
A Modeling Framework
for Gossip-based Information Spread

Rena Bakhshi∗, Daniela Gavidia∗, Wan Fokkink∗, Maarten van Steen∗
∗Department of Computer Science, Vrije Universiteit Amsterdam, The Netherlands

Abstract—We present an analytical framework for gossip
protocols based on the pairwise information exchange between
interacting nodes. This framework allows for studying the impact
of protocol parameters on the performance of the protocol. Pre-
viously, gossip-based information dissemination protocols have
been analyzed under the assumption of perfect, lossless commu-
nication channels. We extend our framework for the analysis
of networks with lossy channels. We show how the presence
of message loss, coupled with specific topology configurations,
impacts the expected behavior of the protocol. We validate the
obtained models against simulations for two protocols.

I. INTRODUCTION

Gossip protocols have emerged as an attractive solution for
distributing information in large-scale systems, due to their
simplicity and efficiency. Randomness and the distributed na-
ture of gossip protocols considerably increase their robustness
compared to deterministic protocols, also in the presence of
failures and data loss.

Although gossip protocols are characterized by their super-
ficial simplicity, the large-scale behavior of a gossip system
is not easily predictable. From the perspective of protocol
design and behavior prediction, this is an undesirable situation,
and with the growing number of gossip protocols, there is
an increasing demand for their analysis in an insightful and
systematic way.

However, the formal analysis of these protocols is still a
rather unexplored research field with many challenges, in part
caused by the fact that traditional techniques quickly lead to
a state-space explosion (see, e.g., [1], [2]). In [3], we have
proposed a modelling framework for gossip-based information
dissemination protocol, in which each node periodically selects
a random peer and shuffles its local data. In this paper, we
show that this approach is generally applicable to gossip proto-
cols for information dissemination, and we extend the analysis
method to networks with lossy channels. An exchange of data
between nodes is modelled as a state transition capturing the
presence or absence of a selected data item before and after a
gossip between two nodes.

Our modelling framework allows for the prediction of the
system behavior in large-scale environments. We propose a
model based on local pairwise interactions which in combi-
nation with model checking (cf. [4]) or with the mean-field
framework (cf. [5]) allows for the analysis of the emergent
behaviour of the system. The model can also be used for
optimization of system parameters and performance (cf. [3]),
and for fast event-based simulation, as it is done in this paper.

We introduce our theoretical framework initially assuming

no communication failures in the network. Later, we show
that the framework is applicable to networks where nodes
communicate over an unreliable medium. An important part
of our proposed framework is the probability 𝑃drop that an
observed item in a node’s local storage has been replaced by
another item after a gossip. We derive the expressions for this
probability under the assumption of perfect communication
medium for two protocols, Newscast [6] and Shuffle [7]. In
the presence of message loss, however, the dependence of the
probability on the type of underlying network graph emerges.
We deconstruct the expression for 𝑃drop into its main compo-
nents, and identify the ones that depend on specific scenario
configurations, i.e., message loss and topology combinations.
One such component is the probability of an observed item
found at one gossiping node, to be also found at its peer.
Since it is not feasible to cover all possible network topologies
in one formula, the computation of this probability is based
on statistical data that can be obtained from Monte Carlo
simulations of the protocol at hand.

Since the work of Demers et al. [8], gossip protocols
often follow bidirectional data exchange (push-pull) for better
performance. As observed in [9], the performance of these
protocols is usually evaluated under the assumption of a
perfect, error-free communication medium. Thus, data ex-
change operations between nodes are generally considered to
be atomic operations, e.g., [10], [11], [12], [13], [14], [7], [15],
[3]. That is, if a node initiates a gossip with another node, both
nodes base their local decisions upon each other’s data, and in
some protocols even guarantee the preservation of each other’s
data. In practice, however, implementing data exchange as an
atomic operation is hard to achieve assuming communication
over unreliable media [16].

In this respect, our paper makes an additional contribution;
it investigates the impact of a realistic environment with
lossy communication channels on a push-pull-based gossip
protocol. Furthermore, we present in more detail the following
observations: (a) Introducing message loss in the network
model affects the emergent behavior of the protocol in a
specific manner: with the introduction of lossy communication
channels, the correlation between local storage content of
neighboring nodes increases, and the degree of the correlation
depends on the network topology. (b) The fewer neighbors
nodes have in the underlying network, the stronger the effect
of message loss on the emergent behavior of the protocol.
For fully connected networks, message loss does not have an
impact on the distribution of data over the network, which

remains uniform (as observed when there are no losses).
Two areas of research are relevant to our work: generic mod-

elling frameworks for gossip protocols and the performance of
gossip protocols in the presence of message loss. Automated
mean-field framework for dynamic gossip networks has been
presented in [17]. Due to the underlying mean-field method,
used by this framework, the results are accurate only for
very large networks and for average behavior of the modelled
system. The mean-field framework can be combined with our
framework, as it is shown in [5] for Shuffle.

There is previous work [18] on a simple gossip-based
membership protocol with nonatomic protocol actions in the
presence of message loss of up to 1%. The authors proposed
to use a push-based gossip protocol, in which only an active
node sends data to its peer, and immediately removes the sent
data from its cache. Moreover, the node sends only two items,
IP addresses and ports of itself and of a random peer from its
local cache. In the protocols that we study, each gossiping pair
exchanges a random subset of the data items. The authors show
the protocol correctness modelling it by graph transformations,
similar to the approach in [2]. The protocol properties analyzed
include the expected number of neighbors a node has and the
uniformity of the neighborhood lists.

The paper is organized as follows. Sec. II outlines the class
of gossip protocols that can be analyzed with our framework,
presented in Sec. III. We consider two case studies, Newscast
and Shuffle, and demonstrate the modelling and derivation of
the state transition matrix for them, in Sec. IV and Sec. V,
respectively. In Sec. VI, we model and analyze Shuffle in the
presence of message loss. Sec. VII stretches the scope of our
theoretical framework to gossip-based membership protocols
like Cyclon. Sec. VIII concludes the paper.

II. BACKGROUND

In this section, we specify a class of gossip protocols for
which our modelling framework is applicable. We consider
large networks, where nodes interact in a peer-to-peer style.
All nodes have a common agreement on the frequency of
gossiping. Each node stores local data in its cache and
executes two different threads, an active and a passive one
(see Fig. 1). The active thread periodically initiates a contact
with a randomly chosen peer 𝑝 by sending it a (sub)set 𝜎 of
its cache, and waits for a reply. Upon reception of the reply
𝜎𝑝, the node updates its cache based on the cache, 𝜎 and 𝜎𝑝.

The passive thread waits for a message sent by the active
thread of a neighbor and replies to it with its data 𝜎. The
node then updates its cache based on the stored, received and
sent data. The message with its content is called an exchange

wait (Δ𝑡 time units)
𝑝← RandomPeer();
𝜎 ← PrepareMsg();
send 𝜎 to 𝑝;
wait until receive(𝜎𝑝)
𝜎 ← Update(𝜎, 𝜎𝑝);

wait until receive(𝜎𝑝)
𝜎 ← PrepareMsg();
send 𝜎 to sender(𝜎𝑝);
𝜎 ← Update(𝜎, 𝜎𝑝);

(a) active thread (b) passive thread

Fig. 1. Skeleton of a gossip protocol

buffer. Nodes that execute their active thread are initiators, and
nodes that execute their passive thread are called contacted.

