkers are initially placed
at random locations (see Figure 3). �is region can be seen as a top-
down view of a public area (e.g., city square, train station, airport
terminal). During each timestep, each random walker behaves
according to the following rules:

• If outside the region, take one step back.
• Otherwise:

– With probability p: stay at current location.
– With probability 1 − p: take one random step.

Lane walkers model the lane going through the crowd. For
each lane, we de�ne a path consisting of a series of line segments
(see Figure 3 for an example). Lane walkers are initial placed at the
start of the path and they follow the path until they reach the end.
During each timestep, every lane walkers adheres to the following
rules:

• With probability q, follow the lane. Find point a on the
path closest to the position b of the walker.
– If ‖a − b‖ = w > wmax, take step in direction of a.
– Otherwise, take one step in the direction tangent to

line segment ab, i.e., follow the direction of the lane.
• With probability 1 − q:

– With probability p: stay at current location.
– With probability 1 − p: take one random step.

Figure 4 illustrates the walker following the lane. �e parameter
wmax controls the maximum width of the lane. If w > wmax, the
lane walker has wandered too far o� from the lane and must move
closer, thus limiting the maximum width to 2wmax. If w < wmax,
the lane walker must follow the direction of the lane. To keep
walkers aligned on the grid, they take one horizontal step with
probability |dx |

|dx |+ |dy | or one vertical step with probability
|dy |

|dx |+ |dy | .
�e average movement vector is thus [dx dy]T .

If walker A wants to move to a new location which already
occupied by another walker B, then A is allowed to “push” B by
forcing it to move to one of the three remaining locations adjacent
to B. �is pushing mechanism models people stepping aside for

Figure 4: Two scenarios of a lane walker following a path.

others and is necessary to prevent bo�lenecks where lane walkers
are blocked by stationary random walkers. If all three adjacent
locations are already occupied, the move byA fails and it remains at
its current location. In other words, “pushing” is not transmissible:
walkers which get pushed cannot also push other walkers.

�e parameters p and q control the di�culty of detecting the
lane. For p = 0, the random walkers are completely stationary and
only the lane walkers move, while for p = 1 the random walkers act
chaotic. For q = 1, the lane walkers move at maximum speed, while
for q = 0 the lane walkers show same behavior as random walkers.
Changing the value of p or q has an impact on the di�culty of lane
detection.

5 EXPERIMENTAL SETUP
We evaluated our lane detection algorithm as described in Section 3
using data generated using the model from Section 4. We describe
the three similarity functions and the three scenarios we consider.

5.1 Similarity Scores
As discuss in Section 3, we are required to de�ne a function di j (t)
that measures the similarity between two nodes. Low scores in-
dicates a strong relation (i.e., nodes belonging to the same lane),
while high scores indicate a weak relation. We explore three pos-
sible options for this function. �e parameterW is the size of the
window, it determine how far we look “back in time”.

Score function A: Calculate the maximum physical distance
between two nodes over the lastW timesteps. �e intuition is that
two nodes belong to the same lane if they are physically close to
each other for a long period of time. Let pi (t) be the position of
node vi at time t . �e score function is de�ned as follows:

dAij (t) = max
0≤dt ≤W

‖pi (t − dt) − pj (t − dt)‖.

Score function B: One issue with option A is that one might
need a very large window size to detect the lane since two nodes
can physically close for a longer duration of time while not belong-
ing to the same lane (for example, with a horseshoe shaped lane).
Alternatively, de�ne the velocity vector si of nodevi as the average
distance traveled per timestep over the lastW timesteps:

si (t) =
pi (t) − pi (t −W)

W
.

Given the current position and velocity of a node, we can predict
its expected position T timesteps into the future.

dBi j (t) = max
[
‖pi (t) − pj (t)‖, ‖(pi (t) +Tsi (t)) − (pj (t) +Tsj (t))‖

]
.

Automated Lane Detection in Crowds using Proximity Graphs UrbComp’17, August 14, 2017, Halifax, Nova Scotia, Canada

Figure 5: �ree di�erent lane scenarios used: (1) one straight
lane, (2) curved lane, (3) two parallel straight lanes.

