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Abstract: We consider a large wireless network constituting a radio telescope. Each
of the anticipated 3000 nodes is triggered to collect data for further analysis at a
rate of more than 200 Hz, mostly caused by noisy environmental sources. However,
relevant cosmic rays occur only a few times a day. As every trigger has an associated
12.5 KB of data, and considering the size of the telescope in number of nodes and
covered area, centralised processing is not an option. We propose a fully decentralised
event detection algorithm based on collaborative local data analysis, effectively filtering
out only those triggers that need further (centralised) processing. As we show through
performance evaluations, the crux in the design is finding the right balance between
accuracy and efficient use of resources such as the communication bandwidth in the
unreliable communication environment.
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1 Introduction

In a geospatial sensor network, a node is responsible
for gathering location-sensitive data. In many cases, as
these networks grow in diameter (measured in meters),
as well as in their number of members, we often see
that communication paths can be mainly realised only
through wireless channels. A typical example that we
consider in this paper is a large-scale radio telescope
consisting of a few thousand nodes spread over an
area of around 3000 km2. An important consequence
of this growth is that the processing of data needs
to be localised, as realising communication paths to
centralised, specialised nodes becomes more difficult.

In this paper we consider a specific sensor network
that we believe is characteristic for many other
Wireless Sensor Networks (WSNs). First, each node is
responsible for detecting specific, often rare, events, in
our case detecting cosmic rays. Event detection requires
sampling data. However, a node may be operating in an
extremely noisy environment meaning that there can be
many false detections leading to an explosion of sampled
data of which most will turn out to be useless. It is
crucial that such data is kept local and preferably not
sent to any other node, let alone a centralised base
station or the equivalent thereof.

Second, to distinguish between relevant and false
events, a node requires information from its immediate
(geographical) neighbours: an event is relevant only if
some of the neighbours have detected it as well. This
means that data from multiple nodes will need to be
combined before coming to conclusions on relevancy of
an event. In some sensor networks, the base station
simply gathered the data from all nodes, but as
we argued, this approach must be abandoned when
networks grow.

We concentrate on the problem of distributed event
detection in a large WSN in which neighbouring
nodes collaborate to filter out relevant events before
communicating associated data to one or several central
nodes. Each node has not only a limited energy budget,
but also other resources are scarce such as memory and
processing capacity. In addition, as we are dealing with
wireless networks; communication links are unreliable.

For our specific application, cosmic-ray detection,
relevant events are so rare that we essentially cannot
afford to lose any of them. In other words, much effort
should be put into keeping the fraction of false negatives
close to zero. On the other hand, false positives should
also be minimised, but for a different reason, namely
that of minimising resource consumption and thus
maximising efficiency. However, optimising for efficiency
becomes more relevant when realising that events occur
at a rate of approximately 200 Hz, yet that less than
1% is actually relevant. In other words, a huge data-
processing effort is required for successfully detecting
cosmic rays.

We make the following contributions. First, we
present a distributed, in-network event detection

algorithm based on collaborative local data analysis
that reduces resource consumption in large-scale
geospatial sensor networks. Second, we investigate
the application-level resource usage such as the
communication bandwidth for a certain level of
performance in unreliable communication environment.
This is the first paper to our knowledge to explore the
possibility of applying collaborative local data analysis
in large-scale geospatial WSNs to detect ultra-high
energy cosmic rays.

The rest of this paper is organised as follows. In
Section 2, we give an overview of the related work in the
field of the monitoring applications. Section 3 describes
our distributed event detection algorithm designed for
large-scale sensor networks. In Section 4, we discuss the
methodology used to analyse the performance of the our
proposed approach. In Section 5, we present the results
based on experiments for investigating bandwidth
requirements of the application. In Section 6, we present
and discuss a rigorous performance evaluation of our
proposed algorithm. Finally, Section 7 concludes the
paper.

2 Related work

The common model for event detection in a WSN is
that each node simply relays all of its locally generated
data to the base station without local processing. The
data is processed for event detection only at the base
station (Gehrke and Madden, 2004). This model works
well for small-scale networks, a small amount of data
per event, and lower frequencies of events per node. It
is unacceptably inefficient for large-scale networks, as
it may involve considerable bandwidth consumption as
multiple communication hops need to be taken.

Another model for event detection involves in-
network processing. To this end, processing is done
by the nodes to compute events of interest against
criteria known to the node. This may significantly
reduce the amount of communication and, hence, the
energy consumed. The most commonly used techniques
for in-network processing in WSNs are:

• processing along a routing path to the base
station (Madden et al., 2002)

• processing at regional head nodes (Martincic and
Schwiebert, 2006; Werner-Allen et al., 2006)

• initiating in-network consensus (Werner-Allen
et al., 2005)

• deciding locally at a node based on information
from its neighbours (Wittenburg et al., 2010).

