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Abstract—Monitoring crowds is receiving much attention. An
increasingly popular technique is to scan mobile devices, notably
smartphones. We take a look at scanning such devices based
on transmitted WiFi messages. Although research on capturing
crowd patterns using WiFi detections has been done, there are
not many published results when it comes to tracking movements.
This is not surprising when realizing that the data provided by
WiFi scanners is susceptible to many seemingly erroneous and
missed detections, caused by the use of randomized network
addresses, overlap between scanners, high variance in WiFi
detection ranges, among other sources.

In this paper, we investigate various techniques for cleaning up
sets of raw detections to sets that can subsequently be used for
crowd analytics. To this end, we introduce two different quality
metrics to measure the effects of applying various data filters.
We test our approach using a data set collected from 27 WiFi
scanners spread across the downtown area of a Dutch city where
at that time a 3-day multi-stage festival took place attended by
some 130,000 people.

Keywords: crowd detection, WiFi scanning, crowd analyt-
ics, smoothing paths, data cleaning

I. INTRODUCTION

Being more an art than a science, managing crowds has
proven to be important, yet difficult. Difficulties are partly
caused by the lack of sufficient, properly validated models
of pedestrian movements. As a consequence, automatically
deriving accurate predictions based on input from various data
sources is generally lacking. This leaves the experts to rely
mostly only on their experience when it comes to preparing
for an event and acting on monitored behavior. Providing
automated decision support to crowd managers starts with
data, yet relatively few data sets are (publicly) available on
pedestrian movements in crowds. Although telecom providers
do have access to movements at the level of cells, such data is
not made generally available for various reasons, but one may
also question whether the granularity is sufficient for validating
models of pedestrian movements. Likewise, using data sets
from video observations imposes serious privacy concerns, but
also deriving data on crowd behavior from video sources that
can be used for model validation is difficult, if not oftentimes
virtually impossible.

In this paper we discuss a different approach, namely
deriving data from detecting WiFi-enabled mobile devices
such as smartphones. The idea is extremely simple: at an
event, one places up to a few tens of WiFi scanners akin to
normal access points, capable of sniffing network addresses.

To provide some level of privacy, a network address is hashed
before being further processed, thus ensuring that the owner
of a smartphone cannot be identified if only the hashed value
is available. The result is a data set consisting, conceptually,
of timestamped (scanner, device) pairs. As such, this should
allow us to discover movements as they take place in a crowd
assuming we know the location of the WiFi scanners.

We recently conducted an experiment with such a setup
during a three-day festival spread across the downtown area
of Assen, a city in the Northern part of The Netherlands. The
festival was visited by an estimated 130,000 people. Some 25
WiFi scanners were strategically placed to cover the locations
of scheduled events, specific roads and junctions, and locations
such as the train station and a camping site. Although we
aimed to obtain information on crowd movements, we actually
anticipated that even this seemingly simple approach would
lead to a highly noisy data set. We were not disappointed.

Difficulties were caused by the use of short-living network
addresses, nonmobile devices that exhibited intermittent de-
tection intervals, seemingly erratic behavior when a device
was in range of multiple scanners in a short timespan, the
relatively low frequency at which a device is detectable, to
name a few sources of errors. In this paper, we focus entirely
on systematically cleaning the data set, making the statement
that this is by far an easy exercise and essential before any
analytics can take place. The main problem is to extract data on
only mobile devices and in such a way that seemingly erratic
and senseless detections are transformed or eliminated to come
to useful information. To the best of our knowledge, we are
one of the first to report on extracting crowd movements from
actual real-world WiFi detections at this scale.

Our main contribution is formed by three distinct methods
that improve the data set by removing low-quality detections,
averaging detections over a time period and, eliminating
repetitive behavior in the form of unlikely cycles in movement,
respectively. Of course, we need to be able to evaluate the
effectiveness of these cleaning methods. To this end, we define
two metrics: (1) entropy, which measures how much noise
there is, and (2) dissimilarity with respect to the original data
set, which measures how much we modified the data set.

We organize our paper as follows: The next section presents
the data set and the context in which it was collected;
Section III presents related work regarding to this type of data
cleaning; It is followed by Section IV which goes into the



Fig. 1: Placement of scanners in the city center of Assen (left)
and at the campsite near the city (right).

details on the type of noise one can expect; in Section V we
present our methods for cleaning up this type of data sets;
Finally in Section VI we present our results and conclude in
Section VII.

