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Abstract—Cities represent large groups of people that share a 
common infrastructure, common social groups and/or common 
interests. With the development of new technologies current cities 
aim to become what is known as smart cities, in which all the 
small details of these large constructs are controlled to better 
improve the quality of life of its inhabitants. One of the important 
gears that powers a city is given by traffic, be it vehicular or 
pedestrian. As such traffic is closely related to all other activities 
that take place inside of a city. Understanding traffic is still a 
difficult process as we have to be able to not only measure it in 
the sense of how many people are using a particular path but also 
in analyzing where people are going and when, while still 
maintaining individual privacy. And all this has to be done at a 
scale that would cover most if not all individuals in a city. 

With the high increase in smartphones adoption we can 
reliably assume that a large part of the population in cities are 
carrying with them, at all times, at least one Wi-Fi enabled 
device. Because Wi-Fi devices are regularly transmitting signals 
we can rely on these devices to detect individual’s movements 
unobtrusively without identifying or tracking any particular 
individual. Special sensors that monitor Wi-Fi frequencies can be 
placed around a city to gather data that can later be used to 
identify patterns in the traffic flows. 

We present a set of filters that can be used to minimize the 
amount of data needed for processing and without negatively 
impacting the result or the information that can be extracted 
from this data. Part of the filters we present can be deployed at 
the sensor level, making the entire system more scalable, while a 
different part can be executed before data processing thus 
enabling real time information extraction and a broader 
temporal and spatial range for data analysis. Some of these filters 
are particular to Wi-Fi but some of them can be applied to any 
detection system. 
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I.  INTRODUCTION 
Smart cities form an important focus of current research. 

People are envisioning more and better ways in which 
technology and information can improve our everyday life. To 
do so, we need to understand that life. In a city, traffic 
constitutes one of its crucial elements. Understanding traffic 
flows may help us to improve city life. In this paper, we 
concentrate on measurements on flows of pedestrians. In 
particular, we are interested in automatic and unobtrusive 
measurements on how pedestrians move through a specific 
designated area. 

Tracking groups of people, understanding traffic flows, 
making sense of population densities, and so on, can be done in 

different ways. One solution takes advantage of the fact that 
many individuals carry smartphones or similar devices that are 
not only Wi-Fi enabled but also transmit Wi-Fi packets at 
regular intervals (for instance to search for new Wi-Fi 
hotspots). By deploying sensors that gather these packets we 
can gain more insight in pedestrian behavior. 

Let us consider each Wi-Fi packet received at a sensor as a 
data point that we can later analyze. The number of data points 
depends on the number of people that carry Wi-Fi devices (we 
believe it to be correlated with the total number of people), the 
amount of Wi-Fi traffic these devices produce (dependent on 
the owner’s usage of the device) and finally with the number of 
sensors that are deployed. Cities are large population centers 
with a high number of individuals, occupying large areas, 
requiring potentially tens to hundreds of sensors to cover the 
area of interest. As a consequence, the amount of data that we 
need to process can easily grow dramatically. Moreover, when 
having to deal with very large data sets, real-time analysis can 
become impossible, excluding many interesting applications, 
such as, for example, real-time crowd control by guiding 
people through less crowded areas. 

In these detection systems there are a number of sensors 
placed around an area of interest. The sensors gather all Wi-Fi 
packets, construct detections and forward this data to a 
centralized server. The server then processes the data and 
creates visualization, analysis and/or long term storage. This 
architecture is common over all similar systems we 
encountered in this type of projects. 

We can expect that the number of Wi-Fi devices will 
continue to grow, this is a clear trend given by the smartphone 
industry and by the increased interest in Internet of Things. We 
can also expect the number of sensors to grow. For instance 
whereas most projects still deal with few sensors (3-5) and 
small areas such as botanical gardens or beaches [1], public 
events such as concerts [2], campuses [3] grow to large scales 
of hundreds of sensors and billions of detections like in the 
case of [4] where the monitored area spreads over a large 
hospital complex. This trend will continue and reach 
metropolitan scales like is the case with other methods such as 
using Call Detail Records [5], where using Wi-Fi could give 
better resolution and accuracy in movement tracking. Reducing 
the size of sets of raw Wi-Fi device detections is essential. 