Score function C: Instead of comparing the expected future
position of two nodes, we can also compare only the expected
displacement. �e intuition is that if two nodes are close to each
other and show similar displacement, they most likely belong to
the same lane. A simple way to formalize this is as follows:

dCi j (t) = max
[
‖pi (t) − pj (t)‖,T ‖si (t) − sj (t)‖

]
. (1)

5.2 Scenarios
For evaluation, we consider a scenario where random walkers are
placed in a square region of 100 × 100 units (see Figure 5). Lane
walkers are placed in regions north of this square and walk south.
�e lane regions have widthw and height 100× 100/w . �e density
of both regions is equal to ensure the number of random and lane
walkers is equal. Unless noted otherwise, we set w = 10, p = 0.2,
q = 0.5 and density is 0.3. We further experiment with these
parameters in Section 6.

Our algorithm is performed during each timestep, starting at time
W and ending either once the last walker exits the region or until
1000 timesteps have passed. For every timestep t of the simulation,
our algorithm yields a partition X (t) = {X1(t), . . . ,Xn (t)} of the
population into cohesive clusters.�e ground-truth clusters of the
model are {R,L} where R is the set of random walkers and L is
the set of lane walkers. For the scenario with two lanes, there
are three ground-truth clusters. We use the normalized mutual
information [26] (NMI) score to measure the correlation between
the two partitions. �e range is between 0 (no correlation) and 1
(perfect clustering). �e reported NMI is the average over the entire
simulation.

6 EMPIRICAL EVALUATION
In this section we present the preliminary results of our method.
In Section 6.1, we evaluate the three proposed similarity functions
and tune the parameters of the algorithm for a simple scenario. In
Section 6.2, we consider a variety of scenarios with lanes of di�erent
widths and shapes. In Section 6.3, we evaluate the resilience of our
method by varying the parameters of the simulation model.

In Section 6.1, 6.2, and 6.3, the graph embedding phase of the
algorithm is omi�ed, i.e., coordinates from the simulation are di-
rectly used for clustering. �is allows for evaluation of DBSCAN
in isolation. Finally, in Section 6.4, we revisit the problem of graph
embedding.

5 10 15 20 25 30

Value of ε

50

100

150

200

250

300

V
al
u
e
of

W

Similarity func. A

5 10 15 20 25 30

Value of ε

Similarity func. B

5 10 15 20 25 30

Value of ε

Similarity func. C

0.00

0.25

0.50

0.75

1.00

N
M
I
sc
or
e

Figure 6: One straight lane, di�erent window sizes.

5 10 15 20 25 30

Value of ε

0

50

100

150

200

250

300

V
al
u
e
of

T

Similarity func. B

5 10 15 20 25 30

Value of ε

Similarity func. C

0.00

0.25

0.50

0.75

1.00

N
M
I
sc
or
e

Figure 7: One straight lane, di�erent values of T .

5 10 15 20 25 30

Value of ε

5

10

15

20

25

30

V
al
u
e
of

M
in
P
ts

Similarity func. A

5 10 15 20 25 30

Value of ε

Similarity func. B

5 10 15 20 25 30

Value of ε

Similarity func. C

0.00

0.25

0.50

0.75

1.00

N
M
I
sc
or
e

Figure 8: One straight lane, di�erent values ofMinPts.

6.1 Method Tuning
In this section, we focus on tuning of the parameter for DBSCAN.
Four parameters are of interest: ε , T ,W , andMinPts . Unless noted
otherwise, we use values T = 100,W = 100, andMinPts = 15. We
only consider the simple scenario of one straight lane.

�e crucial parameter is ε . For all three similarity functions, this
parameter can be interpreted as the maximal physical distance that
is allowed between two nodes over some period of time. If ε is too
small, then DBSCAN is too rigid, and many tiny clusters appear. If
ε is too large, then DBSCAN is too tolerant and all nodes collapse
into a single cluster.

First, we consider how the window sizeW a�ects the results.
Figure 6 shows the results for di�erent window sizes. We see that
the lower bound of ε is approximately 10, regardless of the chosen
similarity function. �is can be explained based on the width of the
lane. If ε is less then the lane width, the randomwalkers on opposite
sides of the lane are no longer connected since they are two far
apart, causing the random walkers to be split into two groups.