The generic protocol, described above, is a push-pull gossip
protocol. Other variations of gossip protocols are ones in
which the initiator only sends local data to its gossip partner
(push), and ones in which an initiator only requests data
from its peer (pull). All three versions of gossip protocols
are covered by our framework.

The random peer selection RandomPeer() is based on the
set of neighbors as determined by the underlying network
graph. The nature of the data and the result of the generic
operations in Fig. 1 are application-dependent. In gossip-based
information dissemination protocols like [13], [7], a finite
list of news items composes the local cache of a node. The
operation 𝜎 ← PrepareMsg() in Fig. 1 selects a random (or
predefined) set of items from the cache of the node. The
method Update merges the list of old items with the list of
received items. Properties of the protocols that can be analyzed
within our framework include the number of copies of an item
in the network over time and the speed at which items spread
throughout the network.

In gossip-based membership management protocols such as
[14], [19], a cache of each node consists of a set of its peer
IP addresses, called the partial view of the membership of
the network. Update produces a sample of the union of the
old and the received views. The performance metrics of these
protocols include a distribution of the partial view size, and
the number of nodes reached in the presence of node failures.

We refer to [20] for other applications of gossip protocols.
As we demonstrate later in this paper, our framework models
gossip-based information dissemination protocols, but it can
be also applied to other type of applications, such as gossip-
based membership protocols.

III. PAIRWISE INTERACTION MODEL

An exchange of data items between nodes is modelled as
a state transition, capturing the presence or absence of an
observed data item 𝑑 before and after a gossip interaction
between two nodes: an initiator 𝐴 and a contacted node 𝐵.
Each state is then a pair (𝑎, 𝑏) of bits, each indicating the
presence (if equal to 1) or the absence (if equal to 0) of the
item in the cache of 𝐴 and 𝐵, respectively.

The model has four possible states of the caches of 𝐴
and 𝐵: (1) when both hold 𝑑, (2–3) either of the caches
holds the item 𝑑, and (4) neither cache holds 𝑑. These
correspond to the states (0, 0), (0, 1), (1, 0), and (1, 1) in the
state transition diagram, shown as Fig. 2. Transitions from
one state to another are labelled by the respective transition
probabilities 𝑃 (𝑎2𝑏2∣𝑎1𝑏1), where 𝑎1𝑏1 is the state before a
gossip interaction, and 𝑎2𝑏2 is the state after the interaction,
with 𝑎𝑖, 𝑏𝑖 ∈ {0, 1}. 𝑎1, 𝑎2 and 𝑏1, 𝑏2 correspond to states of
nodes 𝐴 and 𝐵. For instance, 𝑃 (01∣10) means that node 𝐴 had
𝑑 before the interaction, which it passed on to 𝐵, afterwards.

The building blocks of all transition probabilities
𝑃 (𝑎2𝑏2∣𝑎1𝑏1) of the state diagram are two probabilities:
(i) the probability 𝑃select of an item to be selected by a node

2

(0, 0) (0, 1)

(1, 0) (1, 1)
𝑃
(1
0∣0
1)

𝑃
(0
1∣1
0)

𝑃 (11∣10)
𝑃 (10∣11)

𝑃
(0
1
∣11

)

𝑃
(1
1
∣01

)

𝑃 (00∣01)

𝑃
(0
0
∣10

)

𝑃
(00∣11)

𝑃 (00∣00) 𝑃 (01∣01)

𝑃 (10∣10) 𝑃 (01∣01)

Fig. 2. Pairwise interaction model

from its cache for a gossip, and (ii) the probability 𝑃drop

that an item is replaced by another one, received by its node
in the gossip. The expressions for 𝑃select and 𝑃drop depend
on specifics of the operations PrepareMsg and Update,
respectively. Moreover, these probabilities are functions of
the number of items 𝑛, exchange buffer size 𝑠, and cache size
𝑐, and 0 < 𝑠 ≤ 𝑐. We assume that 𝑐 < 𝑛, i.e. all 𝑛 items
cannot be stored in a single local cache. We explain our
framework by considering state transitions and computing the
corresponding probabilities for several case studies.

Our state diagram differs from a Markov chain of the
system: it expresses a state of gossiping pair rather than
state of all nodes. The transition probabilities are used with
other frameworks, e.g., mean-field framework and numerical
simulations, to study the emergent behaviour of system.

IV. CASE STUDY: NEWSCAST

We now briefly describe our first case study, a simple push-
pull information propagation protocol. It is a variation of the
Newscast protocol [6]. In the original Newscast, each item is
paired with a timestamp indicating when it was created. This
protocol can also be modelled using our analytical framework;
we will come back to the details in Sec. VII.

The basic idea of the protocol is a periodic exchange of
data items published by nodes in the network. Items can be,
for example, a number or network address (IP and port) of
a node. For now, we assume that nodes do not crash and
communication channels are failure-free.

A. Specification

The protocol operates in a wide area network1. A node
periodically picks a random peer and exchanges 𝑠 random
items with it. The node then selects 𝑐 random items for its
new cache among the received items and those in its cache.
The methods in Fig. 1 for Newscast are summarised in the
following table:

method operation
RandomPeer() select a peer uniformly at random
PrepareMsg() select 𝑠 random items
Update(𝜎, 𝜎𝑝) store only 𝑐 random items, selected among the

items in its cache and the received items 𝜎𝑝

1In the network of gossiping nodes, an information dissemination is fully
dictated by gossiping frequency instead of communication latencies (cf. [6]).

B. Transition diagram

We analyse the spread of a generic item, which we call
𝑑, using the framework introduced in Sec. III. As stated
previously, there are four possible states of the caches of 𝐴
and 𝐵. The state (0, 0) has only one outgoing transition, back
to itself. 𝑃 (00∣00) = 1 since if 𝐴 and 𝐵 do not have 𝑑 before
their exchange then they clearly still do not have 𝑑 after the
exchange. We now determine values for other probabilities
𝑃 (𝑎2𝑏2∣𝑎1𝑏1). Due to the symmetry of exchange between gos-
siping nodes in the protocol, 𝑃 (𝑎2𝑏2∣𝑎1𝑏1) = 𝑃 (𝑏2𝑎2∣𝑏1𝑎1),
and 𝑃drop , 𝑃select are the same for active and passive nodes.
We use 𝑃¬select for 1− 𝑃select , and 𝑃¬drop for 1− 𝑃drop .

State (0, 1). Before gossip, 𝑑 is only in the cache of node 𝐵.
𝑎2𝑏2 = 01: 𝐵 neither sends nor drops 𝑑 from its cache, or 𝐵

sends and keeps 𝑑, and 𝐴 drops it, i.e., the probability is
𝑃 (01∣01) = 𝑃¬select ⋅ 𝑃¬drop + 𝑃select ⋅ 𝑃¬drop ⋅ 𝑃drop .

𝑎2𝑏2 = 10: 𝐵 selects and drops 𝑑, and 𝐴 keeps it; i.e., the
probability is 𝑃 (10∣01) = 𝑃select ⋅ 𝑃drop ⋅ 𝑃¬drop .

𝑎2𝑏2 = 11: 𝐵 sends 𝑑, and both nodes keep it; i.e.,
𝑃 (11∣01) = 𝑃select ⋅ 𝑃¬drop ⋅ 𝑃¬drop .

𝑎2𝑏2 = 00: 𝐵 sends 𝑑 and both nodes drop it, or 𝐵 does not
send and drops 𝑑; 𝑃 (00∣01) = 𝑃select ⋅ 𝑃drop ⋅ 𝑃drop +
𝑃¬select ⋅ 𝑃drop .

