
1

GDCluster: A General Decentralized Clustering
Algorithm

Hoda Mashayekhi, Jafar Habibi, Tania Khalafbeigi, Spyros Voulgaris, Maarten van Steen, Senior Mem-

ber, IEEE

Abstract—In many popular applications like peer-to-peer systems, large amounts of data are distributed among multiple sources.

Analysis of this data and identifying clusters is challenging due to processing, storage, and transmission costs. In this paper, we

propose GDCluster, a general fully decentralized clustering method, which is capable of clustering dynamic and distributed data sets.

Nodes continuously cooperate through decentralized gossip-based communication to maintain summarized views of the data set. We

customize GDCluster for execution of the partition-based and density-based clustering methods on the summarized views, and also

offer enhancements to the basic algorithm. Coping with dynamic data is made possible by gradually adapting the clustering model. Our

experimental evaluations show that GDCluster can discover the clusters efficiently with scalable transmission cost, and also expose its

supremacy in comparison to the popular method LSP2P.

Index Terms—Distributed Systems, Clustering, Partition-based Clustering, Density-based Clustering, Dynamic System

✦

1 INTRODUCTION

C
LUSTERING, or unsupervised learning, is important for ana-

lyzing large data sets. Clustering partitions data into groups

(clusters) of similar objects, with high intra-cluster similarity and

low inter-cluster similarity. With the progress of large-scale dis-

tributed systems, huge amounts of data are increasingly originating

from dispersed sources. Analyzing this data, using centralized

processing, is often infeasible due to communication, storage and

computation overheads. Distributed Data Mining (DDM) focuses

on the adaptation of data-mining algorithms for distributed com-

puting environments, and intends to derive a global model which

presents the characteristics of a data set distributed across many

nodes.

In fully distributed clustering algorithms, the data set as a

whole remains dispersed, and the participating distributed pro-

cesses will gradually discover various clusters [1]. Communication

complexity and overhead, accuracy of the derived model, and data

privacy are among the concerns of DDM. Typical applications

requiring distributed clustering include: clustering different media

metadata (documents, music tracks, etc.) from different machines;

clustering nodes’ activity history data (devoted resources, issued

queries; download and upload amount, etc.); clustering books in a

distributed network of libraries; clustering scientific achievements

from different institutions and publishers.

A common approach in distributed clustering is to combine

and merge local representations in a central node, or aggregate

local models in a hierarchical structure [2], [3]. Some recent

proposals, although being completely decentralized, include syn-

• H. Mashayekhi, J. Habibi and T. Khalafbeigi are with the Department of

Computer Engineering, Sharif University of Technology, Tehran, Iran, -E-

mail: mashayekhi@ce.sharif.edu, tkhalafb@ucalgary.ca, jhabibi@sharif.ir

• S. Voulgaris and M. van Steen are with the Department of Computer

Science, Vrije Universiteit Amsterdam, De Boelelaan 1081A, 1081 HV

Amsterdam, The Netherlands. E-mail: {spyros, steen}@few.vu.nl.

chronization at the end of each round, and/or require nodes to

maintain history of the clustering [4], [5], [6], [7].

In this paper, a General Distributed Clustering algorithm (GD-

Cluster) is proposed and instantiated with two popular partition-

based and density-based clustering methods. We first introduce a

basic method in which nodes gradually build a summarized view

of the data set by continuously exchanging information on data

items and data representatives using gossip-based communication.

Gossiping [8] is used as a simple, robust and efficient dissemi-

nation technique, which assumes no predefined structure in the

network. The summarized view is a basis for executing weighted

versions of the clustering algorithms to produce approximations

of the final clustering results.

GDCluster can cluster a data set which is dispersed among a

large number of nodes in a distributed environment. It can handle

two classes of clustering, namely partition-based and density-

based, while being fully decentralized, asynchronous, and also

adaptable to churn. The general design principles employed in the

proposed algorithm also allow customization for other classes of

clustering, which are left out of the current paper. We also discuss

enhancements to the algorithm particularly aimed at improving

communication costs.

The simulation results presented using real and synthetic data

sets, show that GDCluster is able to achieve a high-quality global

clustering solution, which approximates centralized clustering.

We also explain effects of various parameters on the accuracy

and overhead of the algorithm. We compare our proposal with

central clustering and with the LSP2P algorithm [4], and also

show its supremacy in achieving higher quality clusters. The main

contributions of this paper are as follows:

• Proposing a new fully distributed clustering algorithm,

which can be instantiated to at least two categories of

clustering algorithms.

• Dealing with dynamic data and evolving the clustering

model.

• Empowering nodes to construct a summarized view of

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2391123

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2
node p

Dp
int

(Internal

data)

Dp
ext

(external

data)

Rp

(Representatives)

C
p
=F(Rp)

other nodes

clustering

q
Dq

int

Dq
ext

Rq

node

node

node

Fig. 1. A graphical view of the system model.

the data, to be able to execute a customized clustering

algorithm independently.

This paper is organized as follows. The system model is

described in Section 2. In Section 3, the basic decentralized

algorithm is introduced. In the succeeding section we propose

adjustments to deal with churn. Section 5 discusses enhancements.

Simulation results are discussed in Section 6, followed by related

work and conclusion.

2 SYSTEM MODEL

We consider a set P= {p1, p2, . . . , pn} of n networked nodes. Each

node p stores and shares a set of data items Dint
p , denoted as its

internal data, which may change over time. D =
⋃

p∈P Dint
p is the

set of all data items available in the network. Each data item d is

presented using an attribute (meta data) vector denoted as dattr.

Whenever transmission of data items is mentioned in the text,

transmission of the respective attribute vector is intended.

While discovering clusters, p may also store attribute vectors

of data items from other nodes. These items are referred to as the

external data of p, and denoted as Dext
p . The union of internal and

external data items of p is referred to as Dp = Dint
p ∪Dext

p .

During algorithm execution, each node p gradually builds a

summarized view of D, by maintaining representatives, denoted

as Rp = {r
p
1 ,r

p
2 , . . . ,r

p
kp
}. Each representative r ∈ Rp is an artificial

data item, summarizing a subset Dr of D. The attribute vector of

r, rattr, is ideally the average of attribute vectors1 of data items

in Dr. The intersection of these subsets need not be empty, i.e.,

∀r,r′ ∈ Rp.|Dr ∩Dr′ | ≥ 0. The actual set Dr is not maintained by

the algorithm, and is discarded once r is produced.

Each data item or representative x in p, has an associated

weight wp(x). The weight of x is equal to the number of data

items which, p believes, x is composed of. Depending on whether

x is a representative or a data item, wp(x) should ideally be equal

to |Dx| or one, respectively.

The goal of this work is to make sure that the complete data set

is clustered in a fully decentralized fashion, such that each node p

obtains an accurate clustering model, without collecting the whole

data set. The representation of the clustering model depends on

the particular clustering method. For partition-based and density-

based clustering, a centroid and a set of core points can serve

as cluster indicators, respectively. Whenever the actual type of

clustering is not important, we refer to the clustering method

simply as F. Fig. 1 provides a summarized view of the system

model.

3 DECENTRALIZED CLUSTERING

Each node gradually builds a summarized view of D, on which

it can execute the clustering algorithm F. In the next subsections,

1. In the context of this work, all operations on data items or representatives,
are vector operations on the corresponding attribute vectors.

node 1

cl
u

st
e

ri
n

g

d
e

ri
v

e

co
ll

e
ct

Peer Sampling Service

lo
ca

l
g

lo
b

a
l

s
u

m
m

a
r
iz

e
d

v
ie

w

…. node N

cl
u

st
e

ri
n

g

d
e

ri
v

e

co
ll

e
ct

s
u

m
m

a
r
iz

e
d

v
ie

w

Fig. 2. The overall view of the algorithm tasks.

we first discuss how the summarized view is built. Afterwards,

the method of weight calculation is described, followed by the

execution procedure of the clustering algorithm.

3.1 Building the summarized view

As described in Section 2, we assume that the entire data set

can be summarized in each node p, by means of representatives.

Each node p is responsible for deriving accurate representatives

for part of the data set located near Dint
p . For other parts, it

solely collects representatives. Accordingly, it gradually builds a

global view of D. Each node continuously performs two tasks in

parallel: i) Representative derivation, which we name DERIVE

and ii) representative collection, which we name COLLECT. The

two tasks can execute repeatedly and continuously in parallel. An

outline of the tasks performed by each node is demonstrated in

Fig. 2. We use two gossip-based, decentralized cyclic algorithms

to accomplish the two tasks, as described in the next subsections.