II. RAW DATA SET AND CONTEXT

Trying to understand crowd dynamics requires timestamped
localization data of the crowd. There are multiple ways to
gather crowd localization data. However, in recent literature
detecting WiFi-enabled devices (which are already ubiquitous
given the rise in smartphone usage) using scanners is the
method that stands out. This method is preferred because it
is relatively cheap to deploy, nonintrusive, and requires little
to no cooperation from the crowd that is being monitored.
Details on the technology used to gather localization data in
this manner and the inner-workings of a scanner are available
in the literature [1].

The data set used in this paper was gathered in Assen, The
Netherlands, during the TT festival [2] and in the few days
after the festival (24-June-2015 to 30-June-2015). The festival
lasted three days and consisted of 54 music events at eight
different stages located in the city center. During the last day of
the festival the TT NightRide was held, where a large group of
motorcyclists followed a predetermined path cutting through
the town center. On the 27th, the day after the festival the
MotoGP [3] races took place at the Assen circuit. The festival
was attended by an estimated 130,000 people.

The placement of the scanners can be observed in Figure 1:
25 scanners were placed in the city center, out of which eight
near the music stages, marked with a darker color on the map;
two of them were placed further from the city center, in the
camping area and near the Assen circuit.

The platform of WiFi scanners consists of outdoor sensors
(BlueMark 1000 series) and a server to store the results. For
communication and data transfer, the 4G mobile network was
used.

The Bluemark BM1000-sensor has 32 MB RAM, 8 MB
flash and a CPU speed of 384 MHz. It runs openWRT as OS
and an application that collects WiFi data. Moreover, it has
a directional antenna with an antenna gain of around 12 dBi.
The shape of the area in which WiFi packets can be received is
irregular and inconsistent. However to improve visualizations,

in this paper we will represent it as a 100m radius disc
around the scanner. We emphasize that this visualization does
not reflect in any way actual ranges, notably considering the
use of directional antennas. More importantly we make no
assumptions on the range in the solutions we present.

The sensor outputs data in SQL text format. This data is
compressed and sent periodically to the server. At the server
the output files are decompressed and set for long-term storage
and analysis. For communication preferential SIMs are used
along with a 4G dongle (Huawei E3276 LTE). In particular,
the SIMs had higher priority over regular users of the network.
During the event, this solution has proven to be robust. All
scanners are synchronized using NTP and they reboot daily at
5am.

The scanner has been configured to detect only Probe
Request messages. Probe Requests are sent by a WiFi device
in order to search for available WiFi networks in the area.
These packets are sent more or less periodically, even when a
device is already connected to a network, in order to provide
functions such as roaming. Smartphones also use them as a
low-power and energy-efficient localization method [4].

Probe Requests contain the MAC address of the device.
Because of this address we can uniquely identify a device
across multiple scanners. In order to enhance privacy our
system stores only hashed values of the MAC address along
with the first 24 bits, representing the ”Organizationally unique
identifier” (OUI), which is used to identify the manufacturer
of a device.

We use the following definitions:
• Device - A system with a WiFi module. Usually a

smartphone or laptop, but it can also be, for example,
a wireless printer or a router. The device is identified by
its hashed address. These systems send WiFi packets.

• Scanner - A system that has a location, given by latitude
and longitude, and an identifier. The system monitors
WiFi frequencies and records all packets it receives, these
are the packets sent by devices.

• Detection - A detection is a triplet that represents a device
near the location of a scanner at a certain time. The triplet
is 〈scanner,device, time〉. A detection also has a received
signal strength indicator value (RSSI) and number of
packets that were received in that second.

• Movement Path - A set of consecutive detections of the
same device.

The original data set contains 15,135,611 detections of
248,192 devices and spans over a 13-day period. In the
following sections we discuss its transformation to a data set
we believe is useful for further analytics.

III. RELATED WORK

There is a lot of interest in understanding crowds and their
movements. This is given by the large number of possible ap-
plications that can benefit from this information, applications
such as measuring the size of queues of people [5] or disaster
management [6]. As a consequence, numerous projects and
techniques try to find ways of extracting this type of data.