In this paper we present a number of filters and show how 
these filters can drastically reduce the size of Wi-Fi-based 



device detections. We show how these filters work, what their 
purpose is and what effect they have on data gathered at two 
deployments of these systems. Some of the filters can be 
deployed at sensor level, lowering the bandwidth usage to 
gather data from multiple sensors and permitting a better 
scalability with regards to the number of sensors. Others can be 
applied only on large sets of data but have a large impact on the 
size of the data set. With the reduced data size processing of 
this data can be executed at higher speeds, maybe even 
enabling real-time, large-scale processing. 

For some of the filters we present here we show not only 
their usefulness in reducing the data set but in cleaning noise 
out of it, improving its quality. 

II. RELATED WORK 
Understanding crowds and their movement has been an 

interesting research topic for some time. The benefits it can 
provide in transportation, simulations, and improving day-to-
day activities has kept it as a main focus for research. Popular 
methods for understanding crowds are using visual analysis of 
camera feeds. An example of such a system can be seen in [6]. 
A similar system that uses cameras to measure the number of 
people in an area and to model small crowds through merging 
and splitting events is [7]. These systems can work at different 
scales. Previously we gave examples of systems that work at 
the size of crowds, but there are also systems that treat 
individuals movements such as described in [8]. An overview 
of visual systems can be found in [9]. We mention that visual 
systems also require filters for their data like in the case of [10] 
where the crowd is filtered out to reveal object left behind such 
as bags or packets. 

The results of camera vision systems that track individuals 
can be used to detect human behavior. One solution for this 
uses models [11]. Extracting models of human behavior is one 
important output of crowd monitoring. These models have 
many uses in games and entertainment or medical and 
architectural aplications as stated in [12]. Many try to create 
better models like in the case of [13] or [14]. But without real-
life measurements these models still lack realism. In [15] 
models are created that manage to mimic real-life 
measurements and offer a more realistic results. However these 
models use the scale of the entire city, here the model makes 
the correct assumption that humans have favorite locations 
where they spend most time, like home or work. After the 
models are created and refined enough they can be used in all 
kind of simulations such as to better identify opportunistic 
network algorithms [16]. 

When scale is required, video streams are not a valid 
option. Because of this many projects are researching other 
methods of extracting movement data without the use of 
camera systems. One example [17] uses data from a device 
carried around by individuals that gathers Wi-Fi and GPS 
signals. This data gives insight in human mobility and features 
of a city such as Access Point popularity in different areas. 
However, when there is a need to gather data from even more 
people using a device or an application installed on individual’s 
phones is not acceptable. Because of this Wi-Fi systems have 
been built that manage to track humans without the need for 
them to be part of the system. Some works use patterns in 

signals on the Wi-Fi frequencies to identify individuals 
walking [18], groups [19] or even to count how many people 
are part of a group [20]. 

Different works focus on using Wi-Fi packet detectors, 
these are hotspots that act as sensors listening to packets in 
accordance to the 802.11(a/b/g/n) standard. Most Wi-Fi 
packets contain a MAC address permitting tracking of a device 
over multiple sensors. The advantage here is that most people 
already own a smartphone capable of communicating via Wi-Fi 
and they carry these devices with them most of the time. The 
disadvantage is that only people that have Wi-Fi enabled on 
their mobile device can be tracked. These systems have high 
popularity for indoor environments as can be seen in [21], [22] 
and [23] where not only localization is achieved but it is done 
with a high degree of accuracy, with errors less than 1 m. 
These systems can even be used to measure queues of people 
and their dynamics [24]. 

The systems that we are most interested in use Wi-Fi packet 
detection to measure movements over large areas (more than a 
few buildings). A good example is given by taking such 
measurements a botanical garden or a beach [1].  

In our research we noticed that the authors of such works, 
to improve quality of sensed data, often use data filters as at 
least one step in their processing of the data. In [2] devices that 
do not appear at multiple hotspots are filtered out because they 
cannot show movement information if added to the final data 
set. This is one of the filters we will present in more detail in 
this paper. Duplicate detections (detections at multiple hotspots 
at the same time) and static devices (Wi-Fi enabled printers) 
are filtered out in the work presented in [3] where the data is 
used to analyze movement inside a campus. Finally [4] filter 
out devices that are known to be part of the buildings 
infrastructure and staff; they also filter indoor detections from 
outdoor ones. 