3.1.1 DERIVE

To derive representatives for part of the data set located near Dint
p ,

p should have an accurate and up-to-date view of the data located

around each data d ∈ Dint
p . In each round of the DERIVE task,

each node p selects another node q for a three-way information

exchange, as shown in Fig. 3. It should first send Dint
p to node

q. If size of Dint
p is large, it can summarize the internal data by

an arbitrary method such as grouping the data using clustering,

and sending one data from each group. Node p then receives from

q, data items located in radius ρ of each d ∈ Dint
p , based on a

distance function δ . ρ is a user-defined threshold, which can be

adjusted as p continues to discover data (to which we return to in

Section 6.1). In the same manner, it will also send to q the data

in Dp that lie within the ρ radius of data in Dint
q . The operation

updateLocalData() is used to add the received data to Dext
p .

Knowing some data located within radius ρ of some internal

data item d, node p can summarize all this data into one represen-

tative. This is performed periodically every τ gossip rounds using

the algorithm of Fig. 4. The mergeWeights function, updates the

representative weight, and is later described in Section 3.3

3.1.2 COLLECT

To fulfill the COLLECT task, each node p selects a random node

every T time units, to exchange their set of representatives with

each other (Fig. 5). Both nodes store the full set of representatives.

The summarize function used in the algorithm, simply returns all

the representatives given to it as input. A special implementation

of this function is described in Section 5.1, which reduces the

number of representatives.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2391123

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

3

Process ActiveThread(p):
loop

wait T time units
preprocessTask1()
q← selectNode()
sendTo(q, summarize(Dint

p))
.
.
receiveFrom(q, D∗q,Dint

q)

D∗p ← {d ∈ Dp|∃d
′ ∈ Dint

q :

δ (dattr,d
′
attr)≤ ρ}

sendTo(q, D∗p)
updateLocalData(D∗q)

end loop

Process PassiveThread(q):
loop

.

.
receiveFromAny(p, Dint

p)
preprocessTask1()
D∗q ← {d ∈ Dq|∃d

′ ∈ Dint
p :

δ (dattr,d
′
attr)≤ ρ}

sendTo(p, D∗q,

summarize(Dint
q))

.

.
receiveFrom(p, D∗p)
updateLocalData(D∗p)

end loop

(a) (b)

Fig. 3. Task DERIVE: (a) active thread for p and (b) passive thread for
selected node q.

Process extractRepresentative(p):
for d ∈ Dint

p do

∆d = {d}∪{d′|d′ ∈ Dext
p ∧∀d

′′ ∈ Dint
p : δ (dattr,d

′
attr)< δ (d′′attr,d

′
attr)}

r =
∑d′∈∆d

(w(d′)×d′attr)

∑d′∈∆d
w(d′)

for d′ ∈ ∆d do
mergeWeights(r , d′)

end for
Rp = Rp ∪{r}

end for
removeRepetitives(Rp)
Dext

p = /0

Process removeRepetitives(R)
for r,r′ ∈ R|rattr = r′attr do

R = R−{r′}
mergeWeights(r, r′)

end for

(a) (b)

Fig. 4. (a) Extracting representatives from the collected data, (b) remov-
ing repetitive representatives

Initially, each node has only a set of internal data items, Dint
p .

Thus, the set of representatives at each node is initialized with all

of its data items, i.e., Rp = Dint
p .

The two algorithms of tasks DERIVE and COLLECT, start

with a preprocessing operation. In this basic algorithm, these

operations have no special function, thus we defer their discussion

to Section 4. The graphical representation of the communication

performed in DERIVE and COLLECT is depicted in Fig. 6.

The operation selectNode() used in Figures 3 and 5, employs

a peer-sampling service to return a node selected uniformly at

random from all live nodes in the system (see, e.g., [9]).

Process ActiveThread(p):
loop

wait T time units
preprocessTask2()
q← selectNode()
sendTo(q, summarize(Rp, |Rp|))
.
.
receiveFrom(q, R∗q)
Rp = Rp ∪R∗q
removeRepetitives(Rp)

end loop

Process PassiveThread(q):
loop

.

.

.

.
receiveFromAny(p, R∗p)
preprocessTask2()
sendTo(p,
summarize(Rq,|Rq|))
Rq = Rq ∪R∗p
removeRepetitives(Rq)

end loop

(a) (b)

Fig. 5. Task COLLECT: (a) active thread for p and (b) passive thread
for selected node q.

3.2 Diffusion Speed

In tasks DERIVE and COLLECT we use gossiping as a prop-

agation media. This is in particular different from aggregation

protocols [8] which employ gossiping to reach consensus on

aggregations. Using vocabulary of [8] and ignoring the details,

the general approach of GDCluster can be simplified as follows.

At all times t, a node p maintains an ordered set (not a sum)

st,p, initialized to s0,p = Dint
p , and an ordered set of corresponding

weights wt,p. At each time step t, p chooses a target node ft(p)
uniformly at random and sends both collections to that node and

itself. It calculates union of the received pairs (ŝr, ŵr) from other

nodes with its own s and w sets. In step t of the algorithm, st,p

is the view p has on the entire dataset, while wt,p contains the

corresponding weight of each view element. As the set s quickly

becomes large, the notion of representatives are introduced. Node

p can summarize the elements of st,p by removing a subset,

computing the average of its elements (locally), and replacing the

average value in st,p. The corresponding weights should also be

removed and replaced by the aggregate weight. This summarized

view is labeled Rp in this paper.

According to [8] and [10], a message that originates with p at

time t0 and is forwarded by all nodes that have received it, will

reach all nodes in time at most 4 logN + log 2
δ with probability at

least 1− δ
2

. Therefore, after the same time order, the summarized

view of p, will have elements from all other nodes, either in their

raw form or embedded in a representative.

3.3 Weight calculation

When representatives are merged, for example in the function

removeRepetitives, a special method should be devised for weight

calculation. The algorithm does not record the set Dr for each

representative r, due to resource constraints. Also, there is a

possibility of intersection between summarized data of different

representatives. To address the weight calculation issue, repre-

sentative points are accompanied by a (small size) “estimation

field”, that allows us to approximate the number of actual items it

represents.

We adopt the method of distributed computing of a sum of

numbers, introduced in [11]. The algorithm is based on properties

of exponential random variables, and reduces the problem of

computing the sum to determining the minimum of a collection

of numbers. After briefly introducing the method, we describe the

algorithm of weight calculation.

3.3.1 General counting

We aim to compute the number of items in a set X . We consider

s independent hash functions mapping an item x ∈ X to s real

numbers exponentially distributed with rate 1. These values are

called weight estimators and are denoted as ŵ1(x), . . . , ŵs(x). Next,

the minimum value per each of the s numbers should be computed.

Let Ŵ l = min{ŵl(x)|x ∈ X}. Upon establishing the minimum

values, an estimate of the total number is given by the formula:

ĉ =
s

∑s
l=1 Ŵ l

(1)

The basic intuition behind the estimation, is that the minimum of n

independent random variables, each with exponential distribution

of rate λ j, is an exponential random variable of rate λ = ∑n
j=1 λ j.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2391123

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

4

node p
Random

node q

preprocessTask1

preprocessTask1

Dp
int

data in ρ radius of Dp
int

, Dq
int

data in ρ radius of Dq
int

updateLocalData updateLocalData

loop

ExtractRepresentatives

opt [every τ gossip rounds]

node p
Random

node q

preprocessTask2

preprocessTask2

summarize(Rp)

summarize(Rq)

update representatives
update
representatives

loop

remove repetitive
representatives

remove repetitive
representatives

(a) (b)

Fig. 6. Communication sequence of tasks (a) DERIVE and (b) COLLECT, for a typical node p

Process mergeWeights(r, x):
for l ∈ 1 . . .s do

ŵl
p(r) =

{

min{ŵl
p(r), ŵ

l
p(x)} ŵl

p(r) 6= null

ŵl
p(x) otherwise

end for

Fig. 7. The update procedure for weight estimators. x is a new represen-
tative or data item which is embedded in representative r

3.3.2 Weight calculation

To incorporate the described counting procedure into the basic

algorithm, node p should store s values, per each data item d ∈Dp

and each representative r ∈ Rp. Whether x is a data item or a

representative, let ŵ1
p(x), . . . , ŵ

s
p(x) denote the weight estimators

stored for x in node p. The s random values associated with each

real data item, should be deterministically generated by any node

based on the attribute vector. Therefore, we have to provide s

independent hash functions that deterministically map any given

point to s hash values, exponentially distributed with rate 1.