However, all the proposed schemes have different
shortcomings for our application:

• there is no acknowledgement of the event
detection by a node in Madden et al. (2002)
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• the scheme in Martincic and Schwiebert (2006)
produces false negatives in case an event occurs on
the border of two or more cells

• a low event frequency is assumed in Wittenburg
et al. (2010)

• the schemes in Werner-Allen et al. (2006)
and Werner-Allen et al. (2005) assume
network-wide events, and thus, are not scalable for
large geographical areas.

There are two classes of work done on cosmic-ray
detection. A direct cosmic-ray detection method (Müller
et al., 2007; CREAM, n.d.; AMS, n.d.) needs a
high-altitude balloon or a satellite/space mission, and
detects only low-energy particles. To detect the much
rarer highest energy particles, an indirect cosmic-ray
detection method is needed, such as Aramo (2005),
Huege (2010) and Blümer et al. (2009). However,
these systems use a wired backbone (fibre optic) for
communication and, therefore, suffer seriously from
geographical scalability issues.

3 Distributed event detection

3.1 System model

In the context of cosmic-ray detection, we consider a
large field covered by a large collection of stations,
each equipped with a wireless sensor. They sense radio
signals and communicate with neighbouring stations
in the field through a low-power wireless medium.
Each station has limited processing capabilities, energy
budget and a storage capacity in the order of a few
hundred megabytes. The clocks of stations are globally
synchronised via integrated GPS receivers. (The
accuracy is within 1–2 nanoseconds through special
devices (Kelley and the Pierre Auger Collaboration,
2011)). Each station relays its data to a base station
called the Central Radio Station (CRS) for further
analysis.

The stations are stationary and location-aware. We
assume direct communication only between stations
within a certain distance (geographical neighbours).
Each station captures radio signals with a certain
strength into a so-called N1 trigger, which may indicate
the occurrence of a cosmic-ray. In fact, the N1 trigger is
equivalent to what is called the ‘level 2’ trigger in Kelley
(2012). Each trigger is timestamped at nanosecond
accuracy. The timestamp is a pair of seconds (date and
time into the UNIX epoch, in UTC) and nanoseconds.
For each trigger, in addition to the timestamp, a
digitised portion of the signal of 12.5 kilo bytes is
also buffered at the station. This data along with the
timestamp is sent to the CRS upon positive decision
through a data analysis procedure; otherwise both the
timestamp and buffered data are ignored.

The triggers of two geographically neighbouring
stations coincide if their timestamp difference ∆T is less
than Tc, the light-travel time in a straight line from one
station to the other station. An N1 trigger is promoted
to an N2 trigger if it is coincident with an N1 trigger of
a geographical neighbour. An N1 trigger at a station is
promoted to an N3 trigger in two cases:

• the N1 trigger at a station is coincident with N1
triggers of at least two other geographical
neighbours

• the N1 trigger at a station is coincident with an
N3 trigger of any of its geographical neighbours.

Note that we also call an N3 trigger an event of interest.
The direction of the signal that caused the N3 trigger

is reconstructed using timestamps and geographical
positions of the stations that took part in the
coincidence. The direction reconstruction uses what is
known as plan wave fit. The reconstructed direction
is used as a tuple of zenith and azimuth angles. The
reconstructed direction helps in deciding whether to
discard an L3 trigger caused by some man-made noise
source.

3.2 The algorithm

Whenever an N1 trigger occurs at a station, the
station stores the N1 trigger locally and informs all of
its neighbours by sending them the timestamp of its
N1 trigger. Furthermore, when a station receives N1
triggers from its neighbours, it looks for a coincidence
of the received triggers with its local ones. A station
promotes its N1 trigger to an N3 trigger if its N1
trigger has coincidence with N1 triggers of at least
two neighbours. To cover stations on the boundary of
an event region with only one geographical neighbour
in the event region, a station is not only required to
broadcast its N1 triggers, but also to advertise its N3
triggers. This message helps a station promote its N1
trigger to an N3 trigger if its N1 trigger coincides with
an N3 trigger contained in the advertisement message.
To reduce bandwidth consumption, the algorithm uses
periodic broadcast messages, which we call an N1
bundle, by simply grouping together the N1 triggers.
Similar to the N1 bundle formation, the local N3
triggers are bundled as an advertisement bundle.

Figure 1 shows the pseudocode of our algorithm.
When an N1 trigger occurs at a station s, it adds the
trigger to its local cache. The trigger is also added to a
local N1 bundle that will be broadcast to geographical
neighbours of the station. The algorithm executes two
threads: an active and a passive one. The active thread
is executed periodically. It broadcasts N1 bundles and
advertisement bundles of a station to the geographical
neighbours of the station. The passive thread listens to
incoming messages. Upon receipt of an N1 bundle or
an advertisement bundle from a geographical neighbour,
the thread looks for a coincidence of each trigger
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in the bundle with the local N1 triggers. Whenever
an N1 trigger is promoted to an N3 trigger (see,
N1(s) → N3(s) in Figure 1), the station will execute
the operation process(N3(s)) if further processing of
the trigger is required (e.g., applying any domain-
specific filter to the N3 trigger).

