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Abstract—Publish/subscribe (pub/sub) is a popular
communication paradigm in the design of large-scale
distributed systems. A provider of a pub/sub service
(whether centralized, peer-assisted, or based on a fed-
erated organization of cooperatively managed servers)
commonly faces two fundamental challenges: server
provisioning and assignment of workload to a server.
In this paper, we provide the first formal treatment of

this subject to the best of our knowledge. Specifically,
we introduce a measure of subscriber satisfaction that
lends itself to a large class of pub/sub notification
services where (a) publication event message delivery
is best effort and (b) every notification is intended to
be read by a human user so that having a cumulative
delivery rate to a particular subscriber above certain
threshold will not bring any benefit. For example, most
applications where notifications are generated due to
social interaction fall into this class of pub/sub ser-
vices: following the tweets of selected users in Twitter,
monitoring updates to the profiles of user’s friends in
Facebook, or receiving instant notifications related to
favorite artists and albums in Spotify. We define two
distinct subscriber satisfaction metrics suitable for such
applications.
Then, we introduce a principal optimization problem:

given a server with a limited capacity, and a workload
consisting of (i) a set of topics each with its own
publication event rate, and (ii) a set of subscribers with
their interests, assign a subset of the workload to the
server so as to maximize the cumulative satisfaction
of the subscribers. We define two distinct flavors of
the problem: a “Budgeted Maximum Multiset Mul-
ticover” (B3M) and “Fractional Budgeted Maximum
Multiset Multicover” (F-B3M) using the two satisfac-
tion metrics, respectively. We prove that both flavors
are NP-Hard. We also show that while B3M does
not admit a Polynomial-Time Approximation Scheme
(PTAS) unless NP has randomized algorithms that run
in sub-exponential time, F-B3M has a polynomial time
approximation algorithm with a guaranteed constant
ratio of 1

2

(
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e

)
. Furthermore, we derive an upper

bound for the optimal solution of the problem.
We evaluate the proposed heuristics for B3M and F-

B3M using a large-scale real data set from the pub/sub
system of Spotify. We show that the heuristics provide

up to 0.9 approximation for F-B3M and 0.82 approxi-
mation for B3M for the given dataset, using the derived
upper bound on the optimal solution as the baseline.
Finally, we propose various optimizations to make the
heuristics more efficient and we show that the heuristics
can be computed within under 30 seconds in most of
the experiments.

I. Introduction
We are witnessing an increasingly widespread use of the

publish/subscribe (pub/sub) communication paradigm in
the design of large-scale distributed systems. Pub/sub is
regarded as a technology enabler for a loosely coupled form
of interaction among many publishing data sources and
many subscribing data sinks. Many applications report
benefits from using this form of interaction, such as online
delivery of notifications due to social interaction [21], ap-
plication integration [20], financial data dissemination [1],
RSS feed distribution and filtering [18], [19], and business
process management [17]. As a result, many industry stan-
dards have adopted pub/sub as part of their interfaces.
Examples of such standards include WS Notifications,
WS Eventing, the OMG’s Real-time Data Dissemination
Service, and the Active Message Queuing Protocol.

In this paper, we focus on the topic-based pub/sub
model. In a topic-based system, publication events are
associated with topics, and subscribers register their inter-
ests in receiving all events published to topics of interest.

While traditional pub/sub implementations are either
centralized or based on a federated organization of co-
operatively managed servers, an increasingly higher num-
ber of pub/sub applications are being deployed in P2P
environments [23]. In particular, the pub/sub service
at Spotify [21] is inherently suitable for a peer-assisted
implementation, in line with the reported peer-assisted
implementation of other Spotify services such as music
streaming [16]. In a peer-assisted implementation, a lim-
ited number of servers are providing a guaranteed high-
quality service to a subset of pub/sub subscribers while



the rest of subscribers are receiving notifications through
the peers, thereby getting a best-effort service that works
convincingly well in practice. The part of the workload
assigned to a server is dictated by maximizing server
utilization as well as the overall quality of service given
to the subscribers.

In addition to assigning load to a server, a provider of
a pub/sub service (whether centralized or peer-assisted)
faces another fundamental challenge: resource provision-
ing. How many clients can receive an improved service if
a new server is purchased? How does the capacity of the
new server affect this number of clients? How to strike
the balance between maximizing the quality of service and
the number of clients to which a higher quality service is
provided?

In this paper, we provide the first formal treatment of
this subject to the best of our knowledge. Specifically,
we introduce a measure of subscriber satisfaction that
lends itself to a large class of pub/sub notification services
where (a) publication event message delivery is best effort:
reliable delivery is desirable but it is not mandatory
to deliver all notifications and (b) every notification is
intended to be read by a human user so that having a
cumulative delivery rate to a particular subscriber above
certain threshold will not bring any benefit and may only
annoy the user. For example, most applications where
notifications are generated due to social interaction fall
into this class of pub/sub services: following the tweets
of selected users in Twitter, monitoring updates to the
profiles of user’s friends in Facebook, or receiving instant
notifications related to favorite artists and albums in
Spotify. According to the binary satisfaction metric, we
consider a subscriber satisfied in such applications if and
only if the user receives all notifications of interest up to
a configurable threshold delivery rate. We also provide
a fractional satisfaction metric: If a subscriber receives
fewer notifications than desired, the satisfaction of the
subscriber is defined as a fraction of the actual and desired
number of notifications.