For a representative r, when r is first created, s weight

estimators are assigned to it with initial null values. The weight

estimators are then updated in the mergeWeights function of

Fig. 7,which updates the estimators incrementally. The s values

per each representative r, accompany r when it is transferred to

another node in task COLLECT.

The estimated number of data items summarized by a repre-

sentative r ∈ Rp, i.e., wp(r), is given by the following formula:

wp(r) =
s

∑s
l=1 ŵl

p(r)
(2)

An important observation is that by using the minimum op-

erator, re-assignment of a data item to a representative does not

increase its weight.

3.4 Final clustering

The final clustering algorithm F is executed on the set of repre-

sentatives in a node. Node p can execute a weighted version of the

clustering algorithm on Rp, any time it desires, to achieve the final

clustering result. In a static setting, continuous execution of DE-

RIVE and COLLECT will improve the quality of representatives

causing the clustering accuracy to converge. In the following, we

discuss partition-based and density-based clustering algorithms as

examples.

3.4.1 Partition-based clustering

K-means [12] considers data items to be placed in an m-

dimensional metric space, with an associated distance measure

δ . It partitions the data set into k clusters, C1,C2, . . . ,Ck. Each

cluster C j has a centroid µ j, which is defined as the average of all

data assigned to that cluster. This algorithm tries to minimize the

following objective function:

k

∑
j=1

∑
dl∈C j

‖ dl−µ j ‖
2 (3)

Weighted K-means assumes a positive weight for each data item

and uses weighted averaging. The centroids themselves will be

assigned weight values, indicating number of data assigned to the

clusters. The formal definition of the weighted K-means is given

in Fig. 8. The algorithm proceeds heuristically. A set of random

centroids are picked initially, to be optimized in later iterations.

The available approaches of distributed partition-based clus-

tering typically assume identical initial K-means centroids in all

nodes [4], [5], [6]. This is, however, not required in our algorithm

as each node can use an arbitrary parameter k with an arbitrary set

of initial centroids.

Convergence

The weighted K-means algorithm is executed on a set of represen-

tatives, each extracted from data within ρ distance of a data item,

and its ultimate goal at node p is to compute the mean of data in

each cluster. Let DCi
denote the the data items of a typical cluster

Ci, and RCi
denote representatives computed from data in DCi

.

If DCi
is uniform, the expected value of the representatives will

be equal to µi. The COLLECT step actually performs continuous

random sampling of the set RCi
and the convergence bound to the

expected value is given by the Hoeffding inequality.

If DCi
is not uniform, the expected value of representatives in

RCi
will deviate from µi. In such cases, we can consider subsets

of DCi
, each being approximately uniform. The finest region

considered to be uniform is a ρ-neighbourhood. Representatives

in such a neighbourhood share high ratio of data items with each

other. Inspired from this property, RCi
can be decomposed as

follows. To extract subset R
j
Ci
⊆ RCi

an arbitrary representative

r ∈ RCi
is added to R

j
Ci

, followed by all representatives r′ ∈ RCi

such that ∃r ∈ R
j
Ci
.|r− r′| ≤ ρ . This is similar to the DBSCAN

algorithm [13] with representatives considered as core points and

ε being equal to ρ . Number of regions produced by the mentioned

algorithm depends on intrinsic features of data and number of

samples. Computing the average and count of each subset (section

3.3), the average of DCi
can be correctly computed using weighted

averaging.

To be consistent, we can use the averaging as described above

in all iterations of the weighted K-means algorithm. The set

of representatives in each cluster, are identified with the usual

nearest centeroid method of K-means. It is obvious that if clusters

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2391123

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

5

Process weightedK-means(R,k):
Output Partition of R into k clusters
Select k data itemsa from R as the initial centroids: µ1, . . . ,µk

Define k assignment sets A = {A1, . . . ,Ak} for holding members of the clusters

repeat
A j = {r|r ∈ R∧δ (r,µ j)≤ δ (r,µi), i 6= j}
A j ←reduce(A j)

µ j =
∑r∈A j

(w(r)×r)

∑r∈A j
w(r)

until |µnew
j −µold

j | ≤ ε
for j ∈ 1 . . .k do

for r ∈ A j do
mergeWeights(µ j , r)

end for
end for

Process reduce(A j):
while ∃r,r′ ∈ A j.δ (r,r

′)≤ ρ do
∆r = {r}∪{r

′|δ (r,r′)≤ ρ}

r =
∑r′∈∆r

(w(r′)×r′attr)

∑r′∈∆r
w(r′)

for r′ ∈ ∆r do
mergeWeights(r , r′)

end for
A j = {A j−∆r}∪{r}

end while

a. The first initial centroid is selected randomly, and each next centroid is selected such that its minimum distance to each of the previous
centroids is maximum.

Fig. 8. The weighted K-means algorithm

are intertwined, the ρ parameter should be decreased and more

sampling should be performed which introduces an accuracy/cost

trade-off.

3.4.2 Density-based clustering

In density-based clustering, a node p can execute, for example, a

weighted version of DBSCAN [13] on Rpwith parameters minPts

and ε . In DBSCAN, a data item is marked as a core point if it has

at least minPts data items within its ε radius. Also, two core points

are within one cluster, if they are in ε range of each other, or are

connected by a chain of core points, where each two consecutive

core points have a maximum distance of ε . A non-core data item

located within ε distance from a core point, is in the same cluster

as that core point, otherwise it is an outlier.

In our algorithm, each representative may cover a region with

radius2 greater than ε . Also a representative does not necessarily

have the same attribute vector as any regular data item. Therefore,

representatives do not directly mimic core points. Nevertheless,

core points in DBSCAN are a means of describing data density.

Adhering to this concept, representatives can also indicate dense

areas.

The ρ parameter of the DERIVE task can be set to ε . This

ensures that if some data item is a core point, the corresponding

derived representative will have a minimum weight of minPts.

This customization also suggests that per each internal data item,

at most minPts data items should be transferred in COLLECT.

One of the benefits of DBSCAN is its ability to detect outliers.

To achieve this in our algorithm, task COLLECT should be

customized to transfer only representatives with weight larger

than minPts. This causes representatives located outside the actual

clusters not to be disseminated in the network, and improves the

overall clustering accuracy.

The density-based clustering method just described can be

considered a slightly modified version of the distributed density-

based clustering algorithm GoScan [14]. In GoScan nodes detect

core points and disseminate them through methods very similar

to COLLECT and DERIVE. GoScan is an exact method, whereas

here we are providing an approximate method.The approximation

imposes less communication overhead, and faster convergence of

the algorithm.

2. The maximum distance of the representative to points embedded in it.

4 DYNAMIC DATA SET

Real-world distributed systems change continuously, because of

nodes joining and leaving the system, or because their set of

internal data is modified.

To model staleness of data, each data item will have an

associated age. agep(d) denotes the time that node p believes

has passed since d was obtained from its originating, owning

node. Time is measured in terms of gossiped rounds. The age

of data items accompany them in the DERIVE task. The age of

an external data item at node p is increased (by p) before each

communication; the age of an internal data always remains zero

to reflect that it is stored (and up-to-date) at its owner. If a node p

receives a copy d′ of a data item d it already stores, agep(d) is set

to min{agep(d),agep(d
′)} (and d′ is further ignored).

When a data item d is removed from the original peer, the

minimal recorded age among all its copies will only increase.

Node p can remove data item d if agep(d) > MaxAge, where

MaxAge is some threshold value, presuming that the original data

item has been removed. An age argument is also associated with

each representative; agep(r) is set to zero when r is first produced

by p, and increased by one before each communication.

The weight of a data item or a representative is a function of

its age. For a data item d, the weight function is ideally one for all

age values not greater than MaxAge. The data items summarized

by a representative have different lifetimes according to their age.