Figure 1 Pseudocode for our algorithm

If a coincidence has been found between the local N1
trigger and N1 triggers of the geographical neighbours,
then these N1 triggers are added to the advertisement
bundle. On the other hand, if station s promotes its
N1 trigger to an N3 trigger because of coincidence with
an N3 trigger of any of its geographical neighbours,
the promoted N3 trigger is not broadcast to the
neighbours. The reason for this is that station s has
only one neighbour in the event region that had already
promoted its corresponding N1 trigger to N3. For
station s, broadcasting the advertisement in this case is
useless.

The local triggers are stored in a buffer with limited
capacity. Depending on local processing capabilities
and available memory, we need to take into account
that the buffer may become full. As a consequence, a
cache eviction strategy is required. For example, our
algorithm can employ a simple strategy that discards
newly arriving triggers while old triggers have not yet
been removed. Alternatively, we could also decide to
remove the oldest trigger, or choose one randomly.
These strategies are rather straightforward, and are
application oblivious. A more optimal cache eviction
strategy may require further insight into the semantics
of triggers. In this paper we take a simple approach and
remove the oldest triggers when the buffer becomes full,
except the ones that are currently being examined.

4 Experimental setup

To evaluate the performance of our algorithm in the
presence of communication failures, we have conducted
a set of experiments using the OMNET++ simulation
environment (Varga, n.d.). This section discusses the
methodology used to evaluate the performance of our
algorithm.

4.1 Network specification

In the simulated network, the stations are placed
in a triangular grid topology with an average inter-
node distance of 150 m. Note that the triangular grid
topology was the requirement of the application. To
simulate the behaviour of a wireless ad-hoc network,
we make a distinction between the so-called application
layer and the system layer. The application layer
consists of our basic algorithm with configuration
parameters. The system layer is an application-
independent wireless network. In essence, our solution
consists of two sets of algorithms. The first contains
the core of our solution and its algorithms essentially
assume that the system layer operates flawlessly
and with infinite resources. The second set contains
algorithms that compensate the shortcomings of the
system layer: lossy links, faulty nodes, and limited
resources. The core algorithms will always need to be
executed; the compensation algorithms are executed
only because the system layer is far from being perfect.

Executing the core algorithms will demand a certain
capacity from the system layer in terms of bandwidth
usage, memory usage, energy consumption, etc. Because
of failures in the system layer, our compensation
algorithms will also need to be executed, requiring
further capacity. We are interested to know how much
capacity the application layer requires from the system
layer in the presence of faulty links and nodes. This will
help in choosing a suitable system layer technology for
further experimentation and eventual deployment of the
system.

To analyse the capacity required by the application
layer, we take a simple approach by initially assuming
that only links can fail, in particular with a probability
p. In other words, the system layer is based on a
probabilistic link-failure model and is denoted as SL-p.
We furthermore consider only the use of bandwidth, as
this is most likely our scarcest resource. We vary p to
see

• to what extent additional bandwidth is needed for
the compensation algorithms

• what is the impact on performance.

In this way, we aim at obtaining an upper bound for
the bandwidth capacity that the system layer should
provide.

Essentially the experiments were performed in two
phases. The first phase was aimed at exploring the
performance of the algorithm over the entire spectrum
of link-loss probability p. At this phase, we were
especially interested in gaining an insight in the
bandwidth requirement imposed by the application
layer in the presence of lossy communication. These
experiments played a crucial role in deciding about
the system layer technology, required to evaluate
the algorithm, considering real radio models with
bandwidth constraints and more detailed link-loss
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patterns in the network. In the second phase,
experiments were conducted using a real-world system
layer specification that was chosen based on lessons
learned in the first phase. The aim of these experiments
was to rigorously evaluate the performance of the
algorithm.

4.2 N1 trigger traces

We emphasise that our exploration is based on real
data. Traces of N1 triggers are used that were collected
from a small-scale, real-world testbed for cosmic-
ray detection (Kelley, 2012). The testbed consists
of 24 stations and uses wired infrastructure for
communication between stations and the central unit
CRS. The data analysis procedure in the testbed is
centralised: every station sends its N1 triggers to the
CRS for noise filtering and further analysis. However,
the occurrence of N1 triggers is independent of the
data analysis procedure itself. Therefore, the N1 triggers
generated in the testbed could still be used for our
algorithm based on collaborative local data analysis,
and executed on top of a wireless system layer.

To establish a baseline for evaluating the
performance of our algorithm, we ran the traces through
an ideal system and observed which nodes actually
promoted their N1 triggers to N3 triggers eventually.
Next, the same traces were run through our own
algorithm, executed in the simulated environment. In
this way we were able to determine that our system is
functioning correctly.

4.3 Performance metrics

Ideally, if an N1 trigger at a station is not promoted
to an N3 trigger, it is considered to be noise and must
be discarded by the station. However, in the presence
of a system layer with unreliable communication, there
is always a chance to discard an N1 or N2 trigger that
is actually an N3 trigger, but due to communication
failures could not be promoted to N3. This situation
will result in a false negative (f−). Moreover, a false
positive (f+) is produced when a trigger that is not an
N3 trigger is chosen to be reported to the CRS.