�e upper bound of ε depends heavily on the chosen similarity
function. For function A, the upper bound scales linearly withW .
�is is expected since largerW implies that we look further back
in time and thus the maximal distance between lane and non-lane
walkers increases. For functions B and C, the upper bound also
scales withW but is limited to approximately 15 for B and 25 for C.
�is happens since the window size is used to calculate the velocity

UrbComp’17, August 14, 2017, Halifax, Nova Scotia, Canada S. Heldens et. al.

(a) Lane width of 20 (b) Lane width of 30

Figure 9: Lanes which are too wide cause split in stationary
crowd. Each point corresponds to a walker. Di�erent colors
indicate di�erent clusters.

of nodes. For large values ofW , the velocity converges to (0, 0) for
random walkers and (0,q) for lane walkers.

Next, we evaluate how T a�ects the results for functions B and
C, see Figure 7. In both cases, the lower and upper bound of ε scale
linearly with the value of T . �is can be explained since for large
values of T , the similarity score is dominated by the term T si (t).
For largerT , the similarity score between neighboring lane walkers
increases, which results in a wider valid range of ε .

Now we turn our a�ention to howMinPts a�ects quality. Figure
8 shows results for di�erent values of MinPts and ε . �e �gure
shows that the algorithm is not sensitive to the value of MinPts:
the upper and lower bound of ε is minimally a�ected by its value.
�is parameter determines the robustness against outliers, but one
straight lane contains li�le ambiguity.

From Figures 6, 7, and 8, we conclude that function C performs
the best. �e valid range of ε for this function is approximately
between 10 and 25. �is range scales linearly when increasing T ,
but is barely a�ected when varyingW or MinPts . �e minimum
value ofW should be 50, but larger values make the algorithm less
sensitive to the exact choice of ε . For the remainder of this work,
we focus solely on function C.

6.2 Di�erent Types of Lanes
In this section, we experiment with various types of lanes to test
how well our algorithm performs in di�erent scenarios. Figure 5
shows the three cases which we discuss.

First, we consider the scenario where the width of the lane varies
between 5 and 50 units (i.e., the lane lane cover 5-50% of the region
of interest). Figure 10 shows the results. For T = 100 andW = 100,
the lane can only be detected if its width is below approximately
20 units and ε is roughly between 5 and 15. For wider lanes, the
walkers in the stationary crowd on opposite sides of the lane are
no longer considered to belong to the same cluster since they are
too far apart. Figure 9 demonstrates this problem.

By increasing the value of T orW , wider lanes can be detected.
Figure 10 shows that both for T = 200 and forW = 200, lanes
having a width up to 30 units can be discovered. For both cases,
increasing the width of the lane also increases the lower bound of
ε , for which the lane is detected.

5 10 15 20 25 30

Value of ε

10

20

30

40

50

L
an
e
w
id
th

T = 100, W = 100

5 10 15 20 25 30

Value of ε

T = 200, W = 100

5 10 15 20 25 30

Value of ε

T = 100, W = 200

0.00

0.25

0.50

0.75

1.00

N
M
I
sc
or
e

Figure 10: Baseline scenario for di�erent lane widths.

5 10 15 20 25 30

Value of ε

0

10

20

30

40

50

In
te
rl
an
e
d
is
ta
n
ce

T = 100, W = 100

5 10 15 20 25 30

Value of ε

T = 200, W = 100

5 10 15 20 25 30

Value of ε

T = 100, W = 200

0.00

0.25

0.50

0.75

1.00

N
M
I
sc
or
e

Figure 11: Two parallel lanes for variable interlane distance.

5 10 15 20 25 30

Value of ε

0

5

10

15

20

25

30
L
an
e
am

p
lit
u
d
e

T = 100, W=100

5 10 15 20 25 30

Value of ε

T = 200, W=100

5 10 15 20 25 30

Value of ε

T = 100, W=200

0.00

0.25

0.50

0.75

1.00

N
M
I
sc
or
e

Figure 12: Sinusoidal lane for di�erent amplitudes.