Therefore, the weight of the representative should capture the

number of data items summarized by the representative at each

age value. When the weight value falls to zero, the representative

can be safely removed. We will see below that instead of the

actual weight, the weight estimators are stored per each age value

to enable further merging and updating of representatives.

The weight function of a representative will always be in the

form of a descending step function for values greater than agep(r),
and will reach zero at most at agep(r) + MaxAge. All of the

data currently embedded in the representative will be gradually

removed, and no data can last longer that MaxAge units from the

current time.

With the weight function being dependent on age, the weight

estimators are in turn bound to the age values. ŵl
p(x, t) presents

the l’th weight estimator of item x in age t, from the view of

peer p. For a data item d, while agep(d) ≤MaxAge, each weight

estimator preserves its initial value, and is null otherwise. For a

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2391123

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

6

representative r, s weight estimators are recorded at each age value

greater than agep(d), up to the point where all data embedded in

the representative are removed. At that point all weight estimators

will become null. The new method of updating estimates is shown

in Fig. 9. In this figure, a set of data/representatives x is to be

merged with the representative r. For each age value between 0

and MaxAge, first the data/representatives which have positive

weight are put in the set X∗. Then, the minimum of weight

estimators is calculated for members of this set. The weight

function, with the age argument can be computed on demand from

the estimators:

wp(x, t) =

s

∑s
l=1 ŵl

p(x,t)
t ≥ agep(r)∧ (ŵ

i
p(x, t) 6= null,

i = 1 . . .s)
0 otherwise

(4)

When r is sent to another node in COLLECT the weight

estimate values for ages greater than agep(r) should accompany

it.

To incorporate these new concepts in the basic algorithm, the

two preprocessing operations of DERIVE and COLLECT should

be modified to increase age values of data and representatives, and

remove them if necessary. Moreover, before storing the received

data in DERIVE, the age values for repetitive data items should be

corrected. These operations are shown in Fig. 10.

5 ENHANCEMENTS

In this section we discuss a number of improvements to the basic

algorithm, to enhance the consumed resources.

5.1 Summarization

Nodes may have limited storage, processing and communication

resources. The number of representatives maintained at a node

increases as the DERIVE and COLLECT tasks proceed. When

the number of representatives and external data items stored at p

exceeds its local capacity LCp, first the representative extraction

algorithm of Figure 4 is executed to process and then discard

external data. Afterwards, the summarization task of Figure 11

is executed with parameters Rp and αLCp, and the result is

stored as the new Rp set. 0 < α < 1 is a locally determined

parameter, controlling consumption of local resources. Dealing

with limitations of processing resources is similar.

If the number of representatives and external data items to

be sent by p in the DERIVE and COLLECT tasks, exceeds

its communication capacity CCp, the same summarization task

of Figure 11 is executed with parameters Rp and βCCp. Thus,

a reduced set of representatives is obtained. 0 < β < 1 is a

parameter controlling the number of transmitted representatives.

If the external data items to be sent in the DERIVE task exceed

the communication limits, sampling is used to reduce the amount

of data.

The summarization task actually makes use of weighted K-

means (described in Section 3.4.1), which effectively “summa-

rizes” a collection of data items by means of a single representative

with an associated weight.

5.2 Weight estimators

According to the adopted approach of weight estimation and

dynamicity handling, the amount of data transmitted in COLLECT

can get large. Actually, the algorithm has to transmit up to s×

MaxAge values for each representative. Large values of MaxAge

can hence increase the communication costs. To diminish this cost,

we use regression analysis to model each of the s values using an

exponential function.

Each of the s weight estimators of a representative r, is a

function of age. This function can be identified by at most MaxAge

tuples of (age,value) pairs. Based on these tuples, an exponential

regression in the form of abage can be derived for each estimator,

after which the tuples can be discarded. Consequently, per each

representative, at most 2s values should be transmitted.

6 PERFORMANCE EVALUATION

We evaluate the GDCluster algorithm in static and dynamic

settings. We will also compare GDCluster with a central approach

and with LSP2P, a recently proposed algorithm being able to

execute in similar distributed settings.

6.1 Evaluation model

We consider a system of N nodes, each node initially holding a

number of data items, and carrying out the DERIVE and COL-

LECT tasks iteratively. For simplicity and better understanding

of the algorithm, we consider only data churn in the dynamic

setting. In each round, a fraction of randomly selected data items is

replaced with new data items. By using the peer sampling service,

the network structure is not a concern in the evaluations [9].

Each cluster in the synthetic data sets consists of a skewed set

of data composed from two Gaussian distributions with different

values of mean and standard deviation. The real data sets used

for the partition-based clustering are the well-known Shuttle,

MAGIC Gamma Telescope, and Pendigits data sets3. These data

sets contain 9, 10, and 16 attributes, and are clustered into 7, 2, and

10 clusters, respectively. From each data set, a random sample of

10240 instances are used in the experiments.To assign the data set

D to nodes, two data-assignment strategies are employed, which

aid at revealing special behaviours of the algorithm:

- Random data assignment (RA): Each node is assigned data

randomly chosen from D.

- Cluster-aware data assignment (CA): Each node is as-

signed data from a limited number of clusters.

The second assignment strategy abates the average number

of nodes that have data close to each other. Such a condition

reduces the number of other nodes which have target data for

the COLLECT task. When applying churn, in the first assignment

strategy, data items are replaced with random unassigned data

items. The second data assignment strategy allows concept drift

when applying churn, by reserving some of the clusters and

selecting new points from these clusters. Concept drift refers to

change in statistical properties of the target data set which should

be clustered.

Nodes can adjust the ρ parameter during execution based

on the incurred communication complexity. In the evaluations,

for simplicity, the ρ parameter is selected such that the average

number of data located within the ρ radius of each data item is

equal to 5.

Different parameters used in conducting the experiments,

along with their value ranges and defaults, are presented in

Table 6.1. The parameter values are selected such that special

behaviours of the algorithm are revealed. LC and CC are measured

as multiples of the required resource for one representative.

3. http://archive.ics.uci.edu/ml/

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2391123

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

7

Process mergeWeights(r, x):
1: for t ∈ 0 . . . MaxAge do
2: X∗ = {x′|x′ ∈ {r,x}∧wp(x

′,agep(x
′)+ t) 6= 0}

3:
ŵl

p(r,agep(r)+ t ′) =
(l = 1 . . .s)

{

min
⋃

x′∈X∗{ŵ
l
p(x
′,agep(x

′)+ t)} X∗ 6= /0

null otherwise
4: end for

Fig. 9. The updated mergeWeights procedure, with an extra age argument.

Operation preprocessTask1():
for each d ∈ Dext

p do agep(d)← agep(d)+1

for each d ∈ Dext
p with agep(d)> MaxAge do Dext

p ← Dext
p −{d}

Operation preprocessTask2():
for each r ∈ Rp do agep(r)← agep(r)+1
for each r ∈ Rp with wp(r) = 0 do Rp← Rp−{r}

Operation updateLocalData(D∗q):

for each d ∈ Dp ∩D∗q do agep(d)←min{agep(d),ageq(d)}
for each d ∈ D∗q with d 6∈ Dp do Dext

p ← Dext
p ∪{d}

Fig. 10. Operations used in the DERIVE and COLLECT tasks in a dynamic setting.

Process Summarize(R,k):
Output: R∗: A set of reduced representatives.
if |R| ≥ k then

R∗ = weightedK-means(R,k)
end if

Fig. 11. Summarization of representatives.

TABLE 1
Simulation parameters

Symbol Description Range
(default)

N Number of nodes 128-16384
(128)

|C| Number of real clusters in the data set 8-50

Nint Number of internal data items per
node

2-1000
(10)

s Number of weight estimators 20

τ The period between representative
extraction in DERIVE

<0.4

churn
ratio

Fraction of data replaced in each
gossip round

10-50%
(10%)

MaxAge Threshold for the age parameter 2-38 (10)

LC Node storage capacity 20-1280
(100)

α The parameter used in summarizing
local representatives

0.5

CC Node communication capacity < 3|C|
β The parameter used in summarizing

communicated representatives
<0.5

The majority of the evaluations is performed with partition-

based clustering. Partial evaluation on density-based clustering is

discussed at the end of the section.