The location of filters in the processing stream is discussed 
in detail in [25], where they show how distributing the 
computation of the filters can dramatically improve the 
processing time of applications. This is similar to our solution 
of filtering data as early as possible, in our case on the sensors 
that detect the Wi-Fi packets that we will describe in the next 
section.  

III. FILTERING AT THE SENSOR 
We deployed a small set of Wi-Fi packets sensors in the 

cities of Arnhem and Amstelveen (The Netherlands). These 
sensors are hotspots that monitor Wi-Fi and log all detected 
packets (meaning mostly Wi-Fi protocol headers; for security 
implications, we do not look inside the communication taking 
place). In our architecture, all logged packets are further sent to 
a centralized server, where further filtering discussed in the 
next section, and data processing algorithms are used (i.e., for 
tracking crowd mobility and crowd control applications). 

When trying to achieve scalability in our system our main 
concern was the bandwidth utilization between the hotspots 
and the central server that gathers the data. To minimize 
bandwidth usage and control to some degree the quality of 
sensed data, we implemented three filters that would minimize 
the amount of packets we consider to be detections. These 



filters also have a correctness role: for instance, we do not want 
to consider devices that are not mobile, like a laptop that is 
permanently in use and in range of one of our hotspots, or a 
different hotspot. 

• filter 1 - this filter accepts packets that have a 
transmitter MAC address and that MAC address is of a 
wireless device. Not all packets have a transmitter address and 
without one we cannot know who we assign the detection to; 
without it, we cannot track the device along multiple detections 
or multiple hotspots. We also mention that we are only 
interested in wireless devices, this is especially true in the case 
of data packets, and data packets have two bit fields named 
“from DS and to DS". These fields indicate if the packet is 
coming or going towards the wired distribution system. If the 
field "from DS" is set to 1 then the packet is coming from a 
device that is in a wired network with the access point used in 
the wireless communication. We are not interested in these 
wired devices and we filter them off. We believe that in other 
works [26] this filter might be missing and is causing the 
appearance of "Mystery OUIs". This filter is a correctness one, 
as it does however also make the entire system use less 
bandwidth and resources. The filter is also extremely fast: it 
only needs to check the type of the packet and in case it is a 
Data packet it needs to check the "from DS" field and this is all 
that is needed to make the decision if a packet passes the filter 
or not. 

• filter 2 and 0 - Filter 2, also a correctness filter, 
eliminates all packets that come from access points. It is 
important to have the filter because in our case studies we 
encountered packets that have "from DS" set to 0 and the 
packets themselves have an access point as a transmitter. We 
know it was an access point because we encountered "Beacon" 
packets with the same MAC Address. Filter 2 does need to 
have a list with all encountered access points and this list is 
generated by filter 0. Complementary, filter 0 makes a list with 
all the MAC addresses of the "Beacons" it received, these 
packets are only sent by the access point and have their address 
in them, filter 0 also eliminates all "Beacon" packets. We 
mention here that all packets that are eliminated by filter 0 
would have also been eliminated by filter 1 because we know 
"beacon" packets have no transmitter address different than the 
BSSID. The list of "Beacon" transmitter addresses saved by 
Filter 0 has a maximum size of 50. We chose 50 because we 
wanted it to be small and we do not expect that many sensors 
in range of one of our hotspots. 

• filter 3 - this is not a correctness filter but it does offer 
high efficiency gains. This filter is temporal as it filters all the 
packets that have the same transmitter address as a detection 
made in the last 3 seconds. The 3 second interval was chosen 
empirically. For instance in the work of [26] a 1-second 
interval is used as an aggregation point that has the same effect 
as our filter. The larger the time frame is, less packets will be 
detected and less data will be sent to the central server; 
however this comes with a loss in accuracy. Another part of 
this filter is focused on correctness and it filters all the devices 
that we have seen for more than a few hours, devices that we 
consider non-mobile. We chose the number of hours to be 5, 
but any reasonable amount can be used here. To be able to 
account for all detected devices this filter keeps a log with all 

the MAC addresses of the transmitter of all the packets that are 
considered detections. This log is kept in the form of a hash 
table with a statically allocated size. 

We found empirically that filters work best in 0, 1, 2, and 3 
ordering, this is also forced by some of the dependencies they 
have on each other. All the packets that pass all three filters are 
considered to be a detection. For these packets the transmitter’s 
MAC are sent to the centralized server. 