We consider the performance of our algorithm in
terms of its accuracy and efficiency. The accuracy is
measured by the number of f− produced. The efficiency
is determined by the number of f+.

4.4 System parameters

There are a number of system parameters that influence
the performance of our algorithm. This section briefly
explains those parameters.

Bundling : Each station bundles its triggers before
broadcasting to its neighbours. Bundling helps reduce
the message size by eliminating redundant information
with in the message. For further details on how does
bundling work, please refer to Yousaf et al. (2012).

Message compression: The message size can be reduced
by using lossless compression techniques. This means
message compression helps in reducing bandwidth
consumption, nevertheless, at the cost of increased local
computation and memory usage.

Broadcast frequency : Broadcast frequency is defined as
the number of unique messages broadcast by a station
to its first-hop neighbours, per time unit. The N1
triggers occurred at a station during a time interval
∆t = ti − ti−1 are bundled in a single message. The
length of the time interval ∆t is a system wide
parameter. In other words,

broadcast frequency = ∆t−1. (1)

Message redundancy : A considerable number of
messages are lost due to unreliable communication.
This can affect the performance of the algorithm. To
compensate potential message loss, message redundancy
can be considered where a message is broadcast
more than once by the source station. In principle,
redundancy of messages should increase the chances
of message delivery in an unreliable communication
environment.

Handling undecided triggers: In case of undecided
triggers remaining at a station, there are three options.
First, discard all undecided triggers. Second, report all
undecided triggers (i.e., N1 and N2) to the CRS. Third,
report only undecided N2 triggers to the CRS. We
analyse the performance of the algorithm for each of the
three cases.

5 Phase I: Bandwidth requirement analysis

This section presents results obtained from the first
phase of our experiments aimed at investigating the
bandwidth requirement imposed by the application
layer on the system layer. The system layer SL-p is used.
The SL-p does not take into account the size of the
message. Since broadcast frequency dictates message
size, it is insignificant to explore a range of broadcast
frequencies. Therefore, we keep the broadcast frequency
fixed. For simplicity, it is set to 1Hz. In this phase
we do not consider message compression for the sake
of determining an upper bound on the bandwidth
requirement. We consider message redundancy as well
as the handling of undecided triggers as both of
these parameters are crucial in bandwidth requirement
specification.

5.1 Results

We first validate our collaborative, local data-analysis
approach. To that end, we executed our algorithm
in an environment with perfect communication. Each
station indeed observed the same N3 triggers as the ones
obtained through the existing centralised approach,
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described earlier. This means that our algorithm
behaves correctly.

First we analyse the performance of the algorithm
assuming perfect communication among the stations.
The assumption is made for two reasons. First, to
demonstrate the potential of local data analysis to filter
out relevant data. Second, the obtained performance
will be used as reference for comparison. Table 1 depicts
the filtering capability of the algorithm. Considering the
whole network of stations as a single entity, we see that
the network observes a huge number of N1 triggers.
Note that these N1 triggers have been observed over a
period of 100 s. The algorithm processes these triggers
locally. Only one third of the triggers is promoted to
an N3 trigger. By definition, an N3 trigger is called
an event of interest. The N1 triggers at a station
that were not promoted to N3 triggers are discarded
locally. Each station furthermore applies a so-called
direction reconstruction (DR) filter (Huege, 2010) to
its N3 triggers. The filter discards those N3 triggers
whose corresponding directions point to the horizon.
The zenith angle in the range 90 ± 5 is considered as
horizon. We see that the number of relevant triggers
to be sent to the CRS are further reduced by applying
the DR filter. So, under the assumption of perfect

communication, the ratio
(

DR(N3)
N1

)
indicates that the

algorithm is able to discard up to 83% of the triggers
locally.

Table 1 Filtering capability of the algorithm

Triggers type No. triggers

N1 583,455
N2 323,099
N3 218,202
DR(N3) 93,932

The algorithm demands a certain capacity from the
system layer to process the triggers occurred at
stations. The most crucial is the bandwidth required
by the algorithm. To that end, we measure the
bandwidth (imposed by each station on the system
layer) in consecutive time windows each of length
Tw. We compute the maximum, minimum, and
average bandwidth required per station during Tw.
For simplicity, we assume Tw = 1 s. Figure 2 shows
the temporal dynamics of these metrics. We see that
the maximum is far away from the corresponding
average. In general, there are two possibilities for the
large gap between maximum and average. First, there
may be a specific station continuously triggering with
high rate and generating a relatively higher amount
of data. Consequently, each time the maximum for
Tw is contributed by this particular station. A second
possibility is that different stations during different Tw

produce burst data that pushes the maximum away
from average. In our specific trace, we noticed that
there are a few neighbouring stations that trigger with
high rate and push the maximum upward. In principle,

the system layer should be able to absorb the imposed
maximum bandwidth irrespective of the underlying
cause.