Classically crowd data and crowd-location data is obtained
using visual systems [7]. These systems are known to have a
lot of noise because they require object recognition techniques
which are still far from perfect. Noise is not absent from other
methods such as GPS [8] or satellite systems like Argos [9].

In [10] the authors present a way of smoothing the path
taken by an individual, as given by raw GPS data. The
examples they show present a data set where multiple consec-
utive detections move back and forth, circling the street the
individual is on. This behavior is similar to the behavior we
present in this article. Yet the technologies and methods used
are different. To extract a clear path, the authors use outlier
removal with interpolation followed by Viterbi matching. Sim-
ilarly [11] use outlier removal and Gaussian kernel regression
to smooth the paths shown by GPS data. Their methods are
not directly applicable to our scenario. When using GPS the
data set consists of a high number of positions (equivalent
to our detections), with error margins of just a few meters.
In contrast, we have low number of detections and a rough
approximation (in the order of hundreds of meters) of the
actual position.

Because of the heavy use of smartphones, systems based
on detecting them have come to light. These usually scan for
Bluetooth or WiFi packets.

The WiFi scanners look inside the packets and extract infor-
mation such as addresses [12]. With this information tracking
crowds across multiple locations is possible. For instance in
[13] the authors present a large-scale WiFi monitoring system
used to gather information about facility planning, in their
case a large hospital. The work goes in great detail on how
the data is gathered and how information is extracted out of it.
All this is similar to how data was collected in our scenario.
The authors have encountered the same type of problems in
the data as the ones we focus on in this paper. For example,
their figures show a comparison between the real path taken
by a device and the path that is extracted from the data. In
[14] the same authors extend the previous work and offer a
method for cleaning the data, proposing to just ignore most
detections and keep the ones that have a large enough time
difference between them. This method is a simplification of
the time compression method we present in section V. We
go much further in cleaning up and improving the data set.
Similarly in [15] a time-based approach is taken in order to
filter out devices that are static, seen by one scanner for a long
time period.

It is possible to clear some noise through fine control of the
hardware [16]. This however does not solve all types of noise
and is dependent on other conditions.

As to our knowledge there is no previous work that directly
tackles and solves the problem of noisy crowd-tracking data.

IV. DIFFICULTIES IN DATA PROCESSING (NOISE)

A perfect data set would be one in which the location of a
device is accurately known at all times. This means that there
is no time period in which there is no data about said device,
and that when there is data, it is simple to pinpoint the device

to a singular physical location. This does not mean that a
device shouldn’t trigger detections at two or more scanners
simultaneously, given they are close enough. Simultaneous
detections are acceptable as long as the RSSI values can
be used to calculate a realistic positioning of the device.
Obviously, perfect data sets do not exist for several reasons.

When trying to track crowds using WiFi, the data that needs
to be analyzed is affected by errors from multiple sources. We
consider the following ones.

a) Faulty scanner: Some are errors caused by the scan-
ners and these are probably the simplest to detect and correct.
For instance any interval in which a scanner is shut down or
cannot receive packets will generate a clear irregularity in the
density of detections over time for that scanner. In our example
data set, scanners did an automatic reboot once every 24 hours,
leading to a noticeable glitch in the detections.

b) Limitations of radio-based detections: WiFi uses a
data transmission medium which is inherently unreliable [17].
For example, most WiFi devices claim a 100m transmission
range in ideal conditions. In reality, such specifications cannot
be relied on: while tunnels are generally known to extend the
range, buildings and people are known to hinder transmissions.
This also means that the shape or size of the area where WiFi
packets can be correctly received can be very irregular. To
illustrate, in our data set we have identified 1,491 occurrences
when a device is detected by five or more scanners in the same
second, yet the placement of the scanners was such that these
simultaneous detections should normally not happen.

c) Limitations of RSSI: Using trilateration based on
the received signal strength indicator (RSSI), we should,
in principle, be able to pinpoint the location of a device.
There are multiple problems to be addressed. First, the RSSI
measurements as taken by the scanners, are not standardized
and can differ in value or strength across different types of
scanners. Second, the signal strength itself can dramatically
differ across multiple device manufacturers and even different
devices of the same model. Solutions for the RSSI problems
are proposed [18] but only for when the mobile device is the
one taking the measurements, and they do not directly apply
to the reverse scenario. An experimental evaluation of RSSI-
based localization methods is presented in [19], illustrating its
inherent difficulties and certainly when applied to crowds.