6.2 Evaluation metrics

In order to assess the efficiency of our algorithm in detecting

clusters, we mainly compare its outcome to that of (centralized)

K-means using the same initial centroids in the central and

distributed settings. Executing K-means centrally on a given data

set results in a set of clusters C1,C2, . . . ,Ck, which will be referred

to as real clusters. Likewise, at any time while executing the

algorithm, each node p can derive a set of clusters C
p
1 ,C

p
2 , . . . ,C

p
k ,

which we will call computed clusters of node p. map(c) is

the mapping function that maps a computed cluster c to some

equivalent real cluster. Here we use the Kuhn-Munkres algorithm

[15] for mapping clusters, which is also used in [16]. Without loss

of generality, we assume that computed clusters in each node are

ordered according to the mapping, such that map(Cp
j) =C j. Each

data item d ∈ D, belongs to a specific global cluster C(d), and a

specific computed cluster in each node p, denoted as Cp(d).
The performance metrics are introduced below with respect to

a given node. To show aggregate results, we average across all

nodes in the system.

- Accuracy (AC). This metric measures the ratio of data items

which are located in correct clusters, and is defined as follows

[16]:

AC =
∑d∈D eq(C(d),map(Cp(d)))

|D|
(5)

Where eq(x,y) equals one if x = y and zero otherwise.

- Rand index (RandI). RandI is a measure of similarity

between two clusters, defined as follows:

RandI =
a+b
(

n
2

) (6)

Where a is the number of pairs of elements that are in the same

real cluster, and also in the same computed cluster, while b is the

number of pairs of elements that are in different real clusters and

in different computed clusters. We also use the corrected RandI

measure [17].

-Communication/storage overhead The communica-

tion/storage cost is measured in terms of average amount of

data (in KB) transmitted/stored by each node, per gossip round.

Note that the dimensions of data and the weight estimators are

considered to be 8 byte doubles.

The error interval in all simulations was lower than 1%, so it

is omitted in the graphs.

6.3 Simulation results

We start by presenting the simulation results for the static network,

and then proceed to dynamic configurations. Unless explicitly

stated, all evaluations involve the algorithm improvements dis-

cussed in Section 5. Evaluation of different parameters is mainly

performed with the synthetic data set, as we can efficiently control

the number of clusters, data density and the churn ratio.

Static settings

When network data is persistent, each node gradually learns

the data through its representatives, and the clustering accuracy

converges. The algorithm behaviour in a static setting is shown in

Fig. 12, where the number of internal data items of each node,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2391123

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

8

Nint , varies from 2 to 10. The trend of clustering accuracy conver-

gence against simulation rounds, is shown for basic and enhanced

GDCluster. Convergence is identified by three rounds of minor

(less than 1 percent) change in results. The accuracy converges in

to 100% and more than 95% in basic and enhanced GDCluster

respectively. The enhanced GDCluster offers less converged ac-

curacy values due to limited transmission of representatives and

data, which reduces the quality of the constructed view of data

in each node. As observed, in this setting, when nodes have few

data (e.g., Nint = 2), detecting accurate clusters is harder, due to

sparseness of clusters.

The same figure compares the basic GDCluster with three

improved versions, when Nint varies. Communication and storage

overheads show average per round values until convergence for

each node. The values are considerable for the basic GDCluster

due to the storage and transmission of a large number of external

data items and representatives. The first improved version involves

regression to reduce the weight estimators. As expected, this

improvement preserves the clustering accuracy, while reducing

the resource consumption up to 80%. In the next improvement, the

communication capacity is restricted. In this setting, the AC values

decrease by approximately 2 percent, while the communication

overhead experiences a major reduction. Further limitation of

storage capacity in the last improvement, still keeps AC above

95%, but deallocates local resources.

The RandI values remain near 100% regardless of the applied

improvements. The figure also shows that the algorithm is not

sensitive to the number of internal data when evaluated in terms

of accuracy.

Figure 13 shows performance of GDCluster when number of

internal data of nodes varies from 200 to 1000, and compares its

performance with a devised central approach with ideas from [2],

[18], [19]. Initially, each node computes k representatives from

local data and sends them to the central node. Then, iteratively, the

central node aggregates the collected representatives by executing

K-means. Each node executes one round of K-means with its

local data and the central centroids, and sends back the new

centroids to the central node. The algorithm terminates when the

centroids remain approximately constant.

As observed, GDCluster can cope well with large data without

loosing its clustering accuracy. The interesting point is that, with

summarizing internal data before transmission in task DERIVE

(as discussed in section 3.1.1), the communication overhead can

be kept low and independent of size of internal data (with

same number of clusters). The central approach, has very low

communication overhead because of only transmitting cluster

centroids. However, its accuracy can not surpass 80% and its

extension to dynamic data requires re-execution of the algorithm.

The larger communication overhead of GDCluster is mainly due

to the weight estimators. Nevertheless, these estimators empower

the algorithm to preserve its performance even when nodes have

repetitive data. In algorithms such as K-means which involve

several rounds of mean computation, repetitive data can bias the

results and negatively affect the clustering results. This is the

fact observed in figure 13 for the central approach. GDCluster

however, can resist such situations by accurately computing the

weight of centroids after each calculation of the mean value.

Alternatively, we can consider a central approach which col-

lects all data from the network and centrally executes the K-means

algorithm. Despite the processing overhead of executing K-means

on large data sets, here we only concentrate on communication

TABLE 2
Performance differences when N varies with respect to N = 1024

Network size 1024 (baseline) 2048-16384

R
A

AC (%) 93.85 <0.11
corrected RandI (%) 100 <0.0011
communication (KB) 25.44 <0.67
storage (KB) 13.4 <0.028

C
A

AC (%) 93.77 <0.019
corrected RandI (%) 100 0
communication (KB)) 25.45 <0.31
storage (KB) 13.33 <0.12

TABLE 3
Average values of evaluation metrics for 50 runs of the algorithm with

real data sets

AC RandI Comm.
overhead

Data
set

Central
Kmeans

GDCluster Central
Kmeans

GDCluster GDCluster

Shuttle 0.84 0.86 0.75 0.80 16.8

MAGIC 0.68 0.67 0.56 0.56 17.17

Pendigits 0.63 0.53 0.80 0.88 20.39

costs. Assuming links with 1KB per second capacity and 1000

data points per each node, the execution time of GDCluster

before converging to more than 95% accuracy, is approximately 60

seconds, while for the central approach it is about 2000 seconds.

Fig. 14 shows the behaviour of GDCluster when the net-

work size varies from 1024 to 16384 nodes. The AC values

have converged to more than 90%. This shows the efficiency

and scalability of the algorithm. In the random data-assignment

strategy, AC values are initially higher. This is due to each node

initially having internal data items from different clusters, enabling

it to identify more clusters. As the performance of the algorithm

for different network sizes is very similar, we used the average

values of different metrics for N = 1024 as a baseline in table 2,

and showed the difference of values for other network sizes. The

RandI values converge to 100%. The communication and storage

overheads of the algorithm remain constant due to restricting

resource consumption. As observed, the differences of values

for different network sizes are small, showing scalability of the

algorithm.

In the evaluation of the algorithm using real data sets, both

central K-means and GDCluster are evaluated against the actual

labels of data, and the results are presented in Table 3. GDCluster

is executed in a network of 1024 nodes, each having 10 data items.

The AC and RandI values for GDCluster are very close to those

of the central K-means. Because GDCluster executes K-means

on the representatives instead of data, when compared to actual

data labels, its accuracy may even surpass the central results for

some data sets. The results show the efficiency of the algorithm in

conforming to central clustering for real-world data.

Dynamic settings

The MaxAge parameter puts an upper bound on the storage period

of external data items, and representatives. Fig. 15 shows the

evaluation of the basic GDCluster algorithm when MaxAge varies.