Next, we consider the scenario for two parallel lanes, moving in
the same direction, both of width 10, and having a �xed interlane
distance. Figure 11 shows the results for this scenario for di�erent
interlane distances. We see that for T = 100 andW = 100, quality
deteriorates once the lanes are less than 15 units apart. �is happens
because the lanes are too close and can no longer be separated into
two distinct clusters. �e valid range of ε is approximately in the
range 10 − 15.

�e �gure shows that doubling the value of T increases the
minimum separation distance to 20. By increasing T , more weight
is put on velocity when measuring similarity, thus making it more
di�cult to distinguish the two lanes. Doubling the value ofW does
not increase the minimum separation distance and increases the
upper bound of ε to 20.

Finally, to test how well our method deals with curved lanes, we
consider a scenario with a single sinusoidal lane. Figure 12 shows
the results for sinusoidal lanes having amplitude up to 30 units.
Note that an amplitude of 30 units is an extreme case, considering
the height of our region is just 100 units.

�e results show that lanes having an amplitude up to approxi-
mately 5 units can be detected. For larger amplitudes, the algorithm
tends to split the lane into multiple straight segments. Figure 13
shows an example of this phenomenon. Increasing the value of T
does not change the accuracy of our method. Increasing the win-
dow size toW = 200 signi�cantly increases the accuracy and allows

Automated Lane Detection in Crowds using Proximity Graphs UrbComp’17, August 14, 2017, Halifax, Nova Scotia, Canada

(a) Amplitude of 10. (b) Amplitude of 20.

Figure 13: Visualization of sinusoidal lane for T = 100,W =
100. Each point corresponds to a walker. Di�erent colors
indicate di�erent clusters.

5 10 15 20 25 30

Value of ε

0.0

0.2

0.4

0.6

0.8

1.0

R
an
d
om

n
es
s
(V

al
u
e
of

p
)

5 10 15 20 25 30

Value of ε

0.0

0.2

0.4

0.6

0.8

1.0

L
an
e
sp
ee
d
(V

al
u
e
of

q)

0.00

0.25

0.50

0.75

1.00

N
M
I
sc
or
e

Figure 14: One straight lane for varying p or q.

to detect lanes having an amplitude up to 30 units. �e explanation
is that a larger window size smooths out the sharp turning angles
of the wave.

6.3 Resilience
To test the resilience of our method, we vary p and q, see Figure 14.

�e value of p determines the probability that a random walker
takes a random step during a timestep. If the value of p is high,
detecting the lane becomes more di�cult since random walkers
behave erratic. Figure 14 con�rms this intuition. �e lane can be
detected for p < 0.6.

�e value of q determines the probability that a lane walker
follow the lane during a timestep. If the value of q is too low,
detecting the lane becomes di�cult because the velocity of the lane
is too low. �e results show that the lane can only be detected if
q > 0.2. Increasing the value of q does not change the lower bound
of ε but its upper bound scales linear.

For both scenarios, the detectability of the lane can be improved
by using a larger window sizeW . A larger window implies that
velocity is determined over longer period of time, thus containing
less noise.

6.4 Graph Embedding
Up until this point, the graph embedding phase has been omit-
ted, i.e., the absolute coordinates of the nodes are directly passed
to the clustering phase. To evaluate the complete algorithm, we

(a) At timestep 0. (b) At timestep 300.

Figure 15: Results of proximity graph embedding.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Value of ε

0.0
0.2
0.4
0.6
0.8
1.0

N
M
I

Without embedding

0 5 10 15 20

Value of ε

0.0
0.2
0.4
0.6
0.8
1.0

N
M
I

With embedding

Figure 16: Accuracy with/without embedding at time. Note
the di�erent scales on the horizontal axes.

�rst generate a proximity graph and embed the nodes into two-
dimensional space using force-directed embedding (see Section 3)
before clustering the nodes.

In practice, we �nd that the absolute coordinates and the coor-
dinates found by embedding are approximately equivalent, up to
scale and rotation. For example, Figure 15 shows an embedding
of one straight lane at di�erent moments. �e proximity graph
was created using a detection radius of 25 units. Force directed
embedding works well for our method since the data is spatial by
nature.