State (1, 1). Before gossip, 𝑑 is in the caches of both nodes.
𝑎2𝑏2 = 01: node 𝐴 drops 𝑑 while updating its cache, but 𝐵

keeps it; i.e., 𝑃 (01∣11) = 𝑃¬drop ⋅ 𝑃drop

𝑎2𝑏2 = 10: this transition is symmetric to the previous one.
𝑎2𝑏2 = 11: neither 𝐴 nor 𝐵 drops the item 𝑑; i.e., 𝑃 (11∣11) =

(𝑃¬drop)
2.

𝑎2𝑏2 = 00: both 𝐴 and 𝐵 drop 𝑑; i.e., 𝑃 (00∣11) = (𝑃drop)
2.

All transition probabilities are summarized in Fig. 3

𝑃 (01∣01) = 𝑃 (10∣10) = (𝑃¬select + 𝑃select ⋅ 𝑃drop) ⋅ 𝑃¬drop

𝑃 (10∣01) = 𝑃 (01∣10) = 𝑃select ⋅ 𝑃drop ⋅ 𝑃¬drop

𝑃 (11∣01) = 𝑃 (11∣10) = 𝑃select ⋅ 𝑃¬drop ⋅ 𝑃¬drop

𝑃 (00∣01) = 𝑃 (00∣10) = (𝑃select ⋅ 𝑃drop + 𝑃¬select) ⋅ 𝑃drop

𝑃 (01∣11) = 𝑃 (10∣11) = 𝑃¬drop ⋅ 𝑃drop

𝑃 (11∣11) = (𝑃¬drop)
2

𝑃 (00∣11) = (𝑃drop)
2

𝑃 (00∣00) = 1

Fig. 3. Transition probabilities

C. Building blocks: 𝑃select and 𝑃drop

We now derive the expressions for the probabilities 𝑃select

and 𝑃drop . The following analysis assumes that all node caches
are full; that is, the network is already running for a while.

Consider nodes 𝐴 and 𝐵 engaged in an exchange, and let 𝐵
receive the exchange buffer 𝑆𝐴 from 𝐴. Let 𝑘 be the number
of duplicates (see Fig. 4), i.e., the items of an intersection
of the node cache 𝐶𝐵 and the exchange buffer of its gossip
partner 𝑆𝐴 (i.e., 𝑆𝐴 ∩ 𝐶𝐵).

The probability of selecting an item 𝑑 in the cache is the
number of selected items 𝑠 divided by the total number of
items in the cache 𝑐: 𝑃select = 𝑠

𝑐 . Thus, the probability that
an item 𝑑 in the cache is not selected is: 𝑃¬select =

𝑐−𝑠
𝑐 .

Among the 𝑐 items in 𝐶𝐵 , there are 𝑘 items also in 𝑆𝐴;
thus, only 𝑐 random items of the total 𝑐 + 𝑠 − 𝑘 items in

3

𝐶𝐵
𝑆𝐴

𝑘 = 𝑆𝐴 ∩ 𝐶𝐵

(a)

𝑆𝐴

𝐶𝐵

𝑆𝐵

𝑠 = 𝑆𝐵 ∩ 𝑆𝐴

(b)

Fig. 4. a) Items sent by 𝐴 that are in the cache of 𝐵; b) Items in common
for the exchange buffers of both 𝐴 and 𝐵.

𝐶𝐵 ∪ (𝑆𝐴∖𝐶𝐵) can be kept: 𝑃¬drop(𝑘) =
𝑐

𝑐+𝑠−𝑘 . Thus, the
probability 𝑃drop that an item in 𝐶𝐵 ∪ (𝑆𝐴∖𝐶𝐵) is dropped
from 𝐶𝐵 , given 𝑘 items in 𝑆𝐴 ∩ 𝐶𝐵 is as follows:

𝑃drop(𝑘) = 1− 𝑐

𝑐+ 𝑠− 𝑘
. (1)

Assuming uniform sampling of items, the average value of
𝑘 is 𝑠 ⋅ 𝑐

𝑛 . Thus, the probability of dropping an item after
the exchange 𝑃drop is 1

1+𝑐𝑛/(𝑠(𝑛−𝑐)) . Later we discuss a case
when the assumption of uniform sampling does not hold.

D. Validation

To validate our theoretical results, we simulated Newscast in
a round-based fashion similar to simulations in PeerSim [21].
A new item 𝑑 is initially introduced in a network of 2500
nodes at one node. In this fully connected network, caches
of all nodes are full and uniformly populated by 𝑛 = 500
items. After each gossip round, we measure the total number
of copies of 𝑑 in the network (replication property), and how
many nodes in total have seen 𝑑 over time (coverage property).

Simulations with the simplified Newscast: Each node in
the network has a cache size of 𝑐 = 100. Once in a round,
every node selects uniformly at random one node from the
network of 2500 nodes and exchanges 𝑠 = 50 random items.
For a fair comparison with the simulations with the model,
we let the nodes gossip for 1000 rounds items other than 𝑑;
items are replicated and the replicas fill the caches of all nodes.
At the round 1000, the observed item 𝑑 is inserted into the
network at a random location. From that round on, replication
and coverage are measured by the end of each round.

Simulations with the model: For the simulations with the
model, the system parameters 𝑛, 𝑐 and 𝑠 are set to 500, 100
and 50, respectively. Each node in the network only maintains
a state variable which indicates the presence or absence of 𝑑.
Nodes update their state in pairs according to the transition
probabilities in Fig. 3. While in the actual protocol, nodes
update the contents of their caches, in the model simulations,
nodes update only their state variables. Since we do not need
a startup time for the simulations with the model, at the round
0, we set the state of a random node to 1, and all others to 0.
From that round on, we track the states of the nodes.

The graphs in Fig. 5 depict the performance of the simplified
Newscast and of the analytical model in terms of replication
(left) and coverage (right) of 𝑑. The results are collected from
1000 simulation runs of the protocol and 1000 runs of the
model. In approximately 72% of the all runs, the observed
item disappears. In the graphs, however, we only considered
the runs where the item did not disappear; e.g., to obtain 1000

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500

nu
m

be
r

of
 r

ep
lic

as

rounds

protocol and model
 0

 500

 1000

 1500

 2000

 2500

 3000

 0 100 200 300 400 500

nu
m

be
r

of
 n

od
es

rounds

protocol and model

Fig. 5. Clique: Replication (left) and coverage (right) of item 𝑑 for Newscast
and its model, with 𝑐 = 100, 𝑛 = 500, 𝑠 = 50.

runs of the protocol displayed in Fig. 5, we performed a total
of 3700 runs. Assuming a normal distribution of the results, the
confidence interval for 95% confidence is 16 times narrower
than the standard deviations drawn on the graphs.

Fig. 5 show the average and standard deviation of the
successful runs with Newscast. The standard deviation bars
on the graphs are the standard deviation of the replicas and
number of nodes that have seen item in the system. For all
successful runs, the network reaches the equilibrium, in which
there are around 500 replicas of 𝑑. Due to random gossiping,
item 𝑑 is eventually seen by all nodes in the network, when
coverage reaches all 2500 nodes.

We have chosen this type of network graph for a basic
introduction of our framework since a uniform distribution of
items over the network is clearly a valid assumption in a fully
connected network of nodes executing Newscast. We will turn
to other types of network graphs in the next case study. Our
framework allows for modelling of push-only as well pull-only
gossip protocols, see [22].