Very low values of MaxAge prohibit complete propagation of

information in the network, and also cause early removal of data

and representatives. Large values, on the other hand, maintain in-

valid information longer than required and degrade accuracy. The

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2391123

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

9

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 1 2 3 4 5 6 7

A
C

 (
%

)

Simulation rounds

basic GDCluster

2-RA
4-RA
6-RA
8-RA

10-RA
 0

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 1 2 3 4 5 6

A
C

 (
%

)

Simulation rounds

enhanced GDCluster

2-RA
4-RA
6-RA
8-RA

10-RA 0

80

85

90

95

100

2 4 6 8 10

A
C

 (
%

)
(c

on
ve

rg
ed

)

Nint

Basic algorithm
Regression

Transmission limit
Storage limit

0

80

85

90

95

100

2 4 6 8 10

R
an

dI
 (

%
)

(c
on

ve
rg

ed
)

Nint

Basic algorithm
Regression

Transmission limit
Storage limit

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

2 4 6 8 10
C

om
m

un
ic

at
io

n
(K

B
)

Nint

Basic algorithm
Regression

Transmission limit
Storage limit

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

2 4 6 8 10

S
to

ra
ge

 (
K

B
)

Nint

Basic algorithm
Regression

Transmission limit
Storage limit

Fig. 12. Convergence and cost evaluation in static settings when Nint varies. Comparing incremental configurations: basic; regression; reduced
communication; reduced storage (enhanced GDCluster).

0
60
65
70
75
80
85
90
95

100

200 400 600 800 1000

A
C

 (
%

)
(c

on
ve

rg
ed

)

Nint

GDCluster
central

GDCluster(rep. data)
central(rep. data)

 0

 5

 10

 15

 20

 25

200 400 600 800 1000

C
om

m
un

ic
at

io
n

(K
B

)

Nint

GDCluster
central

GDCluster(rep. data)
central(rep. data)

Fig. 13. Evaluation of GDCluster in static settings when Nint varies,
and comparison to a central approach. Nodes either have unique or
repetitive (rep.) data.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 1 2 3 4 5 6 7 8 9

A
C

 (
%

)

Simulation rounds

1024-16384(RA)
1024-16384(CA)

Fig. 14. Convergence in a static setting, when N varies (average values
in table 2)

optimum behaviour of the algorithm is observed when MaxAge

is equal to 6. This is consistent with the earlier observation of

quick convergence of the algorithm. Therefore, MaxAge should be

0

80

85

90

95

100

2 6 10 14 18 22 26 30 34 38

 P
er

fo
rm

an
ce

 (
%

)

maxAge

RandI (RA)
RandI (CA)

AC (RA)
AC (CA)

Fig. 15. Effect of changing MaxAge

chosen to be compatible with algorithm convergence rate, as to

remove the data at a reasonable pace.

Fig. 16 shows the evaluation of the algorithm against different

metrics in a dynamic setting, with 10% churn. With the CA

strategy, concept drift is observed as some clusters are introduced

later to the network.

As illustrated in Fig. 16, for all network sizes, the AC value

rises to approximate average values of 94% and 93% with the RA

and CA strategies, respectively. Although data changes regularly,

the RA strategy ensures that previously discovered clusters remain

valid through data change. This ensures higher AC values. With

concept drift, nodes should move on to discover representatives in

the new clusters. It also takes some time for the removed data to

be discarded by the embedding representatives.

Similar trends are observed for the RandI metric, where

approximate average values of 98% and 96% are achieved for

RA and CA strategies, respectively. The algorithm has acceptable

performance in detecting clusters, even in dynamic settings. Fi-

nally, the same figure shows that the communication overhead for

different network sizes remains roughly the same. This is mainly

due to removal of representatives in the dynamic setting which

reduces the amount of transferred data between nodes.

High churn rates may affect distributed clustering perfor-

mance, due to delay in propagation of information. With signif-

icantly high churn rates, some new data items may be removed

even before all nodes get the chance to update their cluster model,

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2391123

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

10

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 10 20 30 40 50

A
C

 (
%

)
Simulation rounds

128-RA
256-RA
512-RA

1024-RA
 0

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 10 20 30 40 50

A
C

 (
%

)

Simulation rounds

128-CA
256-CA
512-CA

1024-CA

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 10 20 30 40 50

R
an

dI
 (

%
)

Simulation rounds

128-RA
256-RA
512-RA

1024-RA
 0

 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 10 20 30 40 50

R
an

dI
 (

%
)

Simulation rounds

128-CA
256-CA
512-CA

1024-CA
 0

 10

 20

 30

 40

 50

128 256 512 1024

C
om

m
un

ic
at

io
n

(K
B

)

N

RA
CA

Fig. 16. Evaluation of GDCluster in dynamic setting, when N varies.

0

80

85

90

95

100

10 20 30 40 50

A
C

 (
%

)

Churn ratio (%)

RA
CA

 0

 10

 20

 30

 40

 50

10 20 30 40 50

C
om

m
un

ic
at

io
n

(K
B

)

Churn ratio (%)

RA
CA

Fig. 17. Effects of varying churn ratio

or invalid clusters can persist longer. Evaluation of the algorithm

when churn ratio varies, is presented in Fig. 17, where churn ratio

changes from 10% to 50%. Note that along with increasing churn

rates, larger data sets are used in the simulations.

Recalling that the algorithm requires a few gossip rounds to

spread cluster information in the system, it is seen that the cluster

accuracy does not degrade much with high churn rates. In the RA

strategy, the clusters do not change significantly with data changes.

With the CA strategy, on the other hand, concept drift is present

and new clusters emerge as the old ones fade out. This explains

the higher decreases in the AC values of the CA strategy.

The communication overhead has an increasing trend in both

strategies. With higher churn rates, while the removing rate of

external data and representatives from nodes is dependent on

MaxAge, the addition of internal data speeds up. This causes more

information transmission between nodes.

Comparison with LSP2P

The LSP2P algorithm [4] executes the K-means in an iterative

manner, with each node synchronizing with its neighbors during

each iteration. In a static setting, the algorithm is initiated at a

single node p, which picks a set of random initial centroids along

with a termination threshold γ > 0 (which we explain shortly). p

sends these to all its immediate neighbors, and begins iteration 1.

When a node receives the initial centroids and threshold for the

first time, it forwards them to its remaining neighbors and initiates

iteration 1. In each iteration, every node p executes one round of

K-means on its local data based on the centroids computed in

the previous iteration. It then prompts its immediate neighbors for

their corresponding cluster centroids, and updates local centroids

based on the received information. Once the computed centroids

of two consecutive iterations, deviate less than γ from each other,

p enters the terminated state. In a dynamic setting, the change of

data may reactivate the nodes.

Regarding the above descriptions on LSP2P, it is observed

that the initial centroids are identical in all nodes, which prohibits

changing the number of produced clusters. Also, if K-means is

to be executed with different initial centroids, a new instance of

LSP2P should be started. Moreover, the history of executing the

K-means algorithm is particularly important, and maintained in

each node.

Our algorithm, adopting a different design and communication

scheme, overcomes all above limitations. However, for a fair com-

parison with LSP2P, a small modification is applied to GDCluster

in which the K-means initial centroids are available to all nodes.

These initial centroids are used when summarizing data and also

in the final clustering. The storage capacity of GDCluster is set

to approximately the required memory of nodes in LSP2P. To find

this value, LSP2P is executed several times, with the observation

that global termination occurs at a minimum of 30 rounds. After

this state, no more memory is consumed in a static setting; So,

the memory threshold for our algorithm is set to the memory

consumed in 30 execution rounds of LSP2P.

Fig. 18 shows a comparison of our algorithm with LSP2P in a

static setting, against different evaluation metrics. Our algorithm

achieves higher AC and RandI values. This is valid in all network

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2391123

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

11

sizes, and is due to establishing an accurate view on the whole

data set.

The communication costs of our algorithm are higher than

LSP2P in static settings (and much lower in dynamic settings

as later seen in figure 19). As discussed earlier, GDCluster

overcomes limitations of LSP2P and also offers a general so-

lution, such that each node can autonomously execute the K-

means algorithm (as well as other classes of clustering), to obtain

the desired number of clusters. This generality demands more

information exchange so that nodes have a sufficiently accurate

view on the data set. If both algorithms take same number of

rounds to converge (which is typically the observed behavior in

the simulations), with a same data rate, GDCluster will require

more time (in seconds) to transmit all required data in a static

setting.

Fig. 19 compares the two algorithms in a dynamic setting.

Again, GDCluster outperforms LSP2P. The design of LSP2P

prohibits adaptation of the algorithm to discover different number

of clusters on the fly. Our algorithm, can handle churn, while

at the same time, being able of discovering arbitrary number

of clusters. The communication overhead of both algorithms

increases when churn is in place. In LSP2P, this is due to more

message passing for handling churn. In our algorithm this is due

to more data communicated in the algorithm tasks. However, in

dynamic setting, LSP2P has a higher communication overhead.