Since graph embedding shows excellent results, the e�ect on the
accuracy of DBSCAN is minor. Figure 16 shows a comparison of
the obtained NMI with and without embedding for one straight
lane at timestep 200. Both curves are nearly identical. Note that
the di�erence in range of ε is the result of graph embedding not
preserving the scale.

7 RELATEDWORK
Utilizing proximity graphs to analyze the behavior of people has
proven to be a promising area of research. Martella et al. showed
how proximity graphs can be used to mine the behavior of museum
visitors [19], track people in a six-story building using only a hand-
ful of anchor points [17], and capture the social interactions at an
IT conference [18]. However, further research on proximity graphs
has been scarce.

In computer vision, the analysis of crowd behavior is an active
�eld of research. Most work focuses on automated analysis of
surveillance camera footage. We discuss some of the recent major
contributions in this section. We refer to the survey by Li et al. [16]
for a comprehensive overview of research on crowd analysis from
the area of computer vision.

UrbComp’17, August 14, 2017, Halifax, Nova Scotia, Canada S. Heldens et. al.

One particular topic from computer vision which is related to
lane detection is crowd behavior analysis [16]. �ese algorithms
classify the behavior of people in crowds.

For example, Rodriguez et al. [22] proposed a data-driving crowd
analysis approach. �e algorithm works by �rst learning common
crowd motion pa�erns from a large database containing crowd
videos. To analyze a new video, the frames are split up into blocks
which are matched to learned patches from the database. By label-
ing the learned patches, one can classify the behavior in di�erent
regions of the video. �e authors argue that, while the number
of all possible videos is in�nite, the space of recognizable crowd
pa�erns might not be all that large.

Benabbas et al. [2] presented a method that can detect six crowd-
related events in videos: walking, running, spli�ing, dispersion,
and evacuation. �e method works by tracking objects of interest
using optical �ow techniques. Next, the camera view is divided into
�xed-sized blocks. For each block, the K most dominant movement
vectors are determined, whereK is a user-de�ned parameter. Blocks
are clustered using a region-based segmentation algorithm. Finally,
each cluster is classi�ed into one of six events based on the average
movement vector within the cluster.

Solmaz et al. [25] showed how �ve types of behavior can be
extracted from video: bo�lenecks, fountainheads, lanes, arches, and
blocking. �eir method moves particles according to the optical
�ow of the video. Each region is then classi�ed using the Jacobian
matrix based on the linear approximation of the trajectories within
the region. �e eigenvalues of this matrix determine which of the
�ve types the behavior belongs to.

Another topic related to lane detection and which has receive
much a�ention in computer vision is crowdmotion segmentation [16].
�ese algorithms segment the video intomotion pa�erns, i.e., spatial
regions that have a high degree of similarity in terms of speed and
direction.

For instance, Ali et al. [1] used techniques from computational
�uid dynamics for motion segmentation. A �ow �eld is gener-
ated from frames of a moving crowd. From the �ow �eld, a �nite-
time Lyapunov exponent �eld is constructed, which shows the
Lagrangian Coherent Structures (LCS) in the underlying �ow. �e
LCS highlight the boundaries of a �ow segments and they are used
for segmentation.

Kang & Wang [14] demonstrated how neural networks can be
used to for crowd segmentation. First, they show how to use fully
convolutional neural networks to segment individuals from single
static frames from videos of crowds. Next, they extend this method
by integrating motion cues to capture movement, helping to sep-
arate stationary and moving crowds, and structure cues, such as
walls and �oors. �e results show tight segmentation contours
around individuals.

Zhao & Medioni [8] presented a method based on manifold
learning and tracklets. A tracklet is a short fragment of an object’s
trajectory obtained by tracking the object for short amount of time.
�e tracklet points are mapped to points in (x ,y,θ) space, where
(x ,y) corresponds to the image space and θ represents the motion
direction in degrees between 0 and 360. In this 3D space, points
form manifold structures each corresponding to a motion pa�erns.
�e author propose a robust manifold grouping algorithm based
on Tensor Voting to extract the manifolds.