Then, we introduce a principal optimization problem:
given a server with a limited capacity, and a workload
consisting of (i) a set of topics each with its own pub-
lication event rate, and (ii) a set of subscribers with
their interests, assign a subset of the workload to the
server so as to maximize the cumulative satisfaction of
the subscribers. We define two distinct flavors of the
problem: a “Budgeted Maximum Multiset Multi-
cover” (B3M) and “Fractional Budgeted Maximum
Multiset Multicover” (F-B3M) using the binary and
fractional satisfaction metrics, respectively. We prove that
both flavors are NP-Hard. We also show that while B3M
does not admit a Polynomial-Time Approximation Scheme
(PTAS) unless NP has randomized algorithms that run
in sub-exponential time, F-B3M has a polynomial-time
approximation algorithm with a guaranteed constant ratio
of 1
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. Furthermore, we derive an upper bound for

the optimal solution of each problem.
We evaluate the proposed heuristics for B3M and F-

B3M using a large-scale real data from the pub/sub system
of Spotify. We show that the heuristics provide up to
0.9 approximation for F-B3M and 0.82 approximation for
B3M for the given dataset, using the derived upper bound
on the optimal solution as the baseline. Finally, we propose
various optimizations to make the heuristics more efficient
and we show that the heuristics can be computed within
under 30 seconds in most of the experiments.

II. Model and Notations
In this paper we use well known topic-based pub/sub

model. However, our model considers a more practical case
where different topics have different publication rates and
different popularity in terms of number of subscribers. We
use the following notations:
T A collection of l topics {t1, t2, ..., tl} in the system.
V A collection of n subscribers {v1, v2, ..., vn} par-

ticipating in the pub/sub system. A subscriber
can subscribe to one or more topics from T . Sub-
scribers in a typical pub/sub system are generally
the end user applications (e.g. Spotify client soft-
ware). In the rest of the paper we use subscribers
and users interchangeably.

Tv The interest of subscriber v, that is, the collection
of of topics subscribed by v.

Int The collection of interests {Tv1 , Tv2 , ..., Tvn} for
all subscribers in V .

evt Event rate of the publications generated for a
topic t, that is, mean of events published to topic
t during a given period (e.g., per minute or per
hour). Without loss of generality we assume that
evt > 0. When we say ‘event’ in the rest of
the paper we mean a publication event message
generated by the back-end service for a topic
intented for all subscribers of the topic.

III. Motivating Application Scenario: Pub/Sub
at Spotify

At Spotify, the pub/sub system responsible for man-
aging subscriptions and delivering publication events is
implemented as a back-end service service running on
Spotify’s data centers. Details about Spotify’s pub/sub
system have been presented in [21]. In this paper, we
propose a methodology to select a fraction of the pub/sub
workload such that the fraction is within the capacity
of a back-end service with limited resources, while user
satisfaction is maximized. This approach can help system
managers to deal with the trade-off between deploying
additional hardware and satisfying more users. It can also
be used as a mechanism to drop or offload part of the
pub/sub workload to an external lower-cost system with
lower quality of service, such as a pool of lower-reliability
servers, or a set of computers belonging to end users
(peers) forming a peer-to-peer network. In this regard,



we propose adding a new component called Offloading
Decision Service (ODS) to the existing architecture.

The ODS is responsible for deciding what part of the
pub/sub load can be handled by the pub/sub back-end
service, given a capacity constraint on the resources avail-
able to that service, and what part should be offloaded to
an external system. The ODS should also take into account
that the characteristics of the workload can change over
time, so load-assignment decisions need to be revised
periodically. Therefore, an additional requirement on the
ODS is that is should employ light-weight algorithms that
can be executed relatively quickly.

In order to perform its work, the ODS divides the total
pub/sub load on a per-topic basis and then decides for each
topic whether the topic can be managed by the back-end
service without exceeding the capacity. In this context,
managing a topic means taking care of delivering the
corresponding topic events for all subscribers of that topic.
The rationale for this design decision is that we believe
that organizing the pub/sub load at this granularity level
greatly simplifies system design compared to an approach
based on dealing with each (topic, subscriber) subscription
pair individually, without seriously affecting the ability of
the system to offload the back-end service in a manner
that suits the applications for which it will be employed.

IV. Problem Definitions
The two QoS metrics mentioned in Section I prompt

problems which are similar in nature but, as we will show
later in Sections V and VI, they are very different in
hardness. In the first QoS metric, we are interested in
maximizing the number of subscribers receiving at least
τ (satisfaction threshold) events related to them from the
back-end service. A subscriber is considered satisfied if
and only if at least τ relevant events are received. This
definition of user satisfaction is suitable for applications
with events that are relatively infrequent but important for
the user. Spotify updates about favorite albums and artists
fall in this category. In this regard, we define a problem
coined Budgeted Maximum Multiset Multicover (B3M ) in
this section. In Section V we analyze the hardness of
B3M and propose a feasible heuristic.
Unlike the first QoS metric, in the second QoS metric ev-

ery event notification received up to a limit by a subscriber
is considered beneficial by itself. We quantify the amount
of benefit towards the satisfaction of a subscriber with a
fraction of events received by the subscriber relative to the
given satisfaction threshold of τ . The goal is to maximize
the total benefit achieved by selecting a sub-collection of
topics from a given collection of topics. This definition
suits better applications where events are frequent but of
relatively low importance. An example would be Spotify’s
updates about the activities of the friends of each given
user. In this regard we define the Fractional Budgeted
Maximum Multiset Multicover (F-B3M ) problem. In Sec-
tion VI we analyze the hardness of F-B3M and propose a

feasible heuristic that also gives a guarantee on the quality
of the output.