V. CASE STUDY: SHUFFLE

We now move on to another case, the Shuffle protocol
introduced in [7] and originally analyzed in [3] using our
framework. This section is intended to make the reader fa-
miliar with the analysis of this protocol.

A. Specification

Shuffle aims at the conservation of data in an ad hoc
network. Each node maintains a cache of data items that
are disseminated throughout the network. The dissemination
is done by periodic exchange of 𝑠 random items between
two gossiping peers. The generic routines in Fig. 1 can be
summarized for Shuffle as follows:

method operation
RandomPeer() select a peer uniformly at random
PrepareMsg() select 𝑠 random items
Update(𝜎, 𝜎𝑝) ∙ add 𝜎𝑝 received entries to the cache;

∙ remove duplicated items;
∙ remove items among 𝜎 ∖ 𝜎𝑝 uniformly
at random until the cache has 𝑐 items.

The procedure of selection of items is similar to the one
in Newscast, but items are discarded according to a different
policy: (i) a node cannot discard an item unless it is sent to the
gossip partner; (ii) the partner is not allowed to drop received
items. A node can keep only 𝑐 items in its cache after the
exchange. A peer will favor dropping items it has just sent over
other items in its cache. Note that in this way, an exchanged

4

item will always be preserved, and possibly even replicated.
Thus, discarding items does not lead to the loss of information
in the network (if there is no message loss).

B. Transition Diagram

Unlike in Newscast, nodes are not allowed to discard
the items received from their gossip partners. Taking this
difference into account, the transition probabilities for Shuffle
are quite easy to derive from the transitions in Fig. 3. Note
that for this protocol the state (0, 0) has only a self-transition,
and no other outgoing or incoming transitions, because of the
preservation nature of the protocol. That is, if either nodes
send an item, its partner keeps this copy as well, and if an
item is not among the selected for a shuffle, the item is not
replaced by another one. The transition probabilities can be
easily computed, see Fig. 6. For more details on derivation of
these transition probabilities, we refer to [3].

𝑃 (01∣01) = 𝑃 (10∣10)=𝑃¬select 𝑃 (10∣01)=𝑃 (01∣10)=𝑃select ⋅𝑃drop

𝑃 (01∣11) = 𝑃 (10∣11) = 𝑃select ⋅ 𝑃¬select ⋅ 𝑃drop 𝑃 (00∣00) = 1

𝑃 (11∣10) = 𝑃 (11∣01) = 𝑃select ⋅ 𝑃¬drop

𝑃 (11∣11) = 1− 2 ⋅ 𝑃select ⋅ 𝑃¬select ⋅ 𝑃drop

Fig. 6. Transition probabilities for Shuffle

𝑃select remains the same as for Newscast, 𝑠
𝑐 . However, 𝑃drop

is different for Shuffle, and we derive it in the next section.

C. Probability of Dropping an item

𝑃drop represents the probability that an item that can be
overwritten is indeed overwritten by an item received by its
node in the exchange. 𝑃drop depends on the number of items
both gossiping nodes have in common, in particular, how
many of such items the contacted node receives during the
exchange. To derive the expression for 𝑃drop , we assume a
uniform distribution of items over the network; in the absence
of message loss, this assumption is supported by experiments
in [7], [23], [3] and analysis in [24].

Consider again Fig. 4. By assumption, 𝐶𝐴 and 𝐶𝐵 are a
uniform selection from the entire population of 𝑛 items. 𝑆𝐴

and 𝑆𝐵 are chosen uniformly at random from 𝐶𝐴 and 𝐶𝐵 ,
respectively. After the exchange, node 𝐵 has to allocate items
from 𝑆𝐴 in its cache 𝐶𝐵 , taking into the account the duplicated
items in 𝑆𝐴 ∪ 𝐶𝐵 and 𝑆𝐴 ∪ 𝑆𝐵 . Basically, the items in 𝑆𝐵

that are not in 𝑆𝐴 are replaced by items in 𝑆𝐴 that are not in
𝐶𝐵 . So, every item from 𝑆𝐴 ∖ 𝑆𝐵 that is in 𝐶𝐵 means that
one item from 𝑆𝐵 ∖ 𝑆𝐴 can be kept in 𝐶𝐵 . In other words,
the probability 𝑃drop that an item from 𝑆𝐵 ∪ 𝑆𝐴 is dropped
from 𝐶𝐵 equals to the probability that an item from 𝑆𝐴 ∖ 𝑆𝐵

is not in 𝐶𝐵 . By uniform distribution, the probability is 𝑛−𝑐
𝑛−𝑠 .

Thus, 𝑃drop ≈ 𝑛−𝑐
𝑛−𝑠 . This approximation of 𝑃drop for Shuffle

has been successfully established through experiments [3], and
used for modelling and optimization in [3], [4].

VI. SHUFFLING THROUGH LOSSY CHANNELS

So far, the analysis has relied on the assumption that nodes
interact in a perfect, lossless communication environment. We
now consider ad hoc networks where nodes are continually

communicating with each other over an unreliable medium.
We now explore the impact of lossy channels on a gossip
protocol with a push-pull information exchange.

A. Assumptions

Every message sent now has a fixed, positive probability to
be lost due to a disturbance of the communication medium.
As explained in the introduction, we no longer assume that
the shuffle procedure is atomic.

A B

(a)

A B

(b)

A B

(c)

Fig. 7. Scenarios of communication with lossy channels: (a) loss of the
request message, (b) loss of the reply message, (c) gossip without loss.

There are three general cases in pairwise communication
with respect to message delivery, as depicted in Fig. 7: (a)
node 𝐴 initiates a gossip with 𝐵 by sending a message, but
the message is lost, (b) node 𝐴 successfully initiates a gossip
with 𝐵, but a message from 𝐵 is lost on its way to 𝐴, and
(c) a gossiping pair receives messages from each other.

B. Transitions

We take the analytical model of Shuffle described in Sec. V
as starting point. In our current model, the state (0, 0) is no
longer isolated, since there is a possibility to remove the only
copy of 𝑑 from the cache of the node 𝐵, in the scenario shown
in Fig. 7(b). We again express the transition probabilities
𝑃 (𝑎2𝑏2∣𝑎1𝑏1) in terms of 𝑃select , 𝑃drop . To analyze the
protocol in the presence of message loss, we introduce into
the formal model an additional input parameter, the probability
𝑃loss that a message is not delivered to a node due to channel
loss. We use 𝑃¬loss for 1− 𝑃loss .

State (0, 0). Before shuffle, neither 𝐴 nor 𝐵 have 𝑑 in their
cache.
𝑎2𝑏2 = 00: neither 𝐴 nor 𝐵 have item 𝑑 after a shuffle,

because neither of them had it in the caches before the
shuffle: 𝑃 (00∣00) = 1.

𝑎2𝑏2 ∈ {01, 10, 11}: cannot occur, because none of the nodes
have item 𝑑.

State (1, 0). Before shuffle, 𝑑 is only in the cache of node 𝐴.
𝑎2𝑏2 = 01: occurs only when both the request of 𝐴 and the

reply of 𝐵 are successful and node 𝐴 selects and drops 𝑑:
𝑃 (01∣10) = (𝑃¬loss)

2 ⋅ 𝑃select ⋅ 𝑃drop .
𝑎2𝑏2 = 10: 𝐵 does not have 𝑑 because: (a) 𝐴 did not select
𝑑, or (b) 𝐴 selected 𝑑 but the request message got lost on
the way to 𝐵: 𝑃 (10∣10) = 𝑃¬select + 𝑃loss ⋅ 𝑃select .