d) Timing errors: Scanners timestamp detections. Conse-
quently, their clocks may introduce many inaccurate detections
if not properly synchronized between different scanners. One
device moving from the range of scanner A to the one of
scanner B could have a recorded detection at scanner B
followed by a detection at scanner A. Even when the scanners
are completely synchronized it may be difficult to determine
the exact time a detection belongs to. There is no way to
determine if two packets received at two different scanners
are actually the same, as a Probe Request does not include
a sequence number that would permit differentiating between
two separate such packets from the same device.

e) MAC address issues: There used to be a time when
a MAC address could be more or less used as a stable and



TABLE I: Sources of noise in set of detections

Description Source Correctable?
Scanner Device Method

Faulty scanner Yes No No Easy
Dynamic, irregular ranges Yes Yes No Hard
RSSI issues Yes No Yes Hard
Timing errors Yes Yes Yes Hard
Multiple addr. per device No Yes No Easy
Multiple devices per addr. No Yes No Easy
Uncoordinated probes No Yes No Medium
Lost packets No No Yes Medium

unique identifier for a device. This is no longer a justifiable as-
sumption. Some devices change their MAC address seemingly
at random, as also reported by [15]. This is known in particular
in the case of some Apple devices [20]. Perhaps even worse
when using a MAC address for device identification, is that
we have noticed cases where different devices use the same
MAC address.

f) Lack of coordination: Because there is no coordination
between devices and scanners, no ideal probe transmission
rate can be determined or let alone set. We have witnessed
a huge variation in transmission rates, caused by seemingly
random behavior concerning when a device switches its WiFi
module on or off. This behavior is also dependent on the
device, as reported in [1] where a comparison between Apple
and Samsung devices is presented. As a result, the effect, in
combination with the unreliability of the wireless medium [17]
is a data set with detections that can make the movement
of a device seem mostly erratic. To illustrate what this may
lead to, consider Figure 2. In this case we have a known,
nonmobile device appearing as a device that moves in circles,
with random frequency and random speed. An actual mobile
device could exhibit an even more chaotic behavior. Instead of
moving in what would be a straight line, the detections would
show it moving in small irregular circles while eventually
getting closer to its destination.

By-and-large, there are many sources that introduce noise
into a set of detections. Table I lists the main sources of errors
that introduce seemingly chaotic behaviors in our data set. The
last column notes the level of difficulty in dealing with this
problems. The ones marked as hard could even be impossible
to fix.

V. METHODS OF IMPROVING THE DATA SET

We now move to the actual data cleaning and separate two
distinct phases. First, during the basic data-cleaning phase we
get rid of obviously erroneous data. In our case, these consist
of nontraceable devices, data caused by known misconfigured
devices, and multiple simultaneous detections. Secondly, and
more interesting, we look at cleaning up the data in such a
way that we can be more confident that the detections belong
to mobile devices that are actually moving according to yet
unknown patterns.

A. Basic data cleaning
In its original form the data needs to be processed using

simple filtering and cleaning techniques [21]. These techniques

are as follows.

Fig. 2: Movement path of
static device (the circles are
100m visual guides, they do
not represent the cover ra-
dius)

a) Unkown manufactur-
ers: We remove all data for
devices that have unknown
OUI values, as was also
reported in [15]. To this
end, we simply match OUI
values to a publicly available
list of manufacturers for
network-enabled devices. We
discovered that devices with
unknown OUIs have very few
detections, with an average of
four per device. Furthermore,
for these unknown OUI we
have an average of only one
device per OUI. All other
devices have an average of
100 detections per device and

on average there are 100 devices for every OUI. This is
explained by devices that use randomly generated MAC
addresses. We know this to be true for at least some Apple
devices [20].

b) Misconfigured scanners: We also remove detections
for the time periods where not all scanners were active or
correctly placed. This happened in our case when the system
was still being setup and tested. Note that deciding that the
system is fully and correctly functional is not always easy to
determine.

c) Simultaneous detections: There are situations where
we have multiple detections for which the device, scanner,
and time are the same. Such detections are simply merged to
a single detection. Likewise, simultaneous detections, where
a device is detected by multiple scanners at the same time,
are filtered leaving just detections triggered at the scanner that
has the highest RSSI score, as defined in equation 1. A similar
problem and solution is described in [22], [23].