To evaluate our filters we used two distinct data sets. One 
data set is obtained on one of the hotspots inside a room of a 
student complex of VU University Amsterdam. The other data 
set is obtained in the city of Arnhem from the barXO hotspot. 
These two datasets are rather different, but they do have a 
similar number of total packets and size. We obtained the data 
sets by making a tcpdump on the hotspots that run for a few 
days. Because the two traces were run in different 
environments, particularities of these environments can be seen 
in the data. For instance the student-complex trace has a lots of 
data packets that are sent by only two devices. We also 
mention the channels: the student-complex data was gathered 
on a channel where only one active Wi-Fi network existed, 
while the Arnhem trace was run on a channel where no devices 
were actively communicating. The actual number of packets 
and size of the files as well as the dates on which the trace 
started can be seen in Table 1. 

Table 1 Dataset characteristics 

 Arnhem Student Complex 
# of packets 2414203 2906574 
MB 257 214 
Start Date 2014-07-07 2014-07-04 

 

To test our filters we used both data sets but we did not put 
any time constraint limitations. In both cases we left the 
software process the data as fast as possible. This means that 
we analyzed a few days of data in under 3 minutes, and this has 
some dramatic effects on the effectiveness of the 3rd filter. The 
3rd filter is however the only one affected by time, the others 
are independent.  

 
Fig. 1 Filter 1 

To have an accurate representation of how the filters 
functioned we stopped all the other filters and tested them 



independently. At the end all filters were operational and we 
tested them as a whole.The first filter eliminates all the packets 
that do not have a transmitter. As one can see in Fig. 1 in both 
scenarios the filters managed to reduce the number of packets 
from over 2.5 Million to about 0.5 Million. To validate the 
functionality, we also sampled the data and manually inspected 
the filtered packets, as well as the packets that passed; no false 
negatives were found in the process. The more effective the 
filter, the smaller the red bar would be in comparison to the 
blue one. This filter serves in first place a correctness function, 
as all the packets that do not have a transmitter cannot be used 
as a detection. However this is an extremely fast and powerful 
filter as it eliminates about 80% of the packets. 

 
Fig. 2 Filter 0 and 2 

The results for filters 2 and 0 can be seen in Fig. 2. The 
results vary so dramatically between the 2 scenarios because of 
the extremely large number of Beacon packets that dominate 
the Arnhem trace. Filter 2 is a correctness filter. This means 
that even though the number of packets filtered out by filter 2 
in comparison to filter 0 and filter 1 is just minimal, the filter 
itself should still exist to eliminate all possible detections of 
non-mobile devices, of access points. Fig. 2 shows how filter 2 
works best in an environment where a lot of data traffic is 
expected. For instance it might prove to be extremely useful in 
a residential area where people use Wi-Fi to stream movies or 
other high bandwidth usage content. However in an area with 
coffee shops where most people just check their e-mail or do 
small amount of browsing, the filter might not be so efficient. 

 
Fig. 3 Filter 3 

The final filter eliminates all packets that have transmitter 
MAC addresses that have been detected in the last 3 seconds. 
To be able to filter these packets, the filter needs to keep a log 
of all packets that have been registered as a detection. This 
filter is kept as a statically allocated hash table, with a 
maximum length. The size of the hash table directly affects the 
key calculation and the number of collisions it would have. 

To properly test the effectiveness of the third filter we 
compared the results on both data sets with varying maximum 
size of the hash table. We do this because we want to use the 
least amount of memory as possible while still having a 
maximally effective filter. The results are displayed in Fig. 3. 
Here we can see a similar trend for both traces. Because we 
processed a few days of data in under two minutes and there 
were not an extremely high number of unique devices in the 
trace, this filter was very effective, there were a lot of packets 
with the same transmitter address that were processed in under 
three seconds, forcing most of them to be filtered. 

 
Fig. 4 All Filters 

In Fig. 4 we compare all filters. Filter 0 to 3 are started one 
at a time (note here filter 2 cannot exist without filter 0). Then 
the last one is with all the filters started at the same time. Here 
we can easily see that the filters that make most of the 
difference are filter 1 and 3. Having all filters active minimizes 
the number of accepted packets even further, this happens 
mostly because packets that are accepted by filter 1 are not 
accepted by filter 3, the same is also true in reverse. This 
proves that all filters are important and that working together a 
very large number of packets are removed and only the most 
relevant ones are kept and sent to the central server. 