𝑎2𝑏2 = 11: both nodes 𝐴 and 𝐵 have a copy of 𝑑 because:
(a) either both nodes received the gossip messages and 𝐴
selected 𝑑 and kept it, or (b) 𝐴 selected 𝑑 and the reply
message from 𝐵 got lost; that is, 𝑃 (11∣10) = (𝑃¬loss)

2 ⋅
𝑃select ⋅ 𝑃¬drop + 𝑃¬loss ⋅ 𝑃loss ⋅ 𝑃select

𝑎2𝑏2 = 00: cannot occur, as 𝐴 would only drop 𝑑 if it received
a reply, which implies that 𝐵 would keep 𝑑.

5

State (0, 1). Before shuffle, a copy of 𝑑 is only in the cache
of node 𝐵.
𝑎2𝑏2 = 01: only 𝐵 has 𝑑 because the message from 𝐴 got lost

or, 𝐵 received the message, and: (a) it did not select 𝑑 or (b)
𝐵 selected 𝑑, kept it, and reply got lost; i.e. the probability is
𝑃 (01∣01) = 𝑃¬loss ⋅(𝑃¬select+𝑃loss ⋅𝑃select ⋅𝑃¬drop)+𝑃loss .

𝑎2𝑏2 = 10: both request and reply messages were successfully
delivered and 𝐵 selected and dropped 𝑑, which amounts to
the probability 𝑃 (10∣01) = (𝑃¬loss)

2 ⋅ 𝑃select ⋅ 𝑃drop .
𝑎2𝑏2 = 11: both messages were delivered successfully, and 𝐵

selected and kept 𝑑; 𝑃 (11∣01) = (𝑃¬loss)
2 ⋅𝑃select ⋅𝑃¬drop .

𝑎2𝑏2 = 00: neither of the nodes have 𝑑, because 𝐵 selected
and dropped 𝑑, but 𝐴 did not receive the reply message.
𝑃 (00∣01) = 𝑃¬loss ⋅ 𝑃loss ⋅ 𝑃select ⋅ 𝑃drop .

State (1, 1). Before shuffle, 𝑑 is in the caches of 𝐴 and 𝐵.
𝑎2𝑏2 = 01: only 𝐵 has 𝑑 since both messages were success-

fully received, 𝐴 selected and dropped 𝑑 while 𝐵 did not
select it: 𝑃 (01∣11) = (𝑃¬loss)

2 ⋅ 𝑃select ⋅ 𝑃drop ⋅ 𝑃¬select .
𝑎2𝑏2 = 10: only 𝐴 has 𝑑 since 𝐵 selected 𝑑, dropped it, and
𝐴 did not select 𝑑: 𝑃 (10∣11) = 𝑃¬loss ⋅𝑃¬select ⋅𝑃select ⋅𝑃drop .

𝑎2𝑏2 = 11: after the shuffle both nodes have 𝑑, because:
a) the message from 𝐴 did not arrive at 𝐵, i.e. 𝑃loss ; or
b) the message from 𝐴 was successfully received by 𝐵, but

the reply message got lost, and:
★ 𝐴 did not select 𝑑, while 𝐵 (i) did not select 𝑑 as well, or

(ii) selected and kept 𝑑. 𝑃¬loss ⋅𝑃¬select ⋅𝑃loss ⋅(𝑃¬select +
𝑃select ⋅ 𝑃¬drop); and

★ node 𝐴 selected 𝑑: 𝑃¬loss ⋅ 𝑃select ⋅ 𝑃loss ; or
c) both nodes received each other messages, and:
★ 𝐴 did not select 𝑑, while 𝐵 (i) also did not select it, or

(ii) selected and kept it: (𝑃¬loss)
2 ⋅ 𝑃¬select ⋅ (𝑃¬select +

𝑃select ⋅ 𝑃¬drop); and
★ (i) 𝐴 selected and kept 𝑑, while 𝐵 did not select 𝑑, or

(ii) both nodes selected 𝑑. (𝑃¬loss)
2 ⋅ 𝑃select ⋅ (𝑃¬select ⋅

𝑃¬drop + 𝑃select).
Hence, 𝑃 (11∣11) = 1−(2−𝑃loss ⋅(3−𝑃loss))⋅𝑃select ⋅𝑃¬select ⋅𝑃drop .
𝑎2𝑏2 = 00: discarding of an item by both nodes cannot occur.

While 𝑃loss expresses the reliability of the communication
channels, 𝑃select and 𝑃drop are derived based on the behavior
of the protocol. 𝑃select is again the random selection of items
from the cache; an item has 𝑠

𝑐 chance of being selected, re-
gardless of message loss. The calculation of 𝑃drop is complex,
and we discuss it in the remainder of this section.

C. The Probability of Dropping an Item

We now analyze how message loss affects one of the
building blocks of our model: 𝑃drop . In Sec. V-C, we have
already found an expression for 𝑃drop in the case of Shuffle,
relying on the assumption of a uniform distribution of items.
Here, we revisit 𝑃drop and derive a general formula without
making any assumptions about the distribution of items. Later
on, we will explore how message loss affects the distribution
of items, and will determine that it is the coupling of message
loss and the topology of the network that affects 𝑃drop . Having
isolated the component of 𝑃drop that is affected by the message

𝐶𝐴

𝐶𝐵
ˆ𝑐

𝑐 = 𝐶𝐴 ∩ 𝐶𝐵

(a)

𝐶𝐵

𝑆𝐵

𝑆𝐴

𝐴1 = 𝑆𝐴 ∖ 𝐶𝐵

(b)

𝑆𝐴

𝐶𝐵

𝑆𝐵

𝐴2 = 𝑆𝐵 ∖ 𝑆𝐴

(c)

Fig. 8. a) Items in common for the caches of both nodes 𝐴 and 𝐵; b) Items
sent by 𝐴 that are not in the cache of 𝐵; c) Items sent by 𝐵 that are not in
the exchange buffer of 𝐴.

loss/topology coupling, we will propose the use of statistical
data to calculate that specific part of the 𝑃drop expression.

When a node selects an item to be sent to a neighbor, there
is a probability 𝑃drop that the item will be dropped from the
node’s cache after the gossip exchange. The selected item may
be dropped only when there is a need to create space for an
item received from a gossip partner. Therefore, the probability
𝑃drop depends on the relationship between a) the new items
received from the gossip partner (for which the node needs
space, the shaded area in Fig. 8(b), referred to as 𝐴1), and
b) the items that the node has selected to send to the gossip
partner and is allowed to discard (the shaded area in Fig. 8(c),
referred to as 𝐴2). In order to find an expression for 𝑃drop , we
need to calculate the probability of an item being in 𝐴1 and
the probability of an item being in 𝐴2, which we will denote
as 𝑃 (𝐴1) and 𝑃 (𝐴2), respectively.