In both flavors of the problem we want to ensure that the
computational cost to serve those events by the back-end
service does not exceed a given limit on the computational
resources at the back-end service.

Before we define the problem more formally, we intro-
duce the following notations:
τ A system parameter that represents the satisfac-

tion threshold for a subscriber. It is defined as a
constant specifying the number of events to be
delivered to a subscriber by the back-end service
in order for the subscriber to be considered satis-
fied. The period over which the events are to be
delivered is the same as the time unit of evt. In
the rest of the paper when we say a subscriber
is covered x times we mean that a subscriber
is set to receive exactly x events related to the
subscriber from the back-end service in a given
period of time.

τv Subscriber-specific satisfaction threshold. In
practice, the total event rate of the topics
subscribed to by a subscriber is sometimes less
than τ . In such cases we need to serve all the
events the subscriber is interested in to meet
the satisfaction threshold. It is mathematically
expressed as follows: τv = min(τ,

∑
t∈Tv evt).

Vt Vt ⊆ V is a non-empty set of subscribers to topic
t. Given Int, Vt can be derived trivially.

cost(t)Represents the non-zero cost of serving a topic
t by the back-end service. We say that the cost
of a topic is normalized if it costs 1 per event
sent by the server related to the topic and hence,
normalized cost is defined as cost(t) = evt · |Vt|.

C Capacity of the back-end service. A constant to
quantitatively represent the amount of resources
available to the back-end service. C has same unit
as cost.

S Solution (S ⊆ T ). It is a set of topics that can be
served by the back-end service with a cost that
does not exceed a given computational resource
constraint expressed by the constant C.

σ(S) Represents the sum of the satisfaction for all the
subscribers, given a potential solution S. We want
to maximize this function.

A. The problem of Budgeted Maximum Multiset Mul-
ticover (B3M):

Given an instance of T , V and their interests Int, the
goal of the B3M (T, V, ev, cost, Int, τ, C) problem is to find
S ⊆ T so as to maximize the objective function defined
below:

Maximize σ(S) =
∑
v∈V

f(v), Subject to:
∑
t∈S

cost(t) ≤ C

(1)



f(v) is a function that indicates if subscriber v is receiving
a number of events that meets the satisfaction threshold:

f(v) =
{

1 if
∑
{t∈S∩Tv} evt ≥ τv

0 otherwise (2)

The first condition in the Equation (2) is the case when
a subscriber v is receiving publication events at a rate not
lower than τv. In order for v to contribute to the objective
function f(v), the solution S must include enough topics
subscribed by v with a total event rate of at least τv.

B. Fractional-B3M
We now define a relaxed version of the B3M problem in

which we quantify the satisfaction relative to the number
of events covered for a subscriber v out of τv events. Given
an instance of T , V and their interests Int, the goal of
the F-B3M (T, V, ev, cost, Int, τ, C) problem is to find S ⊆
T so as to maximize the sum of the fractions for all the
subscribers.

Maximize σ(S) =
∑
v∈V

g(v), Subject to:
∑
t∈S

cost(t) ≤ C

(3)
g(v) is the fraction of events subscriber v receives, and it
is defined as:

g(v) =
{ 1 if

∑
{t∈S∩Tv} evt ≥ τv∑

{t∈S∩Tv}
evt

τv
Otherwise

(4)

The difference between B3M and F-B3M lies in the
definition of the satisfaction metrics in Equation (2) and
Equation 4 respectively. In Equation 2 the satisfaction is
defined in a binary fashion i.e. we the satisfaction is 0
when less than τv events are received by the subscriber
and 1 otherwise. On the other hand in Equation (4) a
fraction of events received up to τv is considered instead
of a binary 1 or 0. This subtle difference makes the two
problems fundamentally different in terms of difficulty of
solving. We explore this in detail in Section V and Section
VI.

V. Hardness of B3M and its Solution Approach
In this section we prove that B3M is NP-Hard and we

also show that B3M has no Polynomial-Time Approxima-
tion Scheme (PTAS). We further propose an algorithm to
give an upper bound on B3M instances. We later use this
bound to evaluate a greedy heuristic we propose in Section
VII-B.

A. Hardness of B3M problem
To establish the hardness of B3M we prove that the

well-known hard problem of Densest-k-Subgraph (DkS)
can be reduced to a special case of B3M. We now define the
DkS problem and an auxiliary unit-cost version of B3M.

Definition V.1 (Densest-k-Subgraph). Given an undi-
rected graph G(U,E) the Densest-k-Subgraph

(DkS(U,E, k)) problem on G is the problem of finding
a subset U ′ ∈ U of vertices of size |U ′| = k with the
maximum induced average degree. The average degree of
the optimal subgraph is 2|E(U ′)|/k. Here |E(U ′)| denotes
the number of edges in the subgraph induced by U ′.

