Using Performance Forecasting
to Accelerate Elasticity

Paulo Moura! ®9 | Fabio Kon', Spyros Voulgaris?, and Maarten van Steen®

! University of Sao Paulo, Sao Paulo, Brazil
{pbmoura,kon}@ime.usp.br
2 VU University Amsterdam, Amsterdam, The Netherlands
spyros.voulgaris@vu.nl
3 University of Twente, Enschede, The Netherlands
m.r.vansteen@utwente.nl

Abstract. Cloud computing facilitates dynamic resource provisioning.
The automation of resource management, known as elasticity, has been
subject to much research. In this context, monitoring of a running service
plays a crucial role, and adjustments are made when certain thresholds
are crossed. On such occasions, it is common practice to simply add
or remove resources. In this paper we investigate how we can predict
the performance of a service to dynamically adjust allocated resources
based on predictions. In other words, instead of “repairing” because a
threshold has been crossed, we attempt to stay ahead and allocate an
optimized amount of resources in advance. To do so, we need to have
accurate predictive models that are based on workloads. We present our
approach, based on the Universal Scalability Law, and discuss initial
experiments.

Keywords: Cloud computing - Elasticity + Performance prediction -
Scalability modeling

1 Introduction

In this paper we address the following question: given the initial behavior of a
service running in the cloud, can we forecast its required peak performance in
order to preallocate enough resources so that it can meet those demands? This
question is important when incrementally adjusting the allocation of resources
to a cloud service does not suffice, or is simply too expensive.

In many cases, elasticity in the cloud is obtained by closely monitoring the
current behavior of a service, and when certain thresholds are passed, adjust-
ments are made. For example, a virtual machine is added or removed, the number
of CPUs is changed, or the amount of memory is adjusted. However, monitor-
ing a service and making adjustments comes at a price. For example, adding
or removing a virtual machine may incur significant costs for transferring data
between machines. For this reason, not only should we consider which thresholds
to use for triggering an adjustment, but also the moments at which we are willing

© Springer International Publishing Switzerland 2015
F. Pop and M. Potop-Butucaru (Eds.): ARMS-CC 2015, LNCS 9438, pp. 17-31, 2015.
DOI: 10.1007/978-3-319-28448-4_2



18 P. Moura et al.

to make the costs for adjustments. Roughly speaking, when we accept changes
after small time intervals, we can expect higher aggregated adjustment costs
compared to the case in which changes are instantiated only after a significant
time has elapsed. The downside of the latter is obviously a waste of resources,
or a degradation in the quality of service when not enough resources have been
allocated to sustain current demand.

Ideally, we would know exactly in advance what is going to be demanded
from a service so that we can precalculate the required resources to meet those
demands, but also take into account the costs of changing the allocation of
resources. Under those circumstances, we could then devise a change scheme
in which the trade-off between resource usage, costs of change, and attained
performance can be balanced. As a step toward this ideal situation, we ignore
fine-grained adjustments and focus on allocating enough resources to meet peak-
performance demands.

Our approach requires an adequate predictive model by which we can com-
pute the expected peak performance. In this paper, we discuss our experiences
with one such model, the Universal Scalability Law (USL), developed by Neil
Guanther [13,14]. In particular, we adopt his model and combine it with curve-
fitting techniques taking only early performance samples from a running service.
Fitting a curve to a USL model allows us to predict peak demands, and thus
what is needed in terms of resources to ensure those demands can be met. As
we report, USL has important limitations when applying it to cloud services. As
it turns out, applications need to fit the USL framework rather strictly to use
that framework for predicting resource usage. Nevertheless, when there is a fit,
results are promising.

The paper is organized as follows. After briefly discussing related work, we
move on to delving into some of the details that motivate our work, in Sect. 3. Our
approach is discussed in detail in Sect. 4. We have run a number of experiments
in the form of emulations and report our findings in Sect. 5, furthering discussion
in Sect. 6, to conclude in Sect. 7.

2 Related Work

Support for elasticity is one of the key benefits offered by cloud computing.
Cloud providers usually offer an API by which users can programmatically
request resource allocation and deallocation on demand. Some also provide auto-
mated resource provisioning through an auto-scaling interface (e.g., Amazon
Auto-Scaling!) where users can define rules, based on performance metrics, to
automatically add or release resources. Alternatively, there are third-party tools
for resource management automation, such as RightScale?.