Figure 2 A temporal view of the bandwidth production
by the algorithm (see online version for colours)

Next we analyse the performance of the algorithm
assuming that communication links at the system layer
may fail with a probability p. Due to link failures a
station may not be able to receive enough information
from its neighbours to decide about its local N1 triggers.
In this situation, discarding those N1 triggers that were
not promoted to N3 triggers due to lack of information
will give rise to false negatives. Our aim is to keep
the number of false negatives low. To this end, we
use our compensation algorithms that basically produce
message redundancy in the network; thus increasing
the chances of message delivery. To establish a basis
for comparison, a fixed rebroadcast is used where each
message is broadcast twice. It is thereby assumed that a
link is temporarily down with probability p = 0.5 when
the message travelled through it.

In addition to fixed rebroadcast, adaptive
rebroadcast is used where each station maintains a
Link Quality Estimator (LQE) (Woo et al., 2003).
A message is rebroadcast only if the weakest link quality
is above 50% and below 100%. The links with quality
below 50% are considered dead, therefore, rebroadcast
is abandoned.

We examine the impact of compensation algorithms
on performance. More specifically, three different cases
are considered. First, the core algorithm is executed
without any compensation algorithm; the so-called base
case. Second, the core algorithm is executed with fixed
rebroadcast. Third, the core algorithm is executed with
adaptive rebroadcast. All the three cases are repeated
with various link loss probabilities. We are interested
to see the extent to which the compensation algorithms
compensate the link failures by reducing the number of
false negatives.

Figure 3 shows a comparison of the three cases for a
range of message-loss probabilities. For p = 0 all three
cases have no false negatives because of no messages
are lost. For p = 1 all three cases have 100% false
negatives for the obvious reason that all messages are
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lost by the system layer and none of the stations is
able to compute N3 triggers. The cases with message
redundancy produce fewer number of false negatives
than the base case. This shows the effectiveness of the
compensation mechanisms in improving the accuracy of
the core algorithm. The adaptive case performs better
than the base case only when p < 0.5. This is because
of the way the adaptive rebroadcast works. For p > 0.5
the link qualities computed through the LQE are mostly
below 50%. Since rebroadcasts are abandoned for link
quality below 50%, the adaptive case behaves similar
to the base case for p > 0.5. The fixed rebroadcast
is expected to produce higher redundancy than the
adaptive rebroadcast. The result is that it outperforms
the adaptive case by producing fewer false negatives.

Figure 3 The effect of compensation algorithms on false
negatives (see online version for colours)

We examine the worst-case bandwidth requirements
of our compensation algorithms by computing the
maximum bandwidth required per station per time
window Tw. For simplicity we assume Tw = 1 s. Figure 4
depicts the effect of compensation algorithms on the
worst-case bandwidth requirements. For p = 0 the
maximum bandwidth requirements for the adaptive case
is the same as the base case. The reason is that due to
no message loss the adaptive case does not rebroadcast
messages and produces exactly the same maximum
bandwidth as the base case. For p = 0, the fixed case
produces bandwidth that is twice as much as the base
case because every message is broadcast twice and
communication is error-free. The reason is that the fixed
case broadcasts every message twice. Due to no loss of
messages the produced bandwidth is exactly double of
the corresponding base case. A similar behaviour can be
observed for p = 1. Every station is unable to compute
N3 triggers due to unavailability of information from
its neighbours. So a station broadcasts only its local
N1 triggers. There are no rebroadcasts in the adaptive
case because for p = 1 the link quality remains zero and
rebroadcast is abandoned. The maximum bandwidth
requirement of the base case is less than both the
fixed case and the adaptive case. However, the base
case produces comparatively more false negatives. On
the other hand, the fixed case imposes the highest

bandwidth requirement but produces the least number
of false negatives. The adaptive case tries to reduce
bandwidth production by selectively rebroadcasting.
The adaptive case reduces bandwidth compared to the
fixed case but at the cost of producing a higher number
of false negatives than the fixed case. We see that more
accurate event detection requires additional bandwidth.
The system layer is required to meet the worst case
bandwidth requirement in order to keep the number of
false negatives within a certain limit.

Another approach to minimise false negatives is
the way the algorithm handles undecided triggers local
to a station. We consider a system layer with faulty
communication links. Therefore, it is likely that a
station may not be able to receive sufficient information
from its neighbours. Consequently, some of the local
triggers (including N1 and N2) at the station may
remain undecided. There are three different options to
handle these undecided triggers. First, discarding all
the undecided triggers, a station may falsely discard
many triggers. This will lead to a high number of
false negatives. Second, reporting all undecided triggers
as false positives will exclude the possibility of false
negatives but this will push the number of false positives
to a maximum. In fact, this option is equivalent to
reporting everything to the CRS. Third, the algorithm
reports only undecided N2 triggers to the CRS. There
are two assumptions underlying this option. First, an
N2 trigger is an N3 trigger but due to communication
failures it was not promoted to an N3 trigger. In case
the assumption is correct, false negatives will reduce
without an increase in false positives. Second, it is
assumed that an undecided N1 trigger is random noise
and must be discarded. Again, if the assumption is
correct then neither false positives nor false negatives
will increase. Otherwise a node may falsely discard the
N1 trigger.