Given two nodes, 𝐴 and 𝐵, that engage in a gossip ex-
change, we can represent their caches as sets 𝐶𝐴 and 𝐶𝐵 , and
the sets of items they exchange with each other by 𝑆𝐴 and 𝑆𝐵 ,
respectively. The sets 𝐶𝐴 and 𝐶𝐵 may have common elements
(items), see Fig. 8(a). We define 𝑃𝑖𝑛𝑥 as the probability of any
item found in one of the caches to be also found in the other.
Knowing 𝑃𝑖𝑛𝑥, we can formulate 𝑃 (𝐴1) as 𝑃select ⋅(1− 𝑃𝑖𝑛𝑥)
and 𝑃 (𝐴2) as 𝑃select ⋅ (1− 𝑃select ⋅ 𝑃𝑖𝑛𝑥). Thus,

𝑃drop =
𝑃 (𝐴1)

𝑃 (𝐴2)
=

1− 𝑃𝑖𝑛𝑥

1− 𝑃select ⋅ 𝑃𝑖𝑛𝑥
(2)

In order to calculate a value for 𝑃drop , it is necessary to have
a value for the probability 𝑃𝑖𝑛𝑥. For the case of 𝐶𝐴 and 𝐶𝐵

being random samples of a population of 𝑛 items, we can
analytically deduce that 𝑃𝑖𝑛𝑥 = 𝑐

𝑛 . For networks with perfect
communication channels, repeated execution of Shuffle results
in a uniform distribution of items. In the next section, we look
at the effect that lossy channels have on the distribution of
items.

D. Uniform Distribution of Items: Does it Still Hold?

As already mentioned, the calculation of 𝑃drop in the
presence of message loss requires us to reason about the
contents of the gossip partner’s cache. Assuming that the items
in the caches of both gossip partners are random samples of the
totality of items in the network, we can easily estimate 𝑃𝑖𝑛𝑥 as
𝑐
𝑛 and derive an analytical expression for 𝑃drop ≈ 𝑛−𝑐

𝑛−𝑠 . In this
section, we verify whether the uniform distribution of items,
observed under no message loss, is still a valid assumption.

The Importance of Randomness

To understand the effect of message loss on abstract level,
consider one node in the network, executing Shuffle. We

6

examine the scenario from Fig. 7(b), where a reply message
from a node to the initiating node is lost due to channel failure.
When two nodes 𝐴 and 𝐵 gossip their local items to each
other, the probability that the message from 𝐵 to 𝐴 is lost, is
𝑃¬loss ⋅𝑃loss . If the message of 𝐵 is not delivered to 𝐴, items
𝑐̂ ∪ 𝑆𝐴 will be common to cache 𝐶𝐴 and cache 𝐶𝐵 after the
shuffle, since 𝐵, unaware of the failure, purges the sent items
𝑆𝐵 , and 𝐴, which received no reply, keeps its 𝑆𝐴 items.

Over time neighboring nodes have a growing intersection of
items in their cache. If a node has a small neighborhood, the
random sample becomes more biased towards the collection
of items left in the neighborhood. Limited by the access to
the storage space of the neighborhood, a set of neighbors
maintains only a subset of all items. For the fully connected
graph, since it is the entire collection of the items every node
has access to, the uniform distribution assumption in general
remains. A larger neighborhood reduces the probability of
repeated communication between two nodes, and due to the
increased communication range, there is a faster exchange
between distant areas of the network.

Experimental Observations

To support our claims that message loss affects the distri-
bution of items, we conducted simulation experiments. Each
experiment has a startup period of 1000 rounds, during which
𝑁 = 2500 nodes gossip 𝑛 = 500 different items under no
message loss. We use three different network topologies: a
fully connected network, a square grid with each internal node
having 4 neighbors, and a network where every node has
4 randomly chosen neighbors (outdegree 4). By the end of
the startup period, the items have been replicated, achieving
uniform distribution. That is, every item has a probability
𝑐
𝑛 = 100

500 = 0.2 of being present in a given node’s cache. After
the startup period has finished, the communication channel is
set up to fail with a probability 𝑃loss . We calculate, per round,
the probabilities 𝑃 (11), 𝑃 (10) and 𝑃 (01) that an exchange
involves both nodes having item 𝑥, only the initiator having
item 𝑥, or only the gossip partner having item 𝑥, respectively.

Fig. 9 shows the average values of 𝑃 (11), 𝑃 (10) and 𝑃 (01)
over 1000 rounds for different values of 𝑃loss using the three
topologies mentioned earlier. As expected, for the case of no
message loss (𝑃loss = 0) the probabilities suggest a uniform
distribution of items in the network. We can analytically
deduce their expected value, which matches the experimental
results, with 𝑃 (11) as 𝑐

𝑛 ⋅ 𝑐
𝑛 = 0.04 and 𝑃 (10) = 𝑃 (01) as

𝑐
𝑛 ⋅ (1 − 𝑐

𝑛) = 0.16. However, as the probability of message
loss increases, we observe some changes in 𝑃 (11), 𝑃 (10)
and 𝑃 (01). For the case of the fully connected network,
the probabilities remain stable, suggesting that the uniform
distribution of items remains unaffected by message loss. With
the other topologies, however, as message loss increases. the
number of gossip interactions between nodes that both have
item 𝑥 also rises. Since item 𝑥 is representative of all items
in the network, the graphs suggest that, as a consequence of
message loss, gossip partners have more items in common than
they would have if items were uniformly distributed. In other

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 0.2 0.4 0.6 0.8
Ploss

Pinx

fully connected
grid range 1
outdegree 4

 0.7

 0.75

 0.8

 0.85

 0.9

 0 0.2 0.4 0.6 0.8
Ploss

Pdrop

fully connected
grid range 1
outdegree 4

Fig. 10. Probabilities 𝑃𝑖𝑛𝑥 (left) and 𝑃drop (right), for different topologies.

words, due to message loss, a node is more likely to have
items in common with a neighbor than with another random
node in the network. Hence, the topology of the underlying
network now plays a role in calculating 𝑃drop .

E. Calculating 𝑃drop based on Statistical Data

By now, we have established that in case of message loss
the structure of neighborhoods plays an important role in de-
termining the distribution of items, which, in turn, determines
the probability of an item found in a node’s cache to be also
found in the gossip partner’s cache, 𝑃𝑖𝑛𝑥. Our calculation of
𝑃drop depends on finding a value for 𝑃𝑖𝑛𝑥. This topology
varying component can be modelled analytically or measured
experimentally from a single run of the protocol, for a given
topology. Here, we opt for obtaining 𝑃𝑖𝑛𝑥 for a given network
graph from statistical data collected from experiments. With
𝑃𝑖𝑛𝑥, we can proceed to calculate 𝑃drop , obtaining the final
building block of the model needed for validation. We can
calculate 𝑃𝑖𝑛𝑥 from the probabilities 𝑃 (11), 𝑃 (10) and 𝑃 (01)
measured experimentally in the previous section:

𝑃𝑖𝑛𝑥 =
𝑃 (11)

𝑃 (10) + 𝑃 (11)

The left graph of Fig. 10 shows the values for 𝑃𝑖𝑛𝑥 calculated
for each experiment using a different 𝑃loss . Based on these
values, we compute 𝑃drop using (2), as seen in right graph
of Fig. 10. As expected, the calculated values show that, in
the face of message loss, different topologies yield different
probabilities of dropping an item. 𝑃drop drops more harshly in
the more clustered topologies, which suffer more from neigh-
boring nodes having similar items as message loss increases.

F. Experimental Evaluation

The experiments in this section simulate the case where a
new item 𝑑 is introduced by one node in the network in which
all caches are full and uniformly populated by 𝑛 = 500 items.
Each experiment takes as input the topology of the network
to determine which pairs of nodes can gossip. In all cases,
we use a network of 𝑁 = 2500 nodes arranged in either of
the three topologies mentioned in the previous section (a fully
connected network, a square grid or a graph where every node
has 4 randomly chosen neighbors). In the experiments that
follow, after each gossip round, we measure the total number
of occurrences of 𝑑 in the network (replication), and how many
nodes in total have seen 𝑑 (coverage).