Score(S,d,∆T ) = ∑
〈S,d,t〉,t∈∆T

RSSI ∗no packets (1)

Here:
• S represents a scanner
• d represents a device
• ∆T represents a time interval
• t represents a time value
• RSSI represents the signal strength of detection 〈S,d, t〉
• no packets represents the number of packets that were

received at detection 〈S,d, t〉 (in order to preserve band-
width multiple packets can be merged into one detection)

After the data cleanup we have 10,673,498 detections of
127,959 unique devices spanning over six days. We consider
this to be the basic data set, which we use in all our
experiments. The techniques presented so far are necessary
but not sufficicient, in the sense that they do not provide a
data set where the movement path of a crowd can be easily



identified. This is made evident in Figure 2 where we map the
movement path of a device from a WiFi router manufacturer
that we discovered in our data set. Green represents detections
with low RSSI and red represents strong detections, with high
RSSI. This device is most likely a static router that is detected
by multiple scanners. To draw the path we take all detections
in a 10-minute interval and draw arrows between scanners,
in increasing time order of the detections. We remind the
reader that these are not simultaneous detections, rendering
this behavior of the static device chaotic. We found this type of
erratic behavior to be the norm, rather than the exception. The
behavior is not particular to our data set, as we encountered it
in other works, like the visualizations in [13]. It is also present
in the case of GPS localization, as described in [24].

B. Advanced data cleaning

A mobility data set of a crowd needs to be modified in
order to better permit information retrieval, such as correctly
differentiating between mobile and static devices. Next we
present three methods that aim to achieve this goal. The
methods we present in this paper are executed on the basic
data set.

The three methods, or rules, represent ways of modifying
the data set, in which we smoothen the path each device takes
through the city. This means obtaining a data set in which
we minimize the device’s behavior of moving in circles or
constantly going back and forth between a set of scanners. To
be able to measure the success of these methods we define
two metrics.

First, we use entropy: taking two consecutive detections
of one device, we calculate the probability of the second
detection being at a specific scanner, given the first detection.
The entropy is modeled as the Shannon entropy [25] as defined
in equation 2.

H(S) =−∑
S∗

p(S∗|S) log p(S∗|S) (2)

Here, p represents the probability that a device triggers a
detection at scanner S∗ right after a detection at scanner S.
With 27 scanners, the entropy is calculated for each scanner
and each entropy is calculated using 27 probability values. The
average value of these entropies is used.

The second metric represents the dissimilarity between the
new, computed data set and the basic data set. Given two data
sets, with the same number of entries, and with matching val-
ues for device and time across them, we define the dissimilarity
between the two data sets as the average Euclidean distance
between the physical locations of the scanners of matching
pairs of entries. For instance, if we only had one detection and
we changed it from scanner A to scanner B the dissimilarity
value would be the distance between scanners A and B. The
more this value grows, the more information about paths
taken is lost. Thus, if any smoothing of successive detections
would eliminate paths taken by devices, this would result in
a relatively high dissimilarity value. With our definition of
dissimilarity, small values mean a high correlation between the

two data sets and large values mean a low correlation. Note
that the goal is not necessarily to reach a minimal dissimilarity
value, this would mean little or no anomalies and no noise is
removed from the paths.

a) Weak detection removal: One of the most obvious
solutions for smoothing paths taken by devices represents the
marking (for removal or change) of detections that have low
RSSI values. We call this the RSSI method. The intuition is
that such detections are of low quality, generated by scanners
that are far away from the device and they were triggered by
chance. This method is dependent on what we refer to as the R
threshold, where any detections with RSSI smaller than R are
marked as low quality. This is similar to the RSSI cleanup done
in [26]. The authors mention that they have an RSSI threshold,
similar to ours, but they do not discuss on how the threshold is
chosen. Choosing the threshold is vital because there is no one-
size-fits-all solution: bad weather conditions and placement
of the scanners might require a very low threshold. We offer
suggestions on how to choose the best threshold but a dynamic
approach might prove to fit best.