Figure 5 depicts the effect of reporting undecided N2
triggers on the performance of our three cases: base,
fixed and adaptive for various link loss probabilities. For
p = 0, all cases have the same number of false positives.
The reason is that for p = 0, the communication is
reliable and all possible N3 triggers are successfully
computed. The N2 triggers reported in this case are
definitely noise. For p = 1, there are no false positives.
By definition, a false positive must be an N2 trigger.
Since, for p = 1, all messages are lost no station is
able to compute an N2 trigger. Therefore, the number
of false positives drops to zero. On the other hand,
we see that the number of false negatives is maximal;
all undecided N1 triggers are falsely discarded. The
decline in false positives with increase in p is due to
the fact that fewer N2 triggers are computed in a more
lossy environment. For that reason, we see a sharp
decline in false positives for the base case. In general,
we see that by reporting undecided N2 triggers the
number of false negatives decrease. Moreover, the rate
of decrease in false negatives is higher in cases where
the core algorithm is executed in combination with some
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Figure 4 The impact of compensation algorithms on maximum bandwidth production: (a) the core algorithm without
rebroadcasts; (b) the fixed rebroadcasts and (c) the adaptive rebroadcasts

Figure 5 The effect of reporting undecided N2 triggers to the CRS: (a) the core algorithm without rebroadcasts;
(b) the fixed rebroadcasts and (c) the adaptive rebroadcasts (see online version for colours)

compensation algorithm. However, the higher decrease
in false negatives is at the cost of higher number of false
positives in the corresponding cases.

5.2 Lessons learned

Our distributed event detection algorithm does not
produce false negatives or false positives in an
ideal communication environment. However, due to
unreliable wireless communication the algorithm suffers
from false negatives. Since high-energy cosmic rays are
extremely rare, false negatives are unacceptable. To
reduce false negatives we evaluated two approaches:
message redundancy and reporting partially aggregated
data (N2 triggers). However, message redundancy
requires additional bandwidth. Similarly, reporting N2
triggers causes false positives which are also resource
consuming.

We notice that under ideal circumstances, the
bandwidth requirements exceed what many networks
solutions (e.g., Zigbee) can currently provide. We
have not yet considered saving energy by going into
duty-cycle mode or increasing the neighbourhood to
increase robustness at the cost of sharing the available
bandwidth among more neighbours. In short, we have
to be careful on the selection of system layer technology
used for wireless communication. The next section
discusses the system layer technology selection and the
second phase of our experiments conducted to analyse
the performance of the algorithm executed on top of the
selected system layer technology specification.

6 Phase II: Performance analysis

This section covers the second phase of our experiments.
First, we present a discussion on system layer
technology selection. Next, the system configuration
parameters are discussed. Finally, we present and
discuss the results obtained from the experiments in this
phase.

6.1 Technology selection

There are three major constraints to be considered
while establishing our network of stations for cosmic-
ray detection. These include the interstation distance,
energy budget, and communication bandwidth. There
are two considerations for the interstation distance. In
the first phase a medium-scale deployment will consist
of 160 stations with interstation distance of 150 m. In
a subsequent large-scale deployment, with thousands
of stations, the interstation distance will be extended
to 1500 m. Every station is powered by an energy-
harvesting device, limiting the station energy budget
for communication to 3 Watts. On the other hand, the
high trigger rate per station demands relatively high
bandwidth.

We opt for a communication technology that, in
principal, is commercially available. There are not many
options that meet the constraints we are dealing with.
ZigBee-Pro offers an outdoor communication range
up to 1500 m, but only 250 kbps of a bandwidth.
The 802.11x offer bandwidth upto 65 Mbps but the
outdoor communication range is restricted to 300 m.
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We chose the ZigBee-Pro specification which offers the
transmission range that is required for our large-scale
deployment. It offers the required transmission range
with a transmit power of 100mW which is within our
energy budget. It turned out that a single ZigBee-
Pro module per station is insufficient to handle the
bandwidth produced by the application layer. Thus,
multiple modules per station were assumed. However,
the choice of the number of modules per station
should also consider the energy budget available for
communication.

For our study, the stations in the simulated network
are deployed on a triangular grid with an interstation
distance of 150 m. It is assumed that the energy
consumption is below the available budget per station.
We employ the standard ZigBee-Pro configuration; the
radio propagation model is tuned such that a station
can communicate only with its geographical neighbours.

A system layer should offer enough bandwidth
required by the application layer. The building block
of the system layer for our experiments is the
ZigBee/IEEE-802.15.4 module that offers a bandwidth
of 250 kbps per channel out of the available 16 channels.
We consider three reference system layers based on their
bandwidth capacity, namely

• SL-250 kbps

• SL-750 kbps

• SL-2 Mbps that mimic one, three, and eight
ZigBee modules per station, respectively.