�e use of proximity graphs show two clear advantages over
utilizing cameras. First, proximity graphs can provide a holistic
view over a large areas. �ey can be used to monitor the behavior
of crowds within one single build building, a small neighborhood,
or even an entire city. Cameras are inherently limited to one per-
spective and there seems li�le research on how to “join” the image
analysis from multiple cameras. Second, many computer vision
techniques take a coarse-grained approach and classify regions
within the image, meaning any information about individuals is
lost. Our approach classi�es nodes of the proximity graphs, thus
retaining this �ne-grained information.

Overall, we believe our method is the �rst lane detection algo-
rithm designed for proximity graphs.

8 CONCLUSIONS & FUTUREWORK
In this work, we present a method to detect lanes in proximity
graphs. Our method combines graph embedding with density-
based clustering. For evaluation, we have explored three di�erent
score functions to measure similarity between nodes. Best per-
formance was obtained by measuring similarity as the maximum
over two terms: di�erence in position (distance) and di�erence in
velocity. �e results show that our method can detect di�erent
types of lanes (thick lanes, parallel lanes, and curved lanes). Graph
embedding performs excellent, although its computational cost is
high. For DBSCAN, exact tuning of the parameters is important.
Most notably, DBSCAN shows sensitivity to the value of ε .

For future work, we are exploring methods to automatically de-
termine the best parameters for DBSCAN. Furthermore, we are
looking into more complex scenarios. For example, opposing lanes,
lanes crossing at an intersection, and lanes moving through a nar-
row doorway. We are also extending our simulation model to
support more situations, such as people joining/leaving the lane
or a lane dissolving into the crowd. Finally, we are working on
obtaining real-world measurements to evaluate our method on
non-synthetic datasets.

Overall, we view our work as a �rst step towards rich pa�ern
recognition in proximity graphs. One can think of many types
of crowd behavior identi�cation, such as detection of congestion,
social cliques, evacuations, and anomalies. Our goal is to utilize
proximity graphs as a tool to enable these types of analysis.

REFERENCES
[1] Saad Ali and Mubarak Shah. 2007. A lagrangian particle dynamics approach for

crowd �ow segmentation and stability analysis. In Computer Vision and Pa�ern
Recognition, 2007. CVPR’07. IEEE Conference on. IEEE, 1–6.

[2] Yassine Benabbas, Nacim Ihaddadene, and Chaabane Djeraba. 2010. Motion
pa�ern extraction and event detection for automatic visual surveillance. EURASIP
Journal on Image and Video Processing (2010).

[3] Claudio Castellano, Santo Fortunato, and Vi�orio Loreto. 2009. Statistical physics
of social dynamics. Reviews of modern physics (2009).

[4] Dorin Comaniciu and Peter Meer. 2002. Mean shi�: A robust approach to-
ward feature space analysis. IEEE Transactions on pa�ern analysis and machine
intelligence 24, 5 (2002), 603–619.

[5] Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1998. Clustering
for mining in large spatial databases. KI (1998).

[6] Martin Ester, Hans-Peter Kriegel, Jörg Sander, Xiaowei Xu, and others. 1996. A
density-based algorithm for discovering clusters in large spatial databases with
noise. In KDD.

[7] �omas MJ Fruchterman and Edward M Reingold. 1991. Graph drawing by
force-directed placement. So�ware: Practice and experience (1991).

[8] Dian Gong, Xuemei Zhao, and Gerard Medioni. 2012. Robust Multiple Manifolds
Structure Learning. In Proceedings of the 29th International Conference on Machine

Automated Lane Detection in Crowds using Proximity Graphs UrbComp’17, August 14, 2017, Halifax, Nova Scotia, Canada

Learning (ICML-12). 321–328.
[9] RY Guo and Hai-Jun Huang. 2008. A mobile la�ice gas model for simulating

pedestrian evacuation. Physica A: Statistical Mechanics and its Applications
(2008).

[10] John A Hartigan and Manchek A Wong. 1979. Algorithm AS 136: A k-means
clustering algorithm. Journal of the Royal Statistical Society. Series C (Applied
Statistics) 28, 1 (1979), 100–108.