Simulations with Shuffle: Each node in the network has
a cache size of 𝑐 = 100, and sends 𝑠 = 50 items when

7

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Ploss

P(01)

fully connected
grid range 1
outdegree 4

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Ploss

P(10)

fully connected
grid range 1
outdegree 4

(b)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Ploss

P(11)

fully connected
grid range 1
outdegree 4

(c)

Fig. 9. Probability that a gossip exchange occurs between a) a node that does not have item 𝑥 and a node that has the item, b) a node that has item 𝑥 and
one that does not, and c) two nodes have item 𝑥, for different topologies.

gossiping. In each round, every node randomly selects one
of its neighbors and shuffles. For a fair comparison with the
simulations with the model, we let the nodes gossip for 1000
rounds with 𝑃loss = 0, to ensure that none of the 𝑛 = 500
initial items is lost in the startup period before initiating the
measurements of the properties. After this startup period, items
are replicated and the replicas fill the caches of all nodes.
At round 1000, 𝑃loss is set to the desired value and item 𝑑
is inserted into the network at a random location. From that
moment on, we track its replication and coverage.

Simulations with the model: For the simulations with
the model, 𝑛, 𝑐 and 𝑠 are system parameters set to 500, 100
and 50, respectively. 𝑃𝑖𝑛𝑥 is determined experimentally on the
network, and 𝑃drop is calculated using equation (2). Instead of
maintaining a cache, each node in the network only maintains
a variable that represents whether it holds item 𝑑 or not (state 1
or 0, respectively). Nodes update their state in pairs according
to the transition probabilities introduced before, see Fig. 2.
This mimics an actual exchange of items between a pair of
nodes according to Shuffle. While in the protocol this results
in both nodes updating the contents of their caches, in a

 0

 100

 200

 300

 400

 500

 600

 0 500 1000 1500 2000

nu
m

be
r

of
 r

ep
lic

as

rounds

Ploss = 0.2
Ploss = 0.4
Ploss = 0.6

 0

 500

 1000

 1500

 2000

 2500

 0 500 1000 1500 2000

nu
m

be
r

of
 n

od
es

 r
ea

ch
ed

rounds

Ploss = 0.2
Ploss = 0.4
Ploss = 0.6

 20
 40
 60
 80

 100

 0 500 1000 1500 2000

rounds

Ploss=0.6 (diff)
std. dev.

 20
 40
 60
 80

 100

re
pl

ic
at

io
n

di
ff

(s
hu

ffl
e-

m
od

el
)

Ploss=0.4 (diff)
std. dev

 20
 40
 60
 80

 100

Ploss=0.2 (diff)
std. dev.

 100
 200
 300
 400

 0 500 1000 1500 2000

rounds

Ploss=0.6 (diff)
std. dev.

 100
 200
 300
 400

co
ve

ra
ge

 d
iff

 (
sh

uf
fle

-m
od

el
)

Ploss=0.4 (diff)
std. dev

 100
 200
 300
 400

Ploss=0.2 (diff)
std. dev.

Fig. 11. Grid, range 1: Top: Replication (left) and coverage (right) of item
𝑑 for the shuffle. Bottom: difference between the shuffle and the model for
replication (left) and coverage (right).

simulation using the analytical model updating the state of
a node refers to updating only one variable: whether the node
is in possession of item 𝑑 or not. At round 0 we set the state
of a random node to 1 (while all the others have state 0) and
track the state of the nodes for the remainder of the simulation.

Figs 11 and 12 show the behavior of Shuffle (top row) and
how it compares to the analytical model (bottom row) in terms
of replication (left) and coverage (right) of 𝑑, for different
values of 𝑃loss . For each value of 𝑃loss , 100 simulation
runs (for both Shuffle and its model) were executed. Due to
message loss, it is possible for item 𝑑 to disappear after being
introduced into the network (usually in the first few rounds).
As 𝑃loss increases, this situation is more likely. In the graphs,
we only take into account the successful runs, i.e., where the
item did not disappear, but spread.

The top rows of Figs 11 and 12 show the average and
standard deviation of the successful runs with Shuffle. We
compare this data with the average of the successful runs of
the model, and present the difference (in absolute value) in
the bottom rows of Figs 11 and 12. We include the standard
deviation for the shuffle in the bottom row for comparison. It

 0

 100

 200

 300

 400

 500

 600

 0 200 400 600 800 1000

nu
m

be
r

of
 r

ep
lic

as

rounds

Ploss = 0.2
Ploss = 0.4
Ploss = 0.6

 0

 500

 1000

 1500

 2000

 2500

 0 200 400 600 800 1000

nu
m

be
r

of
 n

od
es

 r
ea

ch
ed

rounds

Ploss = 0.2
Ploss = 0.4
Ploss = 0.6

 20
 40
 60
 80

 100

 0 200 400 600 800 1000

rounds

Ploss=0.6 (diff)
std. dev.

 20
 40
 60
 80

 100

re
pl

ic
at

io
n

di
ff

(s
hu

ffl
e-

m
od

el
)

Ploss=0.4 (diff)
std. dev

 20
 40
 60
 80

 100

Ploss=0.2 (diff)
std. dev.

 100
 200
 300
 400
 500

 0 200 400 600 800 1000

rounds

Ploss=0.6 (diff)
std. dev.

 100
 200
 300
 400
 500

co
ve

ra
ge

 d
iff

 (
sh

uf
fle

-m
od

el
)

Ploss=0.4 (diff)
std. dev

 100
 200
 300
 400
 500

Ploss=0.2 (diff)
std. dev.

Fig. 12. Topology with outdegree 4: Top: Replication (left) and coverage
(right) of item 𝑑 for the shuffle. Bottom: difference between the shuffle and
the model for replication (left) and coverage (right).

8

clearly shows that the difference between the results obtained
from the shuffle and the model fall well within the standard
deviation of the shuffle results, confirming the ability of the
model in predicting the average behavior of the protocol.

In all successful runs (despite message loss), the network
converges to a situation in which there are roughly 500 copies
of 𝑑, indicating that after repeated execution of the protocol
𝑑 receives a fair share of the storage space in the network;
2500 ⋅ 100 cache slots divided between 500 items. Also, as
expected, due to random gossiping item, 𝑑 is eventually seen
by all nodes in the network, when coverage reaches 100%.

VII. BROADENING THE SCOPE: PEER-SAMPLING SERVICE

In the same way that we have developed models for infor-
mation dissemination algorithms, we can apply our method-
ology to other types of gossip protocols. In this section, we
describe, in broad terms, how to apply our modelling approach
to Cyclon, a gossip-based peer-sampling protocol.

A. The Cyclon Protocol

Peer sampling is a service that nodes in large-scale dis-
tributed systems can call to obtain a random peer to gossip
with. Cyclon implements a peer sampling service by construct-
ing and maintaining an unstructured overlay using gossiping
membership information. As opposed to Shuffle, the data
items exchanged by Cyclon are references to other nodes in
the network. The references, or links, that a node stores in
its cache represent the nodes that it can gossip with. The
collection of links in the network constitutes an ever-changing
overlay over which links are exchanged. The aim of Cyclon
is to keep the caches of the nodes in the network populated
with a random selection of links to other nodes. The following
table summarizes the protocol:

method operation
RandomPeer() Select 𝑠 random items and place them in 𝜎. From 𝜎,

select a gossip partner uniformly at random.
PrepareMsg() If the node initiates the exchange, replace the link to

the gossip partner with a link to itself in 𝜎. Return 𝜎.
Update(𝜎, 𝜎𝑝) Discard links to the node itself and items that are

already in the cache from 𝜎𝑝. Include remaining items
in cache by 1) using empty slots and 2) replacing
entries among the ones in 𝜎.