6.2 System parameters

The following system parameters were considered to
evaluate the behaviour of the algorithm.

Message compression: We study the effect of lossless
message compression on bandwidth usage. For this
purpose, every station uses the lossless compression
library zlib-1.2.5 to compress its outgoing message and
decompress the received messages from it neighbours.

Broadcast frequency : The broadcast frequency plays
a crucial role in this phase of the experiments.
The message size is approximated by the broadcast
frequency. On the other hand, the system layers that
are used in this phase are sensitive to message size.
For example, longer messages have higher chances of
suffering from bit-errors. Therefore, it is important
to explore the performance of the algorithm for a
range of broadcast frequencies. We consider broadcast
frequencies in the close interval [1, 40] of natural
numbers.

Message redundancy : The selected system layers are
based on lossy communication. This means that some
messages are lost due to collisions and various other
reasons. To compensate the message loss, we introduce
message redundancy at the application layers. The
message redundancy is based on fixed rebroadcasting.

More specifically, the application layer at a station
hands over every message to the system layer two times
for broadcasting to its first hop neighbours.

Handling undecided triggers: The selected system
layers for this phase of the experiments use real-
world specifications. Therefore, it is important to
thoroughly analyse the performance of the algorithm
while considering the different options, discussed in
Section 4.4, for handling undecided triggers.

6.3 Results

The performance analysis begins by evaluating the
effectiveness of bundling. As discussed in Section 4.4,
bundling can help in reducing bandwidth consumption.
We compared the bandwidth consumption of our base
algorithm (which uses bundling) with a naive algorithm
where each trigger is broadcast immediately after
its occurrence. A comparison of the two algorithms
is shown in Figure 6; bundling reduces bandwidth
consumption by approximately a factor of 4.

Figure 6 Effect of bundling on bandwidth consumption
(see online version for colours)

We evaluate the effect of lossless message compression
on bandwidth production of our algorithm. As shown in
Figure 7(a), we consider two stations A and B with a
low and high N1 trigger rate respectively. Figure 7(b)
shows the reduction in bandwidth consumption due to
compression; compression is more effective for station
B with a higher rate of N1 triggers. Since message
compression is computationally expensive, it is not
always desirable to apply it when there is no significant
gain. However, it is possible to make the decision
of compressing a message dependent on the local N1
trigger rate. In this case message compression is applied
only when a significant gain is expected; otherwise, the
message is broadcast without compression.

Next we consider the accuracy of our algorithm.
Ideally, the algorithm is expected to be 100% accurate
which means that it should detect all N3 triggers.
However, due to communication failures the algorithm
may not be able to maintain the ideal accuracy.
The algorithm is executed on top of each of our
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Figure 7 Effect of message compression on bandwidth consumption: (a) N1 trigger rate and (b) diff. due to compression
(see online version for colours)

three reference system layers. To see the effect of
broadcast frequency on accuracy of the algorithm,
different broadcast frequencies are used for the same
system layer. A comparison of the accuracy level for
various broadcast frequencies is shown in Figure 8. The
level of accuracy also improves with the increase in
available bandwidth at the system layer, which allows
for the higher broadcast frequencies. Moreover, the
SL-750 kbps system is a moderate choice among our
three reference system layers. However, neither of the
choices of broadcast frequencies and system layers help
to reach the accuracy demands of our application.

Figure 8 Effect of broadcast frequency on detecting N3
triggers (see online version for colours)

The reason for lower accuracy lies in the communication
failures at the system layer. To improve the quality
of communication we introduced message redundancy
at the system layer. The source station broadcasts
each message twice. Figure 9 shows the effect of
message redundancy on the accuracy of the algorithm.
There is an overall improvement in accuracy across
all the system layers. The SL-250 kbps system shows
improvement in low broadcast frequency areas. The
reason is that a high broadcast frequency generates
more traffic (messages) and because of the higher rates
of packet collisions the relatively lower capacity of the

system layer masks the expected improvement due to
redundancy.

Figure 9 Detecting N3 triggers with fixed-rebroadcasts
(see online version for colours)

We see a decline in accuracy using SL-250 kbps after
a broadcast frequency of 20. Similarly, a decline for
SL-750 kbps is observed after a broadcast frequency
of 30. The reason is that after these critical points,
the corresponding system layers are unable to handle
the generated traffic. Consequently, the accuracy starts
retarding because of the higher packet collisions
and packet drops at the MAC layer queues of the
source stations. Figure 9 also shows that SL-750 kbps
optimally uses its bandwidth to exploit message
redundancy and boosts up the accuracy closer to
SL-2 Mbps.

Although message redundancy helps in improving
the accuracy, this improvement is not without a cost,
namely, more bandwidth. Figure 10 shows a comparison
of bandwidth utilisation of the base algorithm and
the algorithm with message redundancy at the system
layer. Note that we consider only SL-750 kbps. The
improved accuracy comes at an increased cost of
bandwidth consumption in case of message redundancy.
Message redundancy leads to an increased rate of N3
detections, which explains the spikes in Figure 10. The
bandwidth consumption is more pronounced because



Reliable localised event detection in a wireless distributed radio telescope 11

Figure 10 Effect of redundancy on bandwidth consumption, using SL-750 kbps: (a) a broadcast frequency of 1 and (b) a
broadcast frequency of 40 (see online version for colours)

the advertisement bundles are also broadcast twice in
case of message redundancy. We also observe that the
bandwidth consumption is relatively higher in the case
of high broadcast frequency.