IV. FILTERING DATA AFTER CENTRALIZATION 
The form of the data set that we produce is: 

sensorid – deviceid – timestamp 

Here sensorid and deviceid identify the sensor (as a way to 
extract its physical location) and, correspondingly, the detected 
mobile device (usually in the form of an MD5 hash). We have 
found that this format is similar across most projects that gather 
this type of data. 

 Filtering duplicates. This filter eliminates all data 
duplicates. We consider duplicates any two data points that 
have all three values (sensorid, deviceid and timestamp) 



equal. Without making a comparison with our approach, 
we note that other works consider duplicates any two data 
points with the same deviceid and timestamp (allowing 
different sensorids). 

 Filtering by time. Usually only a part of the data set is of 
interest to data analysis or the data set needs to be 
processed in chunks that span over one day or one week. 
This filter eliminates all data points that have a timestamp 
that does not fit between two given values. 

 Filtering Apple products. As advertised in [27] Apple 
products randomize their MAC address when sending 
probe requests to identify new hotspots (These probe 
requests are the packets that we capture when the device is 
not connected to a network, and we expect this to be the 
general case). Because this address is randomized a device 
using this feature cannot be tracked over multiple sensors. 
Even worse, two different devices can send out the same 
MAC address making the data set noisier. 

 Filter devices detected at only one sensor. As we are 
interested in movements of crowds devices that do not 
move or that have only been detected once and never seen 
again bring no information about the behavior of crowds, 
they just create noise in the data. 

Table 2 Data set characteristics 

 Total 
number of 
detections 

Number 
of 

Sensors 

Days of 
Interest 

Arnhem 2472380 5 1 
Assen 11860349 27 3 

 

To test these filters we used two different data sets, one 
from the city of Arnhem that we produced using our own 
sensors and one from the city of Assen that was provided for 
us. 

 
Fig. 5 Centralized Filter Results 

In Table 2 we can see of the characteristics of the two data 
sets, we can observe how the two traces are very different in 
the number of detections and the number of hotspots that 
gathered these detections, the interest data also spans over 
different time frames. In Arnhem’s case we were interested in 
the Living Statues Festival and for the case of Assen the 

interest was a TT Festival, these 2 festivals each attracted about 
a hundred thousand visitors to these 2 very similar cities. 

By using the filters onto these two distinct data sets we 
obtained the results in Fig. 5. We can observe how the initial 
data set has been reduced and how applying all four filters 
reduces the data set even more. The Arnhem data set has been 
reduced to 10% of its original size and the Assen one to 44% of 
the original size. The large difference between the two is given 
by the number of data points outside the interest time, in the 
Assen data set there were a few extra hours of detection data 
while Arnhem data set had a few days of data. 

V. FUTURE WORK 
In showing how filters affect the size of the data set and the 

effectiveness they show we managed to prove the need for 
these filters in applications of these type and others. Other 
filters still need to be researched that could reduce the data set 
even further. 

After filters data aggregation techniques could further 
reduce the data set by merging several detections or 
movements into one. There is little research in how this data 
should be aggregated and what the limitations are as well as 
how effective such an aggregation would be in reducing the 
final data set. 

VI. CONCLUSIONS 
In this paper we discussed systems that use Wi-Fi packet 

detections to track crowds of people inside a city area. We 
showed through examples of other similar projects why we 
expect the number of detections in the resulting data sets would 
continue to grow and reach sizes that make processing difficult 
and could increase the execution time to levels where the result 
would be obtained too late. 

For these systems we proposed and explained several 
filtering methods and showed the effect they have on the data 
and the reduction they manage to achieve. Three filters work at 
sensor level while the others require knowledge of the entire 
data set or of the results of multiple sensors. We showed what 
effects these filters have on real life data obtained from several 
different sources and how effective they are in minimizing the 
data set. The filters we proposed are mostly targeted at 
detections obtained from Wi-Fi packet sensors, but some of 
them can be generalized to detection registering method. 

We managed to show the need for such filters in both 
making future similar projects a more acceptable challenge as 
well as opening the way into research of more possible filters. 
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