b) Time compression: The next method consists in split-
ting the time in buckets of ∆T seconds, followed by identi-
fying the sensor that has the highest strength score based on
equation 1. Each bucket will then have only one detection
per device. All others are marked for removal or change.
Here we try to identify the main scanners at which a device
triggers detections and leave only those in the data set. We
call this the time-compression method because it lowers the
resolution of the data set by moving from detections that can
appear in any second, to only one detection per time interval
of length ∆T . This method is related to the method used to
clean up data in [14]. However, instead of making buckets
and calculating the dominant scanner, the authors of [14] select
detections that have a time interval ∆T between them. Without
the selection of a dominant scanner, their method is biased to
choose detections that keep abnormal behaviors, for instance
keeping a detection of low quality (low RSSI) while removing
one of high quality.

c) Cycle removal: Our last method is called cycle-
removal method and it is specifically designed to remove the
moving in circles, or going back and forth, phenomenon that
we observed in the data set. To be able to remove this type
of behavior from the data set we have to identify the intervals
that display it. An interval with anomalous behavior has:
• consecutive detections of the same device
• the first and last detection at the same scanner
• repetitive detections at this scanner, with no more than X

detections at other scanners between them.
X represents the maximal number of detections at other scan-
ners, but that we would not consider to jointly form a circular
walk. These detections are therefore marked as unacceptable.
Any cycle that consists of more than X detections is considered
a normal movement, a person literally moving in a circle. We
use X as our parameter for tuning the removal of cycles.

Given the intervals we mark (for removal or change) all
the detections that do not belong to the dominant scanner of



the interval, the one with the highest strength score, given by
equation 1. Each detection can belong to multiple intervals.
When faced with this we choose the interval with the earliest
start time. This is done because we want to benefit the interval,
and with it the cycle, that has the longest history.

Algorithm 1 shows the steps that need to be taken to identify
and remove the cyclic movements using this method.

for each device do
construct intervals
for each interval do

find scanner with highest score value (St)
end
for each detection do

get first interval containing detection
if scanner != interval dominant scanner then

mark detection
end

end
end

Algorithm 1: Cycle removal

d) Applied modifications to the basic data set: Our meth-
ods for smoothing the paths can be applied in two different
ways. One way is to simply remove all detections marked by
it as unacceptable, we use the method as a filter. The other
way is to change the scanner of these detections to one. That,
according to the specific rule being used, is more appropriate.

For the RSSI method this means finding a detection of
the same device close to the marked one (in the ordering
of detections by time) that has an RSSI value above the
threshold. We update the scanner of the marked detection
to the scanner of this one. For the time-compression method
this means changing the scanner value of all detections in the
same time interval to that of the dominant one, according to
Score from equation 1, for that interval. Finally, for the cycle-
removal method this means changing the marked detections to
the scanner that is the dominant one, according to Score from
equation 1, in the interval the detection belongs to.

The entropy value can be calculated regardless if we remove
or update detections, while the dissimilarity measure can be
calculated only if we update them.

Both ways of applying the methods have their merits, the
first allows us to better identify the points of interest when
using different settings (i.e., for different values of R, ∆T or X ,
respectively). The second permits the use of the dissimilarity
measure, because it results in data sets with the same number
of data items as the base one.

VI. EXPERIMENTAL RESULTS

We compare the three methods presented in Section V by
running them on the basic data set. Each method has a variable
that affects the aggressiveness of the data-cleanup process
and we start by comparing the effectiveness of each method
given different values for them. These variables are R, ∆T
and X for tuning RSSI, time compression and cycle removal,
respectively. We also present a direct comparison between the

three methods and discuss the effects they have on the data
set.

We remind the reader that we apply all three of our methods
in two ways: we change our data set by either modifying or
removing detections. When we modify detections we always
get smaller values for entropy than when we remove detec-
tions. This is because by, for example, associating a different
scanner with a specific detection to one that is dominant, we
obtain a data set with more consecutive detections that have
the same scanner. This in turn means a higher probability of
two consecutive detections in the data set having the same
scanner, which in turn leads to a lower entropy.

We first apply the RSSI method as intuitively changing or
removing detections with low RSSI values should immediately
lead to improving our data set. We have detections with
RSSI values between -21 and -89. A value of -21 indicates
an extremely strong detection, probably of a device that is
right next to its detecting scanner and -89 represents a very
weak detection. More than 95% detections have an RSSI value
between -57 and -89. These are the RSSI values we use for
tuning the R threshold. We run the algorithm creating a new
data set for each threshold (in steps of 1 unit) and measure
the entropy and dissimilarity for the new data set.