The DkS problem can be proven to be NP-Hard by
reduction from the Max-Clique problem [8]. In [9] it
has been shown that DkS is also NP-Hard even when
restricted to a maximum degree of 3. The best known
approximation algorithm achieves a ratio of O

(
n1/4+ε) and

runs in 2nO(1/ε) time, for any ε > 0 [2]. On the other hand,
it is known that DkS does not admit a PTAS [13].

Definition V.2 (UC-B3M ). We define an auxiliary
problem coined Unit-Cost-B3M (UC-B3M ) which is a re-
stricted version of B3M. We define UC-B3M to be an
instance of B3M with unit cost for all the topics ∀t ∈ T :
cost(t) = 1 and unit event rate evt = 1, each subscriber
subscribes to exactly two topics ∀v ∈ V : |Tv| = 2, no
two subscribers subscribe to same set of topics ∀v1 6= v2 :
Tv1 6= Tv2 and the satisfaction threshold τv = 2.

Lemma V.3. UC-B3M is NP-Hard

Proof: Given an instance of DkS(U,E, k) we con-
struct an instance of UC-B3M (T, V, ev, cost, Int, τ, C) in
the following way: we take T with topics that one-to-one
correspond to the vertices in the set U . We take V to
one-to-one correspond to the edges in the set E. We build
Int from the edges incident on the vertices. For example,
Vt corresponds to the edges incident on the corresponding
vertex in U . We set C = k . We now prove that there is
an induced subgraph of A(U ′, E′) with average degree δ
and exactly k vertices if and only if there is a solution
S to UC-B3M with value at least |E(U ′)| (i.e., the total
number of edges in the induced subgraph).

To see this, we observe that a subscriber in our UC-B3M
instance only contributes to the objective function if both
of her topics are included in S. This precisely corresponds
to the condition if and only if that exact edge with the
vertices corresponding to those two topics is in the induced
subgraph of the DkS instance. We can, without loss of
generality, assume that S contains precisely k topics as
the cost of each topic is 1 and the objective function is
non-decreasing in the number of selected topics.

As we know that DkS is NP-Hard [8], it follows that
UC-B3M is NP-Hard too.

Theorem V.4. B3M is NP-Hard.

Proof: UC-B3M is a special case of B3M. From
Lemma V.3 we know that UC-B3M is NP-Hard and hence
B3M is NP-Hard too.

Corollary V.5. Assuming NP 6⊆ ∩ε>0BPTIME(2nε),
there is no Polynomial-Time Approximation Scheme
(PTAS) for B3M.

Proof: The statement follows directly for UC-B3M



from the reduction given in Lemma V.3 together with a
result by Khot [13] saying that unless NP has random-
ized algorithms that run in sub-exponential time (more
formally: NP ⊆ ∩ε>0BPTIME(2nε)) there is no PTAS for
DkS. As UC-B3M is a special case of B3M , the statement
also holds for B3M .
B. Greedy heuristic for B3M
The idea behind the greedy algorithm to solve B3M is

to choose a topic t that maximizes the ratio between its
total contribution towards the objective function relative
to the already chosen topics S ′, and its cost. To define this
contribution of a topic, we firstly say that it is the change
of the objective function resulting from choosing the topic
(i.e., contributing the value 1 for each subscriber “finished”
by the topic). This is a very coarse metric, so we secondly
also add a contribution for each subscriber who receives
new events from t and does not already receive τv events
from previously selected topics. This addition we have
defined as the number of events divided by how many more
events the user requires to receive τv events. The intuition
behind this choice is that it steers the heuristic towards
“finishing” subscribers, rather than spending resources to
“start” a large number of subscribers by giving them a few,
but not τv events. In Algorithm 1 we show this in line 3 by
computing the number of events a user needs to receive to
get to τv. We then, in line 5, add the value 1 if evt exceeds
this value, or the partial contribution otherwise.

The pseudocode of the greedy algorithm to solve B3M is
sketched in Algorithm 2 and the greedy strategy is to
choose a topic that maximizes the objective function. In
lines 2 and 3 an array containing the profit-to-cost ratio
of the individual topics is initialized using Algorithm 1. In
practice, this array can be a max-heap structure optimized
for obtaining elements with maximum value. A topic
that maximizes the profit-to-cost ratio in each iteration
is selected in Line 5. The topic is added to the solution
if its addition keeps the cost of the solution within the
budget. Otherwise the topic is ignored. If the topic is
added to the solution, the profit-to-cost ratio of all the
topics not selected so far are updated based on the current
solution set S ′ (lines 9 and 10). Vt ∩ Vt′ is the set of
subscribers common to subscribers of t and subscribers of
t′. The algorithm terminates when it has considered all the
available topics, or when all subscribers have been covered
in which case the profit-to-cost ratio of all the topics would
be 0 (line 6).

Theorem V.6. The run time complexity of Algorithm 2
is O

(
|T |2(|V |+ log |T |)

)
.

Proof: Refer to Appendix C.
Theorem V.6 gives the worst-case run time complexity,

the cost being dominated by updating the cost for all
topics in lines 9 and 10 of Algorithm 2 when a topic is
added to the solution. We remark that in practice, the
code runs significantly faster than this bound would imply.