Along these lines, Chapman et al. [4] examine key requirements for service
definition and propose a language to manage elasticity, defining a standard to

! https://aws.amazon.com/autoscaling/.
2 http://www.rightscale.com /solutions /problems-we-solve/cloud-availability.


https://aws.amazon.com/autoscaling/
http://www.rightscale.com/solutions/problems-we-solve/cloud-availability

Using Performance Forecasting to Accelerate Elasticity 19

support the federation and interoperability of computational clouds. This lan-
guage can be used to describe service requirements and to provide rules on how
to respond to performance and workload variation.

Other research focuses on identifying when and where to add or remove
machines from a cloud system, applying feedback control. Aljohani et al. [1]
propose a solution based on queuing theory. Its distinctive feature is that it
considers that requests queue up in the application servers rather than in the
load balancer. The model assumes a first-come-first-served policy and sets two
thresholds to trigger the actions of scaling based on queue sizes.

Lim et al. [22] worked on proportional thresholds, that adapt based on cluster
size to improve resource management. Dejun et al. [7,8] propose a method in
which only the front-end should receive a service-level objective. Every service
is modeled as a queue, and resource provisioning or deprovisioning is performed
after negotiation has taken place to identify which service it should be applied to.

Harbaoui and colleagues [16,17,25] propose to split the system up in a set of
black-boxes, and to experiment with them to identify the appropriate queueing
model predicting their performance. They, subsequently, compose a queueing
network that identifies when a bottleneck appears and, in a decision process,
chooses the best system configuration.

Elasticity acceleration was proposed based on historical evaluation. Gong et
al. [10] use signal processing techniques to find patterns in workload and resource
usage to speed up allocation of resources. When no pattern is identified by the
signal processor, a discrete-time Markov chain takes place.

Vasi¢ et al. [31] experimented with numerous off-the-shelf machine-learning
techniques, reporting good results with Bayesian models and decision trees.
These approaches rely on a feedback control loop to provide elasticity. In an
initial phase, elasticity is based only on feedback control during data collec-
tion to build the model. Also, the model cannot predict resource demands for
not-yet-observed load levels.

3 Motivation

Taking educated decisions on the amount of resources to allocate to running
systems is essential to their uninterrupted high-performance operation. There are
two main classes of models for achieving that. This section discusses these two
classes, and motivates our proposed methodology on addressing cloud elasticity
and scalability.

3.1 Elasticity

Elasticity is obtained by means of a control component that constantly monitors
the running system. Measurements are compared with the values or ranges as
specified in elasticity rules. Whenever a threshold is surpassed, an action is
triggered to update the system’s configuration. When performance is low or
utilization is high, more resources are added into the system, and when utilization



20 P. Moura et al.

is low, resources are released. A common characteristic of most existing proposals
is that every time an action is performed to update a configuration, a predefined
number of resources (frequently only one) is added (or released).

Following the common approach, when there is a substantial increment in
the workload, the system may need to go through a sequence of measure-trigger-
update cycles. The time needed to properly configure the system will be longer
and, in the meantime, performance may degrade. Conversely, knowing before-
hand how many resources a given workload requires, all resources can be allo-
cated in a single action, speeding up the procedure and maintaining the quality
of service in a good level. In other words, it may be better to prepare for future
situations than repairing for the present.

However, to do so, a predictive model should be devised to infer the relation
between workload and resource demand. Next, we elaborate on how these models
are conceived.

3.2 Scalability Modeling and Evaluation

There are two prominent classes of models for system performance and scala-
bility. Analytical models [3], based on queuing theory and stochastic processes,
are usually applied in early development stages based on architectural speci-
fications. They can be used to obtain performance and scalability predictions
that can guide architectural refinements. Queues have parameters to specify the
distribution and frequency of arriving requests, distribution and mean execu-
tion time, and system capacities in terms of waiting queue length and parallel
processing. A model can be composed of a set of interconnected queues. The
model itself can also be refined as system development advances, notably when
more information is available to set queue parameters.