A. RSSI: Entropy

The entropy of the data sets thus obtained given the different
values for R is shown in Figure 3(a). The lower the entropy,
the more stable the system, the more predictable a following
detection would be. A value of -89 represents the lowest
threshold. Using it generates a data set identical to the basic
data set. The entropy starts going down with an increase of R
because with higher values of R we change or remove more
detections that are of low quality, i.e. detections in which
the device is actually far away from its detecting scanner.
High values for R means we are accepting only high-quality
detections, and the more we raise the threshold, increasingly
fewer detections are available. This means that for the case of
removing detections, we are starting to have more consecutive
detections that are at scanners that are no longer close to each
other, because the ones that were in between are detections of
slightly worse quality and are marked for removal. This leads
to an increase of entropy for relatively large values of R.

For very large R we encountered scenarios where no detec-
tions of a given device have an RSSI value greater than R.
When we run the algorithm in order to change detections,
we cannot find a better value to use and we leave all of
them unchanged. This explains why with high values of R
the entropy starts going up for the scenario of modifying
detections. When we run the algorithm to remove detections,
all of them are removed.

B. Time compression: Entropy

Figure 3(b) shows the entropy values for the time-
compression method given different values for the time inter-
val ∆T . When we remove detections the entropy goes down,
with an increase of the time interval, and starts to grow only
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Fig. 3: Entropy and dissimilarity values after using the RSSI, time-compression, and cycle-removal method.

when the time interval is too large. The reason this happens
is because when the time interval is small we are leaving
only detections that are the most important for that interval,
removing those detections that taken together look and behave
like noise. But when the time window grows too much we
are starting to lose information. Consecutive detections are
at scanners that are physically distant and the detections that
were in between are lost. When we modify detections instead
of removing them we have an identical phenomenon but it is
hidden because we are left with many consecutive detections
that share the same scanner. The more we increase the time
interval, the more consecutive detections we see with the same
scanner. When the interval is large enough, larger than the time
in which the data set was collected, we are left with only one
dominant scanner for each device. In that case, the entropy
drops to 0.

C. Cycle removal: Entropy

Using the cycle-removal method we construct new data sets
for different values of X . Recall that X stands for the number
of tolerated intermediate detections at other scanners when
measuring repetitive detections at one specific scanner. The
entropy for these new data sets are presented in Figure 3(c).
The entropy drops extremely fast and continues to slowly
go down for higher values of X . Entropy never reaches 0,
because not all our devices have repetitions, i.e., cycles in
their detections. This is especially true for some devices that
we see only once, entering the town center at one end, crossing
it and exiting at another side, never to be seen again. Because
this solution is targeted specifically at removing irregularities

in the data, in none of the two cases does the entropy go up.
The larger the step, the more irregularities are removed.

D. Dissimilarity measures

A drop in entropy by itself is not necessarily good, for
instance with entropy of 0, we would have no information
about how crowds move in the city. The lower the entropy
the more information is lost, some information is just noise,
which we want to remove and other information is data about
the paths.

To understand how much information we lose when apply-
ing our algorithms we compared the resulted data set, obtained
by changing the detections and keeping the same number
of detections, with the basic data set. The metric we use is
dissimilarity and the lower the value of this metric, the closer
the new data set is to the basic date set. Having a dissimilarity
value of 0, means we did not do anything and we did not
remove any faulty behavior or noise. But having a dissimilarity
value that is very large could mean we modified the data set too
much and that we have lost or corrupted a lot of information.

As we can see in Figures 3(d), 3(e) and 3(f), respectively, the
more aggressive we are about changing the data set the more
the dissimilarity value rises, and thus the more the new data
set is different from the original one. This is true regardless of
method, however the speed with which it grows is different,
time compression being the one where dissimilarity increases
the slowest.

E. Comparing methods

To compare the results we select data sets generated by
each algorithm, by choosing the best values for R, ∆T and



(a) Basic data set (b) RSSI, R =−75 (c) Time compression, ∆T = 11 (d) Cycle removal, X = 4

Fig. 5: 10-minute path made by a device (the circles are 100m visual guides, they do not represent the coverage radius).
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X , respectively. To choose these we take into account both
entropy and dissimilarity. For the RSSI method we chose
the data set with an R threshold of -75. This is the point
corresponding to the lowest point of entropy in Figure 3(a), on
the removal set. For the time-compression method we chose
the time interval, ∆T , of 11 seconds, similar to the RSSI
threshold as the point in Figure 3(b) where the entropy for
removal is lowest. In the cycle-remover data sets the point
with the lowest entropy also has the worse dissimilarity value,
so instead we chose the point from Figure 3(c) where the rate
of drop becomes almost constant, that is where X is 4.