Density-based clustering

For density-based clustering to be accurate, the representatives

should provide sufficient coverage of all parts of a cluster, and

a finer granularity to be able to distinguish clusters. This leads

to a larger number of representatives stored at each node. As the

algorithm is very similar to the basic version of the distributed

density-based clustering method proposed in [14], here we only

offer a limited evaluation with 1024 nodes.

Fig. 20 (a) shows a synthetic data set generated with the

data generator tool introduced in [20]. We also use the points

data set from the SEQUOIA 2000 benchmark [21]. This data

set contains 62584 names of landmarks in California, extracted

from the US Geological Surveys Geographic Names Information

System, together with their location. Regarding the number of

data items required in the experiments, a random sample of

this data set is used. For both data sets, the minpts values in

central DBSCAN and GDCluster are identical. To compensate

for the approximation involved in GDCluster due to the limited

storage and communication, the ε value used in final clustering of

GDCluster is set to 8 times the ε value of central DBSCAN.

Fig. 20 (b) shows the result of running the algorithm with

1024 nodes, under the RA strategy. As observed, the RandI metric

converges towards approximate values of 97% and 99% for the

synthetic and SEQUOIA data sets in less than 15 rounds. The

average communication overhead per each node for the setting of

Fig. 20 is 200 KB for both synthetic and SEQUOIA data sets.

Note that each node ends up having detected all clusters in the

network. To reduce the communication costs, nodes can be limited

to discover only interested clusters, or only detect representatives

around their local data, and leave the final clustering task to some

crawler which visits all nodes to discover actual clusters.

7 RELATED WORK

Distributed Data Mining (DDM) is a dynamically growing area.

A discussion and comparison of several distributed centroid based

partitional clustering algorithms is provided in [22]. Reference

[18] propose parallel K-means clustering, by first distributing data

to multiple processors. In each synchronized algorithm round,

every processor broadcasts its currently obtained centroids, and

updates the centroids based on the information received from all

other processors.

Different from many existing distributed clustering algorithms,

our algorithm does not require a central site to coordinate execu-

tion rounds, and/or merge local models. Also, it avoids global

message flooding. RACHET [23] is a hierarchical clustering algo-

rithm in which, each site executes the clustering algorithm locally,

and transmits a set of statistics to a central site. A distributed

partition-based clustering algorithm for clustering documents in a

peer-to-peer network is proposed by Eisenhardt et al. [24]. The

algorithm requires rounds of information collection from all peers

in the network. A K-means monitoring algorithm is proposed in

[25]. This algorithm executes K-means by iteratively combining

data samples at a central cite, and monitoring the deviation of

centroids in a distributed manner.

A method of combining local k-window clustering models

in a central site is proposed in [26]. A partition-based cluster-

ing algorithm for clustering distributed high-dimensional feature

vectors is presented in [27], which uses a central site to build the

global model. SDBDC [2] is a distributed density-based clustering

algorithm that summarizes local statistics, and transmits them to a

central site to be merged. Aouad et al. [28] propose a lightweight

distributed clustering technique based on merging of independent

local sub clusters according to an increasing variance constraint.

Merugu et al. [29] propose a distributed clustering algorithm, in

which each node computes a probabilistic clustering model and a

central node attempts to aggregate the local models in to reduce

an approximate cost function.

Some distributed clustering proposals impose a special struc-

ture in the network. A hierarchical clustering method based on K-

means for P2P networks is suggested in [19]. Summary represen-

tations are then transferred up the hierarchy and merged to obtain

k global clusters. Lodi et al. [3] introduce a distributed density-

based clustering which again uses a semantic overlay as the

infrastructure. Embeddings of kernel clustering on the MapReduce

framework is proposed in [30].

Some solutions which consider pure unstructured networks,

require state-aware operation of nodes, work in static settings,

or are aimed at computing basic functions like average and sum.

Fellus et al. [7] propose a decentralized K-means algorithm which

executes in iterations, and in each iteration nodes compute an

approximation of the new centroids in a distributed manner. Datta

et al. [4] propose a distributed K-means clustering algorithm for

P2P networks in which nodes communicate with their immediate

neighbours. Each node is required to store history of cluster

centroids per each K-mean iteration. Elgohary et al. [5] propose

a similar algorithm, with different local computation of centroids.

Eyal et al. [31] provide a generic algorithm for clustering in a

static network. Fatta et al. [32] propose a gossip-based distributed

k-means clustering, which is initiated with similar initial centroids,

and proceeds towards centroid convergence with rounds of gos-

siping. Shen et al. [33] propose a distributed clustering in a static

network, incorporating information theory measures.

The major drawback of the majority of existing approaches,

is lack of efficient solutions for adaptability in dynamic set-

tings, which introduces significant challenges for applying the

algorithms in large-scale real-world networks. Also, majority of

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2391123

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

12

0

80

85

90

95

100

128 256 512 1024

A
ve

ra
ge

 A
C

 (
%

)

N

GDCluster-RA
GDCluster-CA

LSP2P-RA
LSP2P-CA

0

80

85

90

95

100

128 256 512 1024

A
ve

ra
ge

 R
an

dI
 (

%
)

N

GDCluster-RA
GDCluster-CA

LSP2P-RA
LSP2P-CA

 0

 5

 10

 15

 20

128 256 512 1024

C
om

m
un

ic
at

io
n

(K
B

)

N

GDCluster-RA
GDCluster-CA

LSP2P-RA
LSP2P-CA

Fig. 18. Comparing algorithms in static settings with the RA strategy

0

80

85

90

95

100

128 256 512 1024

A
ve

ra
ge

 A
C

 (
%

)

N

GDCluster
LSP2P

0

80

85

90

95

100

128 256 512 1024

A
ve

ra
ge

 R
an

dI
 (

%
)

N

GDCluster
LSP2P

 0

 100

 200

 300

 400

 500

128 256 512 1024

C
om

m
un

ic
at

io
n

(K
B

)

N

GDCluster
LSP2P

Fig. 19. Comparing algorithms in dynamic settings with RA strategy and churn ratio=10%

 0

 100

 200

 300

 400

 500

 600

 700

 0 100 200 300 400 500 600 700

(a) Data set

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 5 10 15 20 25 30 35 40 45 50

R
an

dI
 (

%
)

Simulation rounds

sythetic data
SEQUOIA

(b) RandI for N = 1024

Fig. 20. Evaluation of GDCluster for density-based clustering

approaches limit nodes to finding the same number of clusters.

8 CONCLUSIONS

In this paper we first identified the necessity of an effective and

efficient distributed clustering algorithm. Dynamic nature of data

demands a continuously running algorithm which can update

the clustering model efficiently, and at a reasonable pace. We

introduced GDCluster, a general fully decentralized clustering

algorithm, and instantiated it for partition-based and density-based

clustering methods. The proposed algorithm enabled nodes to

gradually build a summarized view on the global data set, and

execute weighted clustering algorithms to build the clustering

models. Adaptability to dynamics of the data set was made

possible by introducing an age factor which assisted in detecting

data set changes updating the clustering model. Our experimental

evaluation and comparison showed that the algorithm allows

effective clustering with efficient transmission costs, while being

scalable and efficient.

GDCluster can be customized for other clustering types, such

as hierarchical or grid-based clustering. To accomplish this, repre-

sentatives can be organized into a hierarchy, or carry statistics of

approximate grid cells. Further discussion of these algorithms is

deferred to future work.

REFERENCES

[1] K. M. Hammouda and M. S. Kamel, “Models of distributed data cluster-
ing in peer-to-peer environments,” Knowledge and Information Systems,
pp. 1–27, 2012.

[2] E. Januzaj, H.-P. Kriegel, and M. Pfeifle, “Scalable Density-Based
Distributed Clustering,” in 8th European Conference on Principles and

Practice of Knowledge Discovery in Databases. Berlin: Springer-Verlag,
2004, pp. 231–244.