While analytical models require knowledge about system internals, curve-
fitting models rely only on external observations of system behavior. Such obser-
vations are obtained by measuring metrics of interest. However, curve-fitting
models require a running system in order to be able to measure what is going
on. A dataset of workload and performance metrics is analyzed by means of
statistical inference to obtain a function that relates the selected metrics.

Models are traditionally used for capacity planning [23], but they are now
also being applied at runtime to automate resource management, providing elas-
ticity [8,16,30].

The precision of analytical models is limited by their inherent degree of
abstraction, while precision of curve fitting is limited by variability of measure-
ments. Precision and applicability of curve-fitting models may also be affected
by underlying assumptions. For example, there are approaches that rely on seg-
menting a curve. This segmentation can be done by using adaptive splines [6, 15]
or by splitting the model in two or more functions when different patterns are
identified [2,7]. This approach limits the model to the data space covered by the
measurements. Other approaches make assumptions about system characteristics
and how they affect performance [14,27,28]. The model has a particular shape



Using Performance Forecasting to Accelerate Elasticity 21

and predictions beyond measured values are possible, as long as the model’s
assumptions continue to hold.

Our research relies on curve-fitting models. Thus, we are also concerned about
obtaining data for modeling, notably in light of the fact that automation of gath-
ering data points can be complex and time consuming. Curve-fitting comprises
deploying the system, generating requests, collecting data about workload and per-
formance, repeating those steps a number of times with different architectural con-
figurations and request patterns, and subsequently analyzing performance output.

There are tools and frameworks to deal with this task [5,20,26,29]. The
caveat is that they are limited regarding automated analyses. Some simply store
data, letting the analysis completely to the user [26]. Others offer a limited
support by automating metric calculation [5] or plotting charts [20]. Yet in these
cases, interpretation of the output is still left to the user.

We aim to automate fast scaling by applying a scalability model, as well as
automate the modeling, as detailed in next section.

4 Proposal

As a first step we are working on a software framework to automate scalability
evaluation of distributed systems [24]. The intent is to provide a tool to sim-
plify definition and execution of scalability experiments. It includes software-
extensible templates (such as abstract classes) to define how to communicate
with the system under evaluation, how to change the workload at different steps,
how to scale the system at different steps, and how to analyze the produced per-
formance data. A set of implementations for these templates are being developed
to simplify setting up experiments, but users are able to provide their own imple-
mentation that fit their needs as well.

We address the provisioning of meaningful and self-contained automated
analysis. Common metrics proposed for scalability evaluation assume linear scal-
ing [5,9,11,18,21], yet many use arbitrary thresholds for qualifying a system to
be scalable [19]. Our aim is to provide components to perform automated analysis
to verify whether system performance remains the same when resource alloca-
tion changes in response to variatons in the workload [24]. Our basis is deriving a
model that captures the relation between workload and resource demand. Deriv-
ing such a model is at the core of this paper.

Considering that a system is composed of a collection of communicating
services, each service should have a performance level objective. For front-end
services, this objective could be defined according to organizational needs, agree-
ment with clients, or other indicators. Internal services should have their perfor-
mance goal established in a way that front-end service objectives can be met. All
objectives must consider the capacities of a service. With objectives defined, one
must identify the maximum workload that the system is able to support under
a specific allocation of resources, and how to scale the system by changing the
allocation of resources when the workload varies.

When doing experiments to evaluate and model the scalability of a given
service, it is necessary that the services it communicates with reply according to



22 P. Moura et al.

their performance objectives. In some cases, remote mock-up objects, emulating
such services [12], could be used to simplify experiment set-up.

We selected the Universal Scalability Law (USL) [13,14] as a starting point
to provide a predictive scalability model. USL predicts a performance peak after
which system performance is assumed to degrade. Since the USL model assumes
no architectural restrictions, it should, in principle, be applicable to either multi-
core, multi-processors, or distributed systems. The only constraint is that the
architecture must be uniform, that is, homogeneous in its components.

USL assumes that performance can be improved via parallel processing, with
the usual limitations. One such limitation is the assumption that certain parts
of an execution are necessarily sequential. In particular, an execution is assumed
to interchange between parallel task processing and sequential processing. The
sequential portion is typically concerned with managing multiple processes, split-
ting data for parallel handling, or merging parallel execution outcomes. A sequen-
tial portion incurs contention delays. Figure 1l shows how contention limits
speedup obtained from parallelism. If there is no contention, changing a system
architecture from one to four processes brings down execution time to one quar-
ter. With contention, the reduction in execution time is less. Also, contention
limits how much the system can be sped up through parallel processing because
it does not improve the execution time of sequential portions.