For a better comparison we added the basic data set and a set

obtained by changing the scanner in all detections to a random
one, which we call the random data set. Having random
scanners provides us a worst-case scenario. The maximal
entropy is achieved when a detection is followed with the
same probability, by a detection at any scanner. In our case this
means a probability of 1/27 for each scanner and an entropy of
4.75. In comparison, the entropy of our basic data set is 1.79.
The minimal system entropy is 0. The latter can be achieved
when each device is detected by only one scanner, in which
case all devices are statically located. The dissimilarity is 0
when we compare a data set with itself. The results of these
comparisons are shown in Figure 4 where we plot the entropy
and dissimilarity values for these cases. There is no clear
best method, one where both the entropy and dissimilarity are
smallest compared to the others. Choosing the method and the
appropriate value for R, ∆T and X , repsectively, is dependent
on the application. Regardless, both entropy and dissimilarity
need to be taken into account.

F. A path by a single device

Figure 5 shows the path a device has taken given each data
set created with our methods, with the values of R, ∆T and
X explored as just described. The path represents the same
10-minute window of a specific device. The colored scanners
are the ones that detected the device. Low (bad) RSSI values
are depicted with red and high (good) RSSI values are green.
The arrows represent the direction the device took, given by
the ordering of detections in time. From these figures it is



clear that all three methods improve the data set, but only
the cycle-removal method offers a clear path that this device
took. In Figures 5(b) and 5(c), most low-quality detections are
removed but there are moments when the device seems to go
against the normal direction.

G. Static versus mobile devices

Finally we were interested to discover how smoothing out
the paths helps with identifying static devices. We used the
same data sets with the values for R, ∆T and X as explained
above. Figure 6 shows the percentage of devices detected by
one, two or more scanners, respectively. Devices detected by
one or two scanners can be considered static devices, the ones
that are detected by three or more can be considered mobile. To
have a better understanding the graph shows these values for
all 27 scanners before and after the cycle-removal algorithm
is run. We did not display the results for the RSSI method and
time compression because they differ only slightly from the
basic data set.

Some scanners detect a lot more static devices, for instance
scanners with ID 1305 and 1295 (scanners from the camping
sites placed away from the city center). These scanners detect
a large number of devices carried by people that use the
highway, positioned next to the scanners. These devices are
usually detected only once. Scanners with IDs 1309 and 1330
are scanners at the Eastern edge of the city center, furthest
away in the cluster of 25 scanners, with the smallest overlap
with other scanners. This could explain why they have a higher
number of static devices than the rest of the scanners in the
city center.

Considering the low entropy, cleanest path and highest
increase in the number of identified static devices we believe
cycle removal with X equal to 4 to be the most appropriate
method.

VII. CONCLUSION

WiFi tracking data taken as it is, shows abnormal behavior
such as devices moving in circles or going back and forth.
There are numerous sources for this type of noise in the data
and each raises different problems. Use of this type of data
directly can introduce a multitude of errors depending on the
application. For instance a visualization tool for paths could
display abnormal, chaotic movement; when trying to count
the number of individuals in a flow, the results would be
insignificant.

In order to clean the data we offered three distinct solutions
that attack the problem from distinct points: One uses RSSI
values; another uses time frames; and finally the most complex
ones uses cycles, repetitions in the data set.

To validate these solutions we defined two metrics: the en-
tropy which measures how predictable consecutive detections
are, and the dissimilarity to the base data set measuring the
average distance between the scanners in the two sets.

Using these metrics we show that each solution has its
own advantages, and finding the best method is dependent
on the application. However, in the cases of cleaning paths

and identifying static devices, cycle removal performs best, it
also has the lowest entropy, from the best cases chosen from
all methods.

As future work we believe it is best to apply these methods
on a data set that has ground truth. Testing different analytics
applications on the cleaned data sets could give more indica-
tion as to what the best method is.
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