Algorithm 1: Heuristic value of topic t given partial
solution S ′

1 GetHeuristicB3M(t, ev, cost(t), Int,S′, τ)
Input: t, ev, cost(t), Int,S′, τ
Data: h← 0 : Heuristic value
remv ← 0: Events remaining to make user v happy

2 foreach {v ∈ Vt} do
3 remv ← τv −

∑
{t′∈S′∩Tv} evt′

4 if remv > 0 then
5 h← h+ min

(
1, evt
remv

)
6 return h

cost(t)

Algorithm 2: Greedy solution for B3M
1 GreedyB3M(T, V, ev, cost, Int, τ, C)
Input: T, V, ev, cost, Int, τ, C
Data: A : Array of size l
Result: S′ ← ∅ : Output set of topics

2 foreach t ∈ T do
3 A[t]← GetHeuristicB3M(t, ev, cost(t), Int,S′, τ)

4 while T 6= ∅ do
5 t← argmax{t′∈T} A[t′]
6 if A[t] = 0 then break
7 if cost(t) +

∑
t′∈S′ cost(t′) ≤ C then

8 S′ ← S′ ∪ {t}
9 foreach {t′ : Vt ∩ Vt′ 6= ∅ ∧ t′ /∈ S′} do

10 A[t′]←
GetHeuristicB3M(t′, ev, cost(t′), Int,S′, τ)

11 T ← T \ {t}

12 return S′

One of the reasons being that the number of updates is
bounded by maxt6=t′ |Vt∩Vt′ |, which is usually significantly
lower than |T |.
We now turn to the subject of computing an upper

bound on the optimal solution. For this analysis, we only
consider the case when the cost function is normalized,
i.e., cost(t) = evt · |Vt|.

Theorem V.7. Given an instance
B3M(T, V, ev, cost, Int, τ, C) where the costs are normal-

Algorithm 3: Upper bound for B3M with normalized
topic costs

1 GetUpperBound(V, T, ev, Int, C, τ)
Input: V, T, ev, Int, C, τ
Data: C : Array of size n
csubs← ∅ : Set of subscribers covered

2 foreach {v ∈ V } do
3 C[v]← max (τv ,mint∈Tv evt)

4 while V 6= ∅ do
5 v ← argmin{v′∈V } C[v′]
6 if C[v] +

∑
v′∈csubs C[v′] ≤ C then

7 csubs← csubs ∪ {v}
8 V ← V \ {v}
9 return |csubs|



ized, for any solution S it holds that:

σ(S) ≤ max
{
|V ′| : V ′ ⊆ V,

∑
v∈V ′

max
(
τv,min

t∈Tv
evt

)
≤ C

}
Proof (Sketch): With normalized costs, one can see

that the amortized cost to cover each subscriber v is at
least τv. The cost is also bounded by the lowest event rate
of any event in which the subscriber is interested.

Theorem V.7 presents a way to compute an upper
bound on the optimal solution. Since Algorithm 2 gives an
unbounded approximation ratio, we make use of Theorem
V.7 to evaluate how well our proposed heuristic performs
on real-world inputs (see Section VII-B). This theorem
can be readily turned into an algorithm as shown in
Algorithm 3. In lines 2 and 3 the minimum cost to consider
a subscriber satisfied is initialized in an array. Then, in
each iteration the subscriber with the least cost is selected
until there is no more budget left to cover more subscribers
(lines 4 to 8). Finally, the number of selected subscribers
is returned as the upper bound for the optimal solution
(line 9).

VI. Hardness of F-B3M and its Solution
Approach

In this section we analyze the hardness of F-B3M .
Comparing to the results we obtained for B3M , the di-
rect reduction we did from Densest-k-Subgraph no longer
works as in that case it is imperative that we are not “paid”
for a partially satisfied subscriber. This also means that
the approximation-resistance results obtained for B3M do
not translate. For F-B3M , we are instead able to give a
greedy approximation algorithm with an approximation
ratio of 1

2
(
1− 1

e

)
. F-B3M is still NP-Hard, which we first

prove by a reduction from the (unweighted) Maximum
Coverage problem [11].

Theorem VI.1. F-B3M problem is NP-Hard.

Proof: By reduction from Maximum Coverage. Refer
to Appendix. A.

A. Greedy Heuristic
Theorem VI.2. The objective function in the F-
B3M problem from Expression (3) is a submodular func-
tion.

Proof: Refer to Appendix B, where we also define
submodularity.
From Theorem VI.2 we infer that the F-B3M problem

is essentially the budgeted maximization of a submodular
function. The generalized greedy heuristic for maximiza-
tion of submodular functions is known to guarantee a
constant approximation factor as shown in [10]. Unfor-
tunately, greedily selecting topics with best profit-to-cost
ratio for a budgeted maximization of a submodular func-
tion no longer gives a constant approximation guarantee.
Greedily choosing the topics to maximize the profit-to-cost
ratio similarly to the solution for B3M performs arbitrarily
poorly.