. Parallelization, Parallelization,
Time without contention with contention

Before After Before After

Fig. 1. The effect of contention delays on speedup.

Next to contention, we need to deal with data exchange between parallel exe-
cuting tasks, referred to as coherency. Coherency delays are caused by the need
to bring shared data into a consistent state. These delays happen at different
levels, from CPU caches to remote storages. When processes need to write to a
shared resource — be it a variable in local memory or a file on a remote disk — there
is extra time needed to ensure data consistency. Coherency increases the execu-
tion time of each parallel process, as depicted in Fig.2. The higher the degree
of parallelism, more processes each process must synchronize with. Coherency
grows quadratically with the number of parallel processes. At a certain point,
this penalty will cause the total execution time to grow. From that point on,
increasing parallelism degrades performance, instead of improving it.



Using Performance Forecasting to Accelerate Elasticity 23

Single

Amworker I Coherency fraction

Time [ Per-worker compute time

4 Workers
8 Workers

Increased parallelism
Increased coherency fraction

Fig. 2. The effect of coherency delays on speedup.

According to the USL model, the relation between performance and paral-
lelism is ruled by the following formula:

p

o) = l+o(p—1)+pr(p—1)

where p is the number of parallel processes, o is the contention factor and & is
the coherency factor. C stands for capacity and is obtained by means of a nor-
malization, dividing the throughput reached with p processes by the throughput
with a single process. Contention and coherency are measured as the fraction
of the sequential execution time. A value of 0 means that there is no effect
on performance. A contention factor of 0.2, for instance, means that 20 % of
the sequential execution time cannot be parallelized. A coherency factor of 0.01
means that the time spent in the synchronization between each pair of processes
is 1% of the sequential execution time. The number of parallel processes that
provide maximum throughput is as follows:

1—0c

Pmaz =
K

The author claims that the USL model is also valid when the architecture is fixed
and the number of processors replaced by the number of concurrent users [14].

5 Experimental Evaluation

As we are mainly concerned at this point to validate the USL model for services
running in the cloud, a set of relatively simple experiments were conducted. In
particular, we are interested to see whether USL can be used for a predictive
modeling that would allow us to allocate enough resources to sustain a peak
workload.

We ran experiments on a large cluster of machines running CentOS 6, each
having two quad-core Intel E5620 CPUs running at 2.4 GHz, 24 GB of main
memory, and interconnected via Gigabit Ethernet and InfiniBand interfaces.



24 P. Moura et al.

5.1 Setup

For this first phase of evaluations, we are working with simple setups imple-
mented in C to simulate workload execution. The execution is simulated by a
busy-wait loop implemented as the work function below:

Busy wait loop

void work(int units, int usage, int delay) {
int i, j;
for (i = 0; 1 < units; i++) {
for (j = 0; j < usage; j++)

usleep(delay);

The execution alternates between running an empty loop and sleeping. The
argument delay sets the duration of each sleep in microseconds. The parameter
usage sets how many iterations to run the empty loop, indirectly defining its
duration. The relation between both duration slots defines the CPU utilization
of the execution. The argument units is used to define the duration of the
execution, setting how many times to alternate between the busy-wait loop and
sleeping. A series of executions of work with different parameters were measured
to identify desired values to use in the setup.

The setup consists of three kinds of nodes. One Coordinator receives requests
to iterate over the busy-wait loop (i.e., the outer loop of work) a certain num-
ber of times. The workload is split among a set of Workers. Each Worker runs
the busy-wait loop to simulate workload execution and communicates with the
Synchronizer. The latter also runs a busy-wait loop per received request to sim-
ulate a synchronization time among the Workers and replies. Note that this
synchronization reflects the time, per worker, needed to bring shared data in a
consistent state, thus capturing a coherency delay. The Synchronizer receives an
initialization parameter specifying how many iterations to do as its busy wait.
Thereafter, the Workers reply to the Coordinator. The Coordinator has a para-
meter related to the degree of contention, that is the fraction of the workload
that is not split among the Workers, but executed by the Coordinator after
receiving output from all the Workers. This execution flow is depicted in Fig. 3.