[3] S. Lodi, G. Moro, and C. Sartori, “Distributed Data Clustering in Multi-
Dimensional Peer-to-Peer Networks,” in 21st Australasian Conference

on Database Technologies, vol. 104, 2010, pp. 171–178.
[4] S. Datta, C. R. Giannella, and H. Kargupta, “Approximate distributed

k-means clustering over a peer-to-peer network,” IEEE Transactions on

Knowledge and Data Engineering, vol. 21, no. 10, pp. 1372–1388, 2009.
[5] A. Elgohary and M. A. Ismail, “Efficient data clustering over peer-to-

peer networks,” in 11th International Conference on Intelligent Systems

Design and Applications (ISDA). IEEE, 2011, pp. 208–212.
[6] G. Di Fatta, F. Blasa, S. Cafiero, and G. Fortino, “Epidemic k-means

clustering,” in International Conference on Data Mining Workshops

(ICDMW). IEEE, 2011, pp. 151–158.
[7] J. Fellus, D. Picard, and P.-H. Gosselin, “Decentralized k-means using

randomized gossip protocols for clustering large datasets,” in Data

Mining Workshops (ICDMW). IEEE, 2013, pp. 599–606.
[8] D. Kempe, a. Dobra, and J. Gehrke, “Gossip-based computation of

aggregate information,” 44th Symposium on Foundations of Computer

Science, pp. 482–491, 2003.
[9] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van

Steen, “Gossip-based Peer Sampling,” ACM Transactions on Computer

Systems, vol. 25, no. 3, Aug. 2007.
[10] A. M. Frieze and G. R. Grimmett, “The shortest-path problem for graphs

with random arc-lengths,” Discrete Applied Mathematics, vol. 10, no. 1,
pp. 57–77, 1985.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2391123

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

13

[11] D. Mosk-Aoyama and D. Shah, “Computing separable functions via
gossip,” in 25th ACM symposium on Principles of distributed computing.
ACM, 2006, pp. 113–122.

[12] J. MacQueen, “Some methods for classification and analysis of multi-
variate observations,” in Proceedings of the fifth Berkeley symposium on

mathematical statistics and probability, vol. 1, no. 14. California, USA,
1967, pp. 281–297.

[13] M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm
for discovering clusters in large spatial databases with noise,” in 2nd

International Conference Knowledge Discovery and Data Mining. New
York, NY: ACM Press, 1996, pp. 226–231.

[14] H. Mashayekhi, J. Habibi, S. Voulgaris, and M. van Steen, “Goscan:
Decentralized scalable data clustering,” Computing, vol. 95, no. 9, pp.
759–784, 2013.

[15] L. Lovász and M. Plummer, “Matching theory, vol. 367,” 2009.
[16] W. Xu, X. Liu, and Y. Gong, “Document clustering based on non-

negative matrix factorization,” in 26th International ACM SIGIR con-

ference. ACM, 2003, pp. 267–273.
[17] L. Hubert and P. Arabie, “Comparing partitions,” Journal of classifica-

tion, vol. 2, no. 1, pp. 193–218, 1985.
[18] I. S. Dhillon and D. S. Modha, “A Data-Clustering Algorithm on Dis-

tributed Memory Multiprocessors,” in Large-Scale Parallel Data Mining,
ser. Lecture Notes in Computer Science, vol. 1759. Berlin: Springer-
Verlag, 2000, pp. 245–260.

[19] K. M. Hammouda and M. S. Kamel, “Hierarchically Distributed Peer-to-
Peer Document Clustering and Cluster Summarization,” IEEE Transac-

tions on Knowledge and Data Engineering, vol. 21, pp. 681–698, May
2009.

[20] Y. Pei and O. Zaı̈ane, “A synthetic data generator for clustering and out-
lier analysis,” Department of Computing science, University of Alberta,

edmonton, AB, Canada, 2006.
[21] M. Stonebraker, J. Frew, K. Gardels, and J. Meredith, “The sequoia 2000

storage benchmark,” in ACM SIGMOD Record, vol. 22, no. 2. ACM,
1993, pp. 2–11.

[22] N. Visalakshi and K. Thangavel, “Distributed Data Clustering: A
Comparative Analysis,” in Foundations of Computational Intelligence,
A. Abraham, A.-E. Hassanien, A. de Leon F. de Carvalho, and V. Snasel,
Eds. Berlin: Springer-Verlag, 2009, vol. 206, pp. 371–397.

[23] N. F. Samatova, G. Ostrouchov, A. Geist, and A. V. Melechko, “RA-
CHET: An Efficient Cover-Based Merging of Clustering Hierarchies
from Distributed Datasets,” Distributed Parallel Databases, vol. 11, pp.
157–180, Mar. 2002.

[24] M. Eisenhardt, W. Muller, and A. Henrich, “Classifying Documents by
Distributed P2P Clustering,” in Informatik, Sep. 2003, pp. 286–291.

[25] R. Wolff, K. Bhaduri, and H. Kargupta, “A generic local algorithm for
mining data streams in large distributed systems,” IEEE Transactions on

Knowledge and Data Engineering, vol. 21, no. 4, pp. 465–478, 2009.
[26] D. K. Tasoulis and M. N. Vrahatis, “Unsupervised distributed clustering,”

in Parallel and Distributed Computing and Networks, 2004, pp. 347–351.
[27] H.-P. Kriegel, P. Kunath, M. Pfeifle, and M. Renz, “Approximated clus-

tering of distributed high-dimensional data,” in Advances in Knowledge

Discovery and Data Mining. Springer, 2005, pp. 432–441.
[28] L. M. Aouad, N.-A. Le-Khac, and T. M. Kechadi, “Lightweight Clus-

tering Technique for Distributed Data Mining Applications,” in 7th

International Conference on Data Mining. Berlin: Springer-Verlag,
2007, pp. 120–134.

[29] S. Merugu and J. Ghosh, “A privacy-sensitive approach to distributed
clustering,” Pattern Recognition Letters, vol. 26, no. 4, pp. 399–410,
2005.

[30] A. Elgohary, “Scalable embeddings for kernel clustering on mapreduce,”
M.Sc. Thesis, University of Waterloo, 2014.

[31] I. Eyal, I. Keidar, and R. Rom, “Distributed data clustering in sensor
networks,” Distributed Computing, vol. 24, no. 5, pp. 207–222, 2011.

[32] G. Di Fatta, F. Blasa, S. Cafiero, and G. Fortino, “Fault tolerant de-
centralised k-means clustering for asynchronous large-scale networks,”
Journal of Parallel and Distributed Computing, vol. 73, no. 3, pp. 317–
329, 2013.

[33] P. Shen and C. Li, “Distributed information theoretic clustering,” SIGNAL

PROCESSING, IEEE Transactions on, vol. 62, no. 13, pp. 3442–3453,
2014.

Hoda Mashayekhi is an assistant professor at
the Department of Computer Engineering of the
Shahrood university. She received her Ph.D.
from Sharif University of Technology in 2013.
Her research interests include parallel and dis-
tributed computing, data mining, decision mak-
ing, peer-to-peer (P2P) networks and semantic
structures.

Jafar Habibi is a faculty member at the com-
puter engineering department at Sharif Univer-
sity of Technology and the managing director
of Electronic Computing Machines Services. He
is supervisor of Sharif’s Robo-Cup Simulation
Group. His research interests are mainly in the
areas of computer engineering, simulation sys-
tems, MIS, DSS and evaluation of computer sys-
tems performance.

Tania Khalafbeigi is a PhD student in deprart-
ment of Geomatic engineering at University of
Calgary. She received her BSc and MSc in com-
puter engineering from Sharif University of Tech-
nology and her major was software systems. Her
research focuses on big data analytics in Inter-
net of Things. She also worked on distributed
data mining and P2P clustering during her MSc
studies.

Spyros Voulgaris is an assistant professor at
the Department of Computer Science of the
VU University in Amsterdam. His main research
interests include Large-Scale Distributed Sys-
tems, Peer-to-Peer Algorithms, Mobile Ad-Hoc
Networks, Sensor Networks, Self-Organization
and Epidemic Algorithms. Prior to his current
position, Spyros Voulgaris served as a senior
researcher at ETH Zurich, from 2006 to 2008.

Maarten van Steen is full professor in the Com-
puter Systems Group, Vrije Universiteit Ams-
terdam. He teaches modules and courses cov-
ering distributed systems, computer networks,
operating systems, and complex networks to
academics and professionals. He has coau-
thored two textbooks on networked computer
systems. His research is focused on large-
scale distributed systems with a strong empha-
sis on adaptive techniques that support auto-
matic replication, management, and organiza-

tion of wired and wireless systems.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TKDE.2015.2391123

Copyright (c) 2015 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