Algorithm 4: Heuristic value of topic t given partial
solution S ′

1 GetHeuristicFB3M(t, ev, Int,S′, τ)
Input: t, ev, Int,S′, τ
Data: h← 0 : Heuristic value
remv : Events remaining to make user v happy

2 foreach {v ∈ Vt} do
3 remv ← τv −

∑
{t′∈S′∩Tv} evt′

4 if remv > 0 then
5 h← h+ min(remv,evt)

τv

6 return h

Algorithm 5: Appropriate simple greedy algorithm
for F-B3M, given a type

1 GreedyFB3M(T, V, ev, cost, Int, τ, C, type)
Input: T, V, ev, cost, Int, τ, C, type
Data: A : Array of size l
Result: S′ ← ∅ : Output set of topics

2 foreach t ∈ T do
3 A[t]← ComputeHeuristic(t, ev, cost(t), Int,S′, τ, type)
4 while T 6= ∅ do
5 t← argmax{x∈T} A[x]
6 T ← T \ {t}
7 if cost(t) +

∑
t′∈S′

cost(t′) ≤ C then

8 S′ ← S′ ∪ {t}
9 repeat

10 t′ ← t

11 t← argmax{x∈T} A[x]
12 A[t]←

ComputeHeuristic(t, ev, cost(t), Int,S′, τ, type)
13 until A[t′] = A[t]

14 return S′

Algorithm 6: Appropriate heuristic, given a type
1 ComputeHeuristic(t, ev, cost(t), Int,S′, τ, type)
Input: t, ev, cost(t), Int,S′, τ, type

2 if type = G then
3 return GetHeuristicFB3M(t, ev, Int,S′, τ)

4 else if type = R then
5 return GetHeuristicFB3M(t, ev, Int,S′, τ)/cost(t)

Algorithm 7: Greedy algorithm for F-B3M
1 ModifiedGreedyFB3M(T, V, ev, cost, Int, τ, C)
Input: T, V, ev, cost, Int, τ, C

2 S′ ← GreedyFB3M(T, V, ev, cost, Int, τ, C,G)
3 S′′ ← GreedyFB3M(T, V, ev, cost, Int, τ, C,R)
4 if σ(S′) ≥ σ(S′′) then return S′ else return S′′



To see why the simple greedy approach fails, consider
an instance with two topics t1 and t2 with σ(t1) = 1 and
cost(t1) = 1 and σ(t2) = x for some x > 1 and cost(t2) =
x+ 1 and with a C of x+ 1. The heuristic of profit-to-cost
ratio prefers t1 against t2. Having spent a budget of 1 the
heuristic can no longer select t2 and hence terminates with
the result σ(t1) = 1 while the optimal solution is choosing
t2 with the gain σ(t2) = x giving an approximation ratio
of x.

Taking inspiration from [14], we address this problem by
running two instances of a greedy algorithm, each using
a different heuristic. The first algorithm, which we refer
to as being of type G, uses σ as shown in Algorithm 4.
The second algorithm, of type R, uses the profit-to-cost
ratio (σ/cost(t)). The final solution is the best of the
two solutions provided by executing the algorithms of
type G and R, respectively. The pseudocode of the simple
greedy algorithm is shown in Algorithm 5. Algorithm 7
is the pseudocode for the modified greedy algorithm to
solve the F-B3M problem that executes the simple greedy
algorithms of type G and R and selects the best solution.
Our simple greedy algorithm (Algorithm 5) includes an

optimization that is important in practice, but does not
affect the worst-case run time. After selecting a topic, the
contribution of other topics needs to be updated. Here
we observe that, due to submodularity, the contribution
of those topics can only decrease. Thus, we loop over the
sorted list of topics in descending order of value and stop
updating as soon as the top one does not change. This is
done in lines 9 to 12.

B. Performance of the modified greedy algorithm for F-
B3M

Theorem VI.3. Algorithm 7 has an approximation ratio
of 1

2
(
1− 1

e

)
.

Proof: A general result for budgeted maximiza-
tion of submodular functions was given by Krause and
Guestrin [15][Theorem 1]. Our Algorithm 7 is a minor
extension of theirs, the difference being that they only
select a single element when type = G.

We remark that following [15] one can also create a
greedy heuristic with an approximation ratio of 1 − 1

e at
the cost of an additional factor of |T |3 in the run time of
the algorithm.

Theorem VI.4. Given an instance
B3M(T, V, ev, cost, Int, τ, C) where costs are normalized,
for any solution S it holds that:

σ(S) ≤ max
{
|V ′| : V ′ ⊆ V,

∑
v∈V ′

max
(
τv,min

t∈Tv
evt

)
≤ C

}
+1

Note that Theorem VI.4 is an extension of Theorem V.7
with a minor difference in that there may be a fractional
contribution to the objective function. This fractional part
is upper bounded by 1.

Theorem VI.5. Algorithm 7 has run time complexity of
O
(
|T |2(|V |+ log |T |)

)
.

Proof: Refer to Appendix C.

VII. Evaluations
A. Experimental Setup

We implemented both GreedyB3M and Modified-
GreedyFB3M using C++. To evaluate these heuristics we
make use of real data from Spotify’s deployed pub/sub
system. The data consists of about 1.1 million topics, and
4.9 million subscribers. The traces were gathered for 10
days from Spotify’s data center at Stockholm. For more
information about the data traces refer to [21]. We use the
normalized cost function: for each topic cost(t) = evt · |Vt|.
To choose C we analyzed the full data traces and computed
the total capacity needed to handle the full traces in terms
of total cost of all the topics

∑
t∈T cost(t). For evaluations

in this paper we set the capacity constraint C to be to be
10% of this sum. For τ we use 0.1%(2) to 100%(2763) of
the mean event rate of all the topics. All experiments were
executed single threaded on a server with 16 cores of Intel
Xeon 2.13GHz processors and 32 GB of main memory.
B. Performance of GreedyB3M

First we analyze the performance of GreedyB3M (Al-
gorithm 2) comparing it to the upper bound computed
by GetUpperBound (Algorithm 3). To visualize the per-
formance we observe that both algorithms iteratively con-
struct solutions. Thus, in Figure 1 we show the progress of
the GreedyB3M algorithm after selecting a topic in each
iteration, by comparing the service capacity used so far
(x-axis) against the number of satisfied subscribers (for
a given τ) (y-axis) by the chosen topics. Note that this
represents a single run of GreedyB3M until a budget C of
10% of the workload is reached. However, the intermediate
results are equivalent to having stopped GreedyB3M at
the corresponding values of C. We can see that the gap
between GreedyB3M and the upper bound increases as C
also increases in most cases when the C is restricted to
10%.