The experiments are executed in a sequence of requests with an increasing
number of Workers to handle them. The other parameters are kept constant.
The execution time of each request is measured and throughput calculated as
workload/time, where workload is the number of times the loop was iterated. An
R script was written to estimate the model.

5.2 Single Request

The first experiments with this setup were executed with a single request being
sent at a time. Thus, the Coordinator and Workers run a single process each,
while the Synchronizer runs one process per Worker.



Using Performance Forecasting to Accelerate Elasticity 25

Coordinator

ontention split wl

Worker

call workers

process
Synchronizer

—coherency > Process

call synchr.

+7 ] reply

Fig. 3. Setup execution flow.

In most experiments, using the first six measurements were enough to obtain
good models, which estimate performance close to measurements and correctly
predict the peak. In those cases, performance peak was between 10 and 28 Work-
ers. Figure 4 is an example of the performance and model of an experiment with
a workload of 10,000 iterations, with a contention fraction of 20 % and coherency
of 0.3 %. The vertical line shows the last measurement used to fit the model. Peak
performance occurs with 16 Workers.

In an experiment with lower impact of contention (10%) and coherency
(0.05%), with performance peak at 43 Workers, the first eight measurements
were required for a better model. In all cases, the estimated model parameters
were very close to the setup parameters.

5.3 Simultaneous Requests

Following the single request experiments, we executed a series of experiments
with simultaneous requests being sent to the setup. In this case, the Coordinator
and Workers run simultaneous parallel processes - one per request.
Performance degrades with the number of simultaneous requests even when
there are enough resources to properly execute the workload. Figure 5 shows the
performance curves of execution with one, three, and five simultaneous requests,
with the same parameters of the experiment shown in Fig.4. It is still possible
to get good curve fitting, but more data must be used. As seen in Fig.6, for
an experiment with five simultaneous requests, a workload of 30,000 iterations
per request, a contention fraction of 10% and a coherency of 0.1%, a good
fitting was achieved with 14 measurements. Discarding the performance with 23
Workers, when connection errors occurred, the peak performance was with 28



26 P. Moura et al.

o |
e
0
o (o) 0 0 0 o ° 0 o
o |
é’ [e0]
g © |
% 3V
(6]
o |
N
|
T o measured
o | — estimated
Al T T T T T T I
0 5 10 15 20 25 30

nodes

Fig. 4. Capacity variation with a single request and related model.

Workers. We also can see how an estimate with the first 6 points deviates from
measurements.

We also observed that with the increase in the load on the Synchronizer,
when it saturates, the degradation is faster than what the model predicts. It
happened because time spent simulating each synchronization was affected by
the time processes were put in wait for a processor. This is a limitation of this
setup, which was implemented in this way for simplification and is not necessarily
how synchronization would happen in practice. But it also reaffirms that the time
spent with synchronization by each process must be linear with the number of
processes, according to the model.

6 Discussion

Results observed so far show that the USL is accurate under certain conditions
and a deeper investigation of its applicability for cloud services seems worth the
trouble. What is needed are more experiments exploring the different circum-
stances in which USL can, or should not be applied. The advantage of working
with the current setup (Sect. 5.1) is the flexibility to change behavior in terms of
request duration, CPU consumption, and the effects caused by parallelism and
data sharing. The experiments executed with single requests (Sect. 5.2) showing
very accurate predictions and the estimated model parameters being in accor-
dance with the experiment parameters show that the setup has the desired
behavior. An important follow up will be to run experiments in similar con-
ditions to those presented here, but adding variability to parameters. It would
lead to observations, for instance, if having simultaneous processes with different



Using Performance Forecasting to Accelerate Elasticity 27

0 _
™ o o
o 000 0 0 0 o0 o
Q R % x XX XXy OOOOOOoo
Q X XX x X 0%
Q x X
o X x X
e 2 ADLBLBLADNNNNAN A A
Q A A AAAAA
A
2 A
0 A
z o =
(&) A
S
®
T < | N
© i
0 R
-
o1
x 3
A A5
-
T T T T T T T
0 5 10 15 20 25 30

nodes

Fig. 5. Performance variation with one, three, and five simultaneous requests

~ -
. g
7 -
=
8
S < A
@
]
o
N
© measured
— estimated (14)
— - ---- estimated (6)
T T ‘ | | ‘ ‘
0 5 10 s - = ]
nodes

Fig. 6. Capacity variation with five simultaneous requests and the related model.