[11] Dirk Helbing. 1998. A �uid dynamic model for the movement of pedestrians.
arXiv preprint cond-mat/9805213 (1998).

[12] Dirk Helbing and Peter Molnar. 1995. Social force model for pedestrian dynamics.
Physical review E (1995).

[13] Dirk Helbing, Peter Molnar, Illes J Farkas, and Kai Bolay. 2001. Self-organizing
pedestrian movement. Environment and planning B: planning and design (2001).

[14] Kai Kang and Xiaogang Wang. 2014. Fully convolutional neural networks for
crowd segmentation. arXiv preprint arXiv:1411.4464 (2014).

[15] Stephen G Kobourov. 2012. Spring embedders and force directed graph drawing
algorithms. arXiv preprint arXiv:1201.3011 (2012).

[16] Teng Li, Huan Chang, Meng Wang, Bingbing Ni, Richang Hong, and Shuicheng
Yan. 2015. Crowded scene analysis: A survey. IEEE Transactions on Circuits and
Systems for Video Technology (2015).

[17] Claudio Martella, Marco Ca�ani, and Maarten van Steen. 2017. Exploiting Den-
sity to Track Human Behavior in Crowded Environments. IEEE Communications
Magazine 55, 2 (2017), 48–54.

[18] Claudio Martella, Ma�hew Dobson, Aart van Halteren, and Maarten van Steen.
2014. From proximity sensing to spatio-temporal social graphs. In Pervasive
Computing and Communications (PerCom). IEEE.

[19] Claudio Martella, Armando Miraglia, Jeana Frost, Marco Ca�ani, and Maarten
van Steen. 2016. Visualizing, clustering, and predicting the behavior of museum
visitors. Pervasive and Mobile Computing (2016).

[20] Claudio Martella, Maarten van Steen, Aart Halteren, Claudine Conrado, and Jie
Li. 2014. Crowd textures as proximity graphs. IEEE Communications Magazine
(2014).

[21] Todd K Moon. 1996. �e expectation-maximization algorithm. IEEE Signal
processing magazine 13, 6 (1996), 47–60.

[22] Mikel Rodriguez, Josef Sivic, Ivan Laptev, and Jean-Yves Audibert. 2011. Data-
driven crowd analysis in videos. In Computer vision (ICCV), 2011 IEEE interna-
tional conference on. IEEE, 1235–1242.

[23] Siamak Sarmady, Fazilah Haron, and Abdullah Zawawi Talib. 2011. A cellular
automata model for circular movements of pedestrians during Tawaf. Simulation
Modelling Practice and �eory 19, 3 (2011), 969–985.

[24] Robin Sibson. 1973. SLINK: an optimally e�cient algorithm for the single-link
cluster method. �e computer journal (1973).

[25] Berkan Solmaz, Brian E. Moore, and Mubarak Shah. 2012. Identifying Behav-
iors in Crowd Scenes Using Stability Analysis for Dynamical Systems. IEEE
Transactions on Pa�ern Analysis and Machine Intelligence (2012).

[26] Nguyen Xuan Vinh, Julien Epps, and James Bailey. 2010. Information theoretic
measures for clusterings comparison: Variants, properties, normalization and
correction for chance. Journal of Machine Learning Research (2010).

[27] Beibei Zhan, Dorothy N Monekosso, Paolo Remagnino, Sergio A Velastin, and
Li-�n Xu. 2008. Crowd analysis: a survey. Machine Vision and Applications
(2008).

[28] Aoying Zhou, Shuigeng Zhou, Jing Cao, Ye Fan, and Yunfa Hu. 2000. Approaches
for scaling DBSCAN algorithm to large spatial databases. Journal of computer
science and technology (2000), 509–526.

	Abstract
	1 Introduction
	2 Lanes and Crowds
	3 Algorithm for Lane Detection
	3.1 Challenges
	3.2 Algorithm Description

	4 Simulation Model
	5 Experimental Setup
	5.1 Similarity Scores
	5.2 Scenarios

	6 Empirical Evaluation
	6.1 Method Tuning
	6.2 Different Types of Lanes
	6.3 Resilience
	6.4 Graph Embedding

	7 Related Work
	8 Conclusions & Future Work
	References