An interesting observation is that, with a capacity
constraint C equivalent to 10% of what is needed for
the full workload, the gap between GreedyB3M and the
upper bound increases as τ increases from 2 to 276 (the
approximation ratio drops from 0.87 to 0.75, as shown in
Figure 3.) However this changes when τ is increased to
2763, in which case the approximation ratio of GreedyB3M
increases from 0.75 to 0.82. τ ≈ 27 is a reasonably realistic
value. With this parameter we satisfy around 72% of all
subscribers (3.5 million of the total 4.9 million). The upper
bound gives that at most 86% (4.2 million) of subscribers
can be satisfied, giving an approximation ratio of around
0.83.
C. Performance of ModifiedGreedyFB3M

We now analyze the performance of Modified-
GreedyFB3M. From the theoretic results, we know
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that ModifiedGreedyFB3M guarantees an approximation
ratio of 1

2
(
1− 1

e

)
. In our real-world data set, we achieve

a significantly better ratio (up to 0.9). Analogously to our
analysis of GreedyB3M, we use the upper bound given
by Theorem VI.4. This theorem can be easily turned
into an algorithm identical to Algorithm 3 but with the
change that in the last step (line 9) we return |csubs|+ 1
instead. Since the goal of F-B3M is to maximize the
total satisfaction fraction among the subscribers of all the
topics, the outcome is measured in terms of total fraction
instead of number of subscribers. As shown in Figure
2 a similar pattern to GreedyB3M is observed in the
approximation ratio when the τ changes from 2 to 2763.
However, the gap between the ModifiedGreedyFB3M
and the upper bound is much lower compared to the
gap between GreedyB3M and its corresponding upper
bound. For example for τ = 2763 the approximation ratio
between ModifiedGreedyFB3M and the upper bound
is 0.9 compared to 0.82 for GreedyB3M, as shown in
Figure 3.

GreedyB3M and ModifiedGreedyFB3M algorithms are
intended to run on a regular basis, it is important
that they are fast. In Figure 4 the running times
of the greedy approaches proposed in this paper are
shown in seconds (mean of 3 runs). To evaluate the
gain of our optimization of lazily updating costs in
ModifiedGreedyFB3M as explained in Section VI-A
we also introduce a naive version, coined Modified-
GreedyFB3MSlow. ModifiedGreedyFB3MSlow is identical
to ModifiedGreedyFB3M except lines 9 to 12 of Algo-
rithm 5. Instead of lazily updating topic costs, all the
topics that have a common subscriber with the chosen
topic in the current iteration are updated (same as lines 6
and 7 of Algorithm 2). From Figure 4 it is clear that Modi-
fiedGreedyFB3M outperforms ModifiedGreedyFB3MSlow
and runs in less than 20 seconds for all values of τ . Finally,
ModifiedGreedyFB3M takes a maximum of 33 seconds to
run for τ = 276. It is clear that these algorithms are in
general fast to run in large-scale setting and can be run
on a regular basis.

VIII. Related Work
There are many flavors of pub/sub systems proposed in

the literature [7]. Proposals from the last 15 years come
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from both industry [1], [20], [21] and academia [3], [4], [6],
[12], [22]. Subscriber placement and relocation to minimize
metrics like publication-notification delay and system load
in content-based pub/sub systems have been proposed
before [5]. However, to the best of our knowledge, we are
the first to formalize the subscriber satisfaction metrics
and formulate the problem of maximizing the number of
subscribers satisfied.

The formal definition we arrive at bears a strong resem-
blance to (set) coverage problems; the problem of Bud-
geted Maximum Coverage (BMC) [14] being the closest
match. However, a significant difference is that in our
setting a subscriber may need to be “covered” more than
once. The family of coverage problems are generally proven
NP-Hard using reductions from Max-Cover problem [11].
In this paper we instead reduce DkS to our B3M problem,
which allows us to rule out the existence of a PTAS.

Seminal work on analysis of the maximizing submodular
functions was originally done in [10]. In this paper we ex-
ploit the submodularity property of the objective function
of F-B3M to derive a constant approximation ratio for
its greedy heuristic and to speed up the corresponding
algorithm.