28 P. Moura et al.

durations or demanding different CPU load affect predictability. Furthermore,
experiments with real systems are eventually imperative.

Regarding the experiments so far executed with multiple simultaneous
requests, we observe that the performance curve changes with the level of par-
allelism, as seen in Fig. 5. Our setup is comparable to a batch system with the
number of iterations running being related to the batch size. The model would
be used to predict how many Workers should be employed in the execution
to obtain best performance. But it would provide correct estimates only if the
number of execution streams are the same as used in the original model. If the
model was inferred with a single request, it will fail to predict demands when
the system is processing three requests simultaneously, for instance. Thus, this
is practical only if we limit the system to process one request at a time. This is
not always possible, hence we need to investigate the deduction of a model that
is valid for an arbitrary level of parallelism.

The variation in node performance with load is due to internal contention.
For instance, a Worker opens a socket and gets into a loop where it is waiting
to accept an incoming connection. On receiving a connection it forks: the child
process reads the workload from the socket, runs the busy wait and terminates;
the main process loops back to accept a new connection. Thus, there is a serial-
ization in accepting connections. Since the Coordinator triggers the executions
in parallel, a contention happens on a Worker’s accept.

The effects of such internal contention (and coherency) can be evaluated
running experiments in a single machine. We executed experiments with two
variations of the described setup. In the first one, Coordinator and Synchro-
nizer were merged and the interprocess synchronization was implemented with
shared semaphores. In this case, the performance curve escaped from the pattern
imposed by the USL and observed in the experiments presented in Sect. 5. After-
wards, the semaphores were replaced by sockets, working as in the distributed
executions. In this case, the results are comparable to those presented in the pre-
vious section. We believe that the difference is due to different dynamics related
to shared memory access. But it is not clear how it would affect performance
predictability of real systems.

We also tried to observe the relation between the arrival rate and the perfor-
mance, executing experiments sending requests with a linearly increasing rate to
a setup running in one node. In this case, the performance curve did not obey
the USL. Roughly speaking, we observed an increasing throughput followed by
a degradation. But the observed curve begins as a straight line while the service
time is lower than the interrequest interval and starts bending when concur-
rency starts to occur. Also, the concurrency level grows faster at higher request
rates, making the performance curve more severe. In these cases, we were able to
obtain a reasonable fit using a subset of the measurements, but were unable to
predict the curve by just sampling at the beginning of an experiment. Hence, we
conclude that the arrival rate is not an adequate parameter to base the decisions
related to resource allocation. As the previously presented experiments suggest,
the model should be based on system load.



Using Performance Forecasting to Accelerate Elasticity 29

The model is supposed to be estimated before system deployment based on
load-testing measurements. The proposal is to find a model that can also predict
the demand of high loads but running experiments on lower load levels only. This
would reduce the costs of running the load tests because the resources demanded
for the tests are reduced.

The core of our proposal is to use a predictive model to anticipate the resource
demand of a given workload. There are other models with this characteristic that
could be applied as well. However, one distinguishing characteristic of the USL
is the capability to identify a limit in the scalability of systems. The existence of
such limit depends on the system structure. But even when they do exist, some
models cannot capture that, because they do not consider synchronization, as
the USL does with the coherency factor.

We have already made a relation between the setup here presented and batch
execution. For execution of batch systems, being aware of the scalability limit, it
is possible to deploy the system already with the proper resources to process the
workload as fast as possible. When there is no peak—because there is no shared
write—it is still possible to choose an adequate amount of resources balancing per-
formance and costs: the amount of resources defines throughput and cost, while
using the number of entries in the input batch, the execution time can be estimated.