So far we assumed that the algorithm discards
undecided triggers. Based on discussion in Sec. 4.4, the
accuracy of the algorithm is compared with respect
to three different strategies regarding the treatment of
the undecided triggers. These strategies are: discard all,
report all, report N2. The associated cost in terms of
f+ produced under each strategy is also assessed.

It is possible to achieve 100% accuracy by reporting
all undecided triggers to CRS (see Figure 11(a)), though
at the cost of a high percentage of false positives
(as shown in Figure 11(b)). Discarding all undecided
triggers will produce no f+ but the corresponding
level of accuracy is low. As a middle way, reporting
only N2 triggers maintains higher accuracy compared
to the case of discarding-all, and a lower rate of f+

compared to the case reporting-all. Moreover, as shown
in Figure 12, message redundancy raises the accuracy
level to 95% for higher broadcast frequencies. The rate
of f+ is nearly constant, especially in case of reporting
N2 triggers.

Now we analyse the effect of reporting N2 triggers
by comparing the accuracy and efficiency across
our reference system layers. Figure 13 compares the
performance of the base algorithm under different
system layers. Figure 13(a) shows that the accuracy
level increases as we switch to system layers with higher
bandwidth. The reason is that the system layer with
higher bandwidth helps to detect more N2 triggers;
which increases the chances of reporting those triggers
that are actually N3 triggers but due to insufficient
information they were promoted as only N2 triggers. On
the other hand, as shown in Figure 13(b), the rate of f+

is constant and approximately similar for all the three
system layers. However, it should not be interpreted
as if the same number of f+ are reported under each
system layer. For example, 20% of f+ will mean a
higher number in case more triggers are reported by a
certain system layer.

Figure 14 compares the performance of the algorithm
with redundancy at the system layers. The performance
pattern is the same except that it is at a higher
scale. The SL-2 Mbps and SL-750 kbps systems achieve
an accuracy level above 95% for higher broadcast
frequencies. This indicates the significance of SL-
750 kbps for optimum utilisation of the bandwidth for
the nature of traffic produced by the application.

7 Conclusion

Collaborative local data analysis using wireless
communication is the only geographically scalable
solution for high-energy cosmic ray detection. However,
it suffers from false negatives due to unreliable wireless
communication. Since high-energy cosmic rays are
extremely rare, false negatives are unacceptable. We
identified several factors that influence the number
of false negatives produced by the algorithm. These
include broadcast frequency, message redundancy, and
handling undecided triggers. Each of these factors has
an associated cost in terms of resource usage.

An increase in broadcast frequency (to a certain
level) shows a positive impact on detecting the number
of N3 triggers, thus decreasing the number of false
negatives. This improvement comes at the cost of
additional bandwidth consumption caused by message
overhead due to higher number of messages. Similarly,
a moderate level of message redundancy also helps
reduce the number of false negatives. However, it
imposes additional bandwidth requirements on the
system layer. Another factor that is crucial to the
performance of our algorithm is the way the undecided
triggers are treated. Reporting undecided triggers to
the CRS helps reduce the number of false negatives
but it also causes false positives. Each false positive
reported to CRS consumes resources, most importantly
the communication bandwidth. We found that the best
trade-off is to report N2 triggers to CRS.

In short, there are trade-offs associated with
the performance of our algorithm. We identified
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Figure 11 Handling undecided triggers with the base algorithm: (a) N3 triggers and (b) false positives (see online version
for colours)

Figure 12 Handling undecided triggers with the fixed-rebroadcasts algorithm: (a) N3 detection and (b) false positives
(see online version for colours)

Figure 13 Reporting N2 wrt our system layers. Base algorithm, no redundancy: (a) N3 detection and (b) false positives
(see online version for colours)

and experimentally analysed those trade-offs. Our
experiments indicate that a carefully chosen high
broadcast frequency, message redundancy at the system
layer, reporting N2 triggers to CRS, and a system layer
that can provide up to 750 Kbps bandwidth per station
can lead to an accuracy of more than 95% at the cost
of an unavoidable moderate number of false positives.

The work presented in this paper forms the core
of our approach. Although we are confident that our
approach is highly scalable due to its inherent nature
of reliance on extremely local information. Nevertheless,
we analysed the performance of our approach having a
small-scale network. A challenging task for future work
is to manipulate the traces without loss of its basic
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Figure 14 Reporting N2 with the fixed-rebroadcasts algorithm: (a) N3 detection and (b) false positives (see online version
for colours)

properties and extend them to large network on scale
of thousands of nodes. Then the next step will be to
analyse the performance of our algorithm in that large
setup.
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