IX. Conclusions
In this paper, motivated by practical scenarios in a real

deployed pub/sub system at Spotify, we proposed a new
approach to maximizing subscriber satisfaction. In the
process, we introduced a new set of problems (B3M and
F-B3M ) to address the maximization of the number of
satisfied subscribers in a pub/sub system and proposed
greedy heuristics to solve both problems. We proved that
B3M is NP-Hard by reduction from the DkS problem
and, as a corollary, also proved that B3M has no PTAS
under a standard assumption. F-B3M is a relaxed version
of B3M that is relatively easy to solve. We proved that
the objective function of F-B3M is submodular, derived
a constant approximation bound for its greedy heuristic,
and proposed a way to exploit the submodularity of the
objective function to improve the running time of the
heuristic for typical scenarios. We evaluated our heuristics
for both problems using a large-scale real data set from
Spotify’s pub/sub system and compared their performance
with upper bounds we derived for the optimal solutions



of both problems. We illustrated that, with a realistic
pub/sub workload as input, our heuristics achieve an
approximation ratio of up to 0.9 and they are fast enough
to be run on a regular basis in a real-world scenario.
We conclude that we have demonstrated that there is
theoretical and practical evidence that pub/sub systems
(like Spotify’s pub/sub) can benefit from the algorithms
presented in this paper.
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Appendix
A. Proof of Theorem VI.1
Definition A.1 (Maximum Coverage). In the (un-
weighted) Maximum Coverage problem, input consists of
a collection of sets S = {s1, s2, . . . , sn} and a parameter k.
The goal is to find a subset S′ ⊆ S maximizing |

⋃
s∈S′ s|

subject to |S′| ≤ k.

Proof: Given an instance of Maximum Coverage(S, k)
we construct an instance of F-B3M (T, V, ev, cost, Int, τ, C)
in the following way: we take T with topics that one-to-one
correspond to the sets in the collection S and let cost(t) =
1. We take V that one-to-one correspond to the elements of⋃
s∈S and construct Int from set membership relationship

of sets in S. We further let evt = 1, set τ = 1, and let
C = k.
From this construction it is easy to see that there is a

solution of size d of the Maximum Coverage instance iff
there is a solution of value d of the F-B3M instance. As
Maximum Coverage is NP-Hard, this concludes the proof.

B. Proof for Theorem VI.2
Definition A.2 (Submodularity). A function σ is said to
be submodular for any set A ⊆ B if the following holds:

σ(A ∪ x)− σ(A) ≥ σ(B ∪ x)− σ(B)

for any element x /∈ B.

Proof: Intuitively, the objective function for F-B3M is
submodular because the incremental gain from adding a
new topic is fractional i.e, reaching a threshold of τ to have
incremental gain is not a requirement. However, a larger
set is more likely to have covered more subscribers and
higher number of times hence the gain is incremental. In
addition to that adding a topic with subscribers already
covered τ to a larger set of topics gives no incremental
gain in the objective function. On the other hand adding
it to a smaller set of topics would give larger incremental
gain. Let us now capture the intuition mathematically.
Assume that we have two solution sets S1 and S2 such
that S2 ⊆ S1. Adding a topic t /∈ S1 to these sets always



has non-negative incremental gain in their respective ob-
jective functions. However, the amount of incremental gain
depends on the following scenarios:

1) The subscribers Vt of topic t are already covered τ
times in both S1 and S2. Hence, adding t results no
incremental gain for both sets. Note that this case
can be extended to both sets already covering equal
number of times, and the incremental gain will be
same for both.

2) Vt are covered in S1 x times and they are covered
y times in S2 such that x ≥ y (again, note that
other way round is not possible since S2 ⊆ S1). The
following sub-cases are possible:
a) If x + evt ≥ τ and y + evt ≥ τ then, since

we know that x ≥ y, S1 will have lower gain
because

∑
v∈Vt

τv−x
τv
≤
∑
v∈Vt

τv−y
τv

b) If x+ evt ≥ τ and y + evt < τ then, the incre-
mental gain for S2 is higher because the incre-
mental gain for S1 is

∑
v∈Vt

τv−x
τv
≤
∑
v∈Vt

evt
τv

since we know that x+ evt ≥ τ .
c) Finally, if x + evt < τ and y + evt < τ then,

both S1 and S2 have same incremental gain.
3) Vt are covered τ times in S1 but not in S2 (note

that other way round is not possible since S2 ⊆ S1).
Hence, adding t to S1 results in no incremental gain
while the objective function for S2 is incremented
with exactly

∑
v∈Vt

min(remv,evt)
τv

, where, remv =
τv −

∑
{t′∈S′∩Tv} evt′ .

All possible scenarios are covered using the above cases.
It is easy to see that in all of the above scenarios the
following always holds for any t /∈ S1.

σ(S1 ∪ t)− σ(S1) ≤ σ(S2 ∪ t)− σ(S2)

C. Proof for Theorem VI.5 and Theorem V.6
Proof: The data structure A (both in case of

GreedyB3M and GreedyFB3M) can be any max-heap
structure supporting insertion, update, and extracting the
maximum element in time O

(
logn

)
, e.g., a binary heap.

The initialization of the array to store the heuristic values
per-topic done in Line 3 of the Algorithm 2 and Algo-
rithm 7 has complexity of O

(
|T ||V | log |T |

)
. Once a topic

is selected a while loop (lines 9 to 12) is exectued to update
the topics in the top of the heap until there is no more
change. This loop runs |T | times in the worst case. Within
the loop, re-evaluating the heuristics has complexity of |V |
and updating A has takes time O

(
log |T |

)
. Hence the run

time complexity of the Algorithm 7 and Algorithm 2 is

O
(
|V ||T | log |T |+|T |2 (|V |+ log |T |)

)
≈ O

(
|T |2(|V |+log |T |)

)