For an interactive system, making a deployment with the limit capacity can
also guarantee best performance, but may not be the best approach in terms of
costs. Alternatively, as the number of concurrent clients dictates the throughput
a system must deliver, the model can be used at runtime to set the resources to
provide the necessary throughput for the current workload. The control system
must keep track of request arrivals and replies to account for how many requests
are being processed in the system at a given moment and use this information to
set an appropriate resource allocation scheme. This approach should cause only
low a overhead.

Ideally, the model should already correctly identify demands since the deploy-
ment. But it is also possible to consider a feedback loop in case of deviation from
model estimations. This deviation can be included into the dataset to update
the model. This procedure is also of low overhead, relying on a simple statistical
inference.

7 Conclusions

Cloud computing has been gaining increasing adherence with one of its major
appeals being the facility to auto-scale systems. Much research has been focusing
on providing elasticity by reacting to variations in performance and utilization.
In this research, we examine another approach, where resource management is
based on system load and a predictive model from which we can retrieve the
resource demand of a given workload.

We presented preliminary evaluations of the applicability of the Universal
Scalability Law to achieve this goal. We have observed that there are limitations
to the range of its applicability when we consider the level of precision we initially



30 P. Moura et al.

pursuit. However, when the model fits well, results concerning its predictive
abilities are encouraging.

Experimenting with variations in the setup for obtaining a deeper understand-
ing of situations where our proposal and USL can be applied is needed. Another
issue concerns the variability of virtual-machine performance in clouds [7]. Further
investigations on how the effect of virtual machines on predictability are needed.
Such investigations and experiments are planned for the near future.

Acknowledgements. Thisresearchissupported by CAPES - process BEX-1110-/14-4.

References

1. Aljohani, A., Holton, D., Awan, I.: Modeling and performance analysis of scalable
web servers deployed on the cloud. In: 2013 Eighth International Conference on
Broadband and Wireless Computing, Communication and Applications, pp. 238—
242, October 2013

2. Bacigalupo, D., Jarvis, S., He, L., Nudd, G.R.: An investigation into the application
of different performance prediction techniques to e-commerce applications. In: Pro-
ceedings of the 18th International Parallel and Distributed Processing Symposium
(IPDPS) (2004)

3. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-based performance
prediction in software development: a survey. IEEE Trans. Softw. Eng. 30(5), 295—
310 (2004)

4. Chapman, C., Emmerich, W., Marquez, F.: Elastic service management in compu-
tational clouds. In: CloudMan 2010, pp. 1-8 (2010)

5. Chen, Y., Sun, X.H.: STAS: a scalability testing and analysis system. In: IEEE
International Conference on Cluster Computing, pp. 1-10 (2006)

6. Courtois, M., Woodside, M.: Using regression splines for software performance
analysis. In: Proceedings of the Second International Workshop on Software and
Performance, WOSP 2000, pp. 105-114 (2000)

7. Dejun, J., Pierre, G., Chi, C.: Resource provisioning of web applications in hetero-
geneous clouds. In: USENIX Conference on Web Application Development (2011)

8. Dejun, J., Pierre, G., Chi, C.H.: Autonomous resource provisioning for multi-
service web applications. In: Proceedings of the 19th International Conference on
World Wide Web, WWW 2010. New York, USA (2010)

9. Gao, J., Pattabhiraman, P., Bai, X., Tsai, W.T.: SaaS performance and scalability
evaluation in clouds, December 2011

10. Gong, Z., Gu, X., Wilkes, J.: PRESS: PRedictive Elastic reSource Scaling for
cloud systems. In: Proceedings of the 2010 International Conference on Network
and Service Management, CNSM 2010, pp. 9-16 (2010)

11. Grama, A.Y., Gupta, A., Kumar, V.: Isoefficiency: measuring the scalability of
parallel algorithms and architectures. IEEE Parallel & Distrib. Technol. 1(3), 12—
21 (1993)

12. Guerra, E., Moura, P., Besson, F.; Rebouas, A., Kon, F.: Patterns for testing
distributed system interaction. In: Conference on Pattern Languages of Programs
(PLoP) (2014)

13. Gunther, N.: A simple capacity model of massively parallel transaction systems.
In: CMG-CONFERENCE (1993)



14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Using Performance Forecasting to Accelerate Elasticity 31

Gunther, N.: A General Theory of Computational Scalability Based on Rational
Functions, pp. 1-14 (2008). arXiv preprint arXiv:0808.1431

Happe, J., Westermann, D., Sachs, K., Kapova, L.: Statistical inference of software
performance models for parametric performance completions. In: Heineman, G. T,
Kofron, J., Plasil, F. (eds.) QoSA 2010. LNCS, vol. 6093, pp. 20-35. Springer,
Heidelberg (2010)

Harbaoui, A., Dillenseger, B., Vincent, J.M.: Performance characterization of black
boxes with self-controlled load injection for simulation-based sizing. In: French
Conference on Operating Systems (CFSE) (2008)

Harbaoui, A., Salmi, N., Dillenseger, B., Vincent, J.M.: Introducing queuing
network-based performance awareness in autonomic systems. In: Sixth Interna-
tional Conference on Autonomic and Autonomous Systems pp. 7-12, March 2010
Jogalekar, P., Woodside, M.: Evaluating the scalability of distributed systems. In:
Thirty-First Hawaii International Conference on System Sciences, vol. 7, pp. 524—
531 (1998)

Jogalekar, P., Woodside, M.: Evaluating the scalability of distributed systems.
IEEE Trans. Parallel Distrib. Syst. 11(6), 589-603 (2000)

Klems, M., Bermbach, D.;, Weinert, R.: A runtime quality measurement frame-
work for cloud database service systems. In: Proceedings of the 8th International
Conference on the Quality of Information and Communications Technology (2012)
Lee, J.Y., Lee, J.W., Cheun, D.W., Kim, S.D.: A quality model for evaluating
software-as-a-service in cloud computing (2009)

Lim, H., Babu, S., Chase, J., Parekh, S.: Automated control in cloud computing;:
challenges and opportunities. In: Proceedings of the 1st Workshop on Automated
Control for Datacenters and Clouds, pp. 13—-18 (2009)

Menascé, D.A.: Capacity planning: an essential tool for CAPACITY. IEEE IT
Prof. 4(4), 33-38 (2002)

Moura, P., Kon, F.: Automated scalability testing of software as a service. In: 8th
International Workshop on Automation of Software Test (AST), pp. 8-14, May
2013

Salmi, N., Dillenseger, B., Harbaoui, A., Vincent, J.M.: Model-based performance
anticipation in multi-tier autonomic systems : methodology and experiments. Int.
J. Adv. Netw. Serv. 3(3), 346-360 (2010)

Snellman, N., Ashraf, A., Porres, I.: Towards automatic performance and scalability
testing of rich internet applications in the cloud. In: 37th EUROMICRO Conference
on Software Engineering and Advanced Applications, pp. 161-169, August 2011
Srinivas, A., Janakiram, D.: A model for characterizing the scalability of distributed
systems. ACM SIGOPS Oper. Syst. Rev. 39(3), 64-71 (2005)

Sun, X.H., Chen, Y.: Reevaluating Amdahl’s law in the multicore era. J. Parallel
Distrib. Comput. 70(2), 183-188 (2010)

Tchana, A., Dillenseger, B., De Palma, N., Etchevers, X., Vincent, J.-M., Salmi, N.,
Harbaoui, A.: Self-scalable benchmarking as a service with automatic saturation
detection. In: Eyers, D., Schwan, K. (eds.) Middleware 2013. LNCS, vol. 8275, pp.
389-404. Springer, Heidelberg (2013)

Urgaonkar, B., Pacifici, G., Shenoy, P., Spreitzer, M., Tantawi, A.: An analytical
model for multi-tier internet services and its applications. ACM SIGMETRICS
Perform. Eval. Rev. 33(1), 291 (2005)

Vasié, N., Novakovi¢, D., Miucin, S., Kosti¢, D., Bianchini, R.: DejaVu: accelerat-
ing resource allocation in virtualized environments. In: Seventeenth International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS) (2012)


http://arxiv.org/abs/0808.1431

	Using Performance Forecasting to Accelerate Elasticity
	1 Introduction
	2 Related Work
	3 Motivation
	3.1 Elasticity
	3.2 Scalability Modeling and Evaluation

	4 Proposal
	5 Experimental Evaluation
	5.1 Setup
	5.2 Single Request
	5.3 Simultaneous Requests

	6 Discussion
	7 Conclusions
	References