Note that the steps taken within the routines of Cyclon
depend on the role that a node has in the gossip exchange.
The node that initiates the exchange always includes a link
to itself in the message, while the contacted node does not.
This is reflected in the PrepareMsg() routine, which is slightly
different for the initiator.

B. Modelling Cyclon: States and Transitions

According to Cyclon, every link 𝑑 has a publisher 𝐷, and
whenever 𝐷 gossips, it sends the link 𝑑 to its partner. Thus,
when modelling the dissemination of link 𝑑 throughout the
network, we have to take into account whether 𝐷 (the source
of link 𝑑) is involved in the exchange. Therefore, we define the
state of a node as a two-bit string, where the first bit indicates
whether the node is 𝐷 and the second bit indicates whether
link 𝑑 is in the node’s cache (as done in the previous models).

As nodes update their states in pairs, and with each node
having a state represented by two bits, the state of a pair of
nodes engaged in a Cyclon exchange consists of a four-bit
string. While this opens up to the possibility for 16 states,
only 8 states are valid. Cyclon precludes a node from storing
its own link, eliminating seven states (where one of the nodes
has state 11). In addition, the state 1010, where 𝐷 contacts
itself, is also invalid.

Fig. 13 shows the transitions between states where 𝐷 is
not involved. For simplicity, we assume that there are no link
failures, resulting in a transition diagram similar to the one for
Shuffle. Four states depicted have the form 0X0X, indicating
that neither the initiator nor the gossip partner is 𝐷.

When 𝐷 is involved in the exchange, there are only four
possible states, as shown in Fig. 14. Since 𝐷 as the initiator
always includes a link to itself in the set of items sent, the
outcome will always be that the other node has a link 𝑑. On
the other hand, when 𝐷 is the contacted node (see bottom of
figure), the initiator might or might not drop link 𝑑 from its
cache as a result. In all cases, 𝐷 always keeps the state 10,
as it can never keep a link to itself in its cache.

Describing the transitions in terms of the building blocks
𝑃select and 𝑃drop can be done in a similar way as with
Shuffle (when 𝐷 is not involved in the exchange). The
variations in the routines, specifically PrepareMsg(), due to
the role taken by the node in the exchange, have to be given
special consideration, as they will cause 𝑃select to be slightly
different for the initiator and the contacted node. When node
𝐷 is involved, Cyclon is very clear about the outcome. The
transitions can be easily calculated. If node 𝐷 is the initiator,
there is only one possible outcome (probability = 1). If node 𝐷
is the contacted node, the transitions depend solely on 𝑃drop .

C. Other Protocols

As mentioned before, in the original version of Newscast,
data items are timestamped according to their creation time.
A node allocates the space in its cache for the received
items by discarding corresponding number of oldest items.
If an item is received that is also in the node’s cache, the
recent version of the item is preferred. Like for Cyclon, a
state of the transition diagram of Newscast is then a pair of
tuples (𝑎, 𝑏), where 𝑎, 𝑏 ∈ {0, (1, 𝑖)}. The first bit indicates

00, 00 00, 01

01, 00 01, 01

𝑃
(0
10
0∣0
00
1)𝑃

(0
00
1∣0
10
0)

𝑃 (0101∣0100)

𝑃 (0100∣0101)

𝑃
(0
0
0
1
∣01

0
1
)

𝑃
(0
1
0
1
∣00

0
1
)

𝑃 (0000∣0000) 𝑃 (0001∣0001)

𝑃 (0100∣0100) 𝑃 (0001∣0001)

Fig. 13. State transitions when
node A and B are not producers
of item 𝑑.

10, 00

10, 01

01, 10

00, 10

𝑃
(1
0
0
1
∣10

0
0
)

𝑃
(0
0
1
0
∣01

1
0
)

𝑃 (0110∣0110)

𝑃 (1001∣1001)

Fig. 14. State transitions when
either node 𝐴 or 𝐵 is the producer
of item 𝑑.

9

if the data item is present in the gossiping node’s cache.
The integer 𝑖 is a timestamp of the corresponding item. The
expression for probability 𝑃select remains the same, but 𝑃drop

is then a function of the corresponding timestamp. It can be
either derived through rigorous analysis, or can be measured
experimentally similar to the approach presented in Sec. VI.

VIII. CONCLUSIONS

Traditional analysis methods for computer systems such as
model checking with its exhaustive state space search, fail
to cope with large networks. Although useful for studying
certain behavior of small-sized networks, these methods do not
scale well for gossip protocols. On the other hand, standard
methods for modelling of epidemics scale well, but abstract
away the details of a protocol, showing only simple emergent
behavior of the system. A challenge is to develop analytical
models that capture (part of) the behavior of a system, and then
subsequently optimize design parameters, at the right level of
abstraction.

In this paper, we presented an analytical framework for
a class of gossip-based information dissemination protocols.
Modelling a gossip protocol at the level of local pairwise
interactions, as demonstrated in this paper, is a scalable
approach to analyze such protocols. On the one hand, this
analytical model includes the mechanics of communication
between nodes on the level of the protocol details. On the
other hand, such a model allows for studying the impact of
system parameters on the performance of the protocol, and
can be used to optimally design and fine-tune it.

Furthermore, we have presented the analysis of a gossip
protocol in the presence of transient communication failures.
For our framework, we introduced a hybrid method to compute
𝑃drop that combines both rigorous modelling of the protocol
and statistical data sampling from large-scale Monte Carlo
simulations for different network topologies. To be more
precise, we derive analytical expressions for components of
our framework that are invariant with respect to the scenarios
we want to model. Having decomposed our model into its
basic components, we identify the ones that are affected by
specific scenario configurations (in this case, message loss
and topology combinations). Finding analytical expressions
for these components (in this work, only 𝑃𝑖𝑛𝑥) would require
modelling each specific scenario configuration, reducing the
applicability of the framework to those very specific configu-
rations. Instead, we isolate the framework from the scenario-
specific component and use statistical data sampling to obtain
a value for it.

We opt for this combined approach since it allows us to
build a framework that captures the behavior of the gossip
protocol without requiring us to incorporate scenario-specific
elements into the model. The challenge in this approach
lies in being able to decompose the model into its minimal
components, in such a way that the ones which are dependent
on particular scenarios (for which expressions that encompass
all scenarios cannot be derived) can be isolated and computed

separately. In effect, we strive for a golden mean between high-
level models such as for epidemics showing only the emergent
behavior and the low-level models of the protocol that depend
on particular implementation settings.

With respect to gossip-based dissemination, our study re-
vealed that for networks with lossy communication channels,
the assumption of a uniform distribution of data is valid only
if every node can gossip with any other node in the network.
In future, we plan to study the impact of different gossiping
frequencies on the performance results.

REFERENCES

[1] A. Fehnker and P. Gao, “Formal verification and simulation for per-
formance analysis for probabilistic broadcast protocols,” in Proc. of
ADHOC-NOW, ser. LNCS, vol. 4104. Springer, 2006.

[2] P. Crouzen, J. van de Pol, and A. Rensink, “Applying formal methods
to gossiping networks with mCRL and GROOVE,” ACM SIGMETRICS
Performance Evaluation Review, vol. 36, no. 3, 2008.

[3] R. Bakhshi, D. Gavidia, W. Fokkink, and M. van Steen, “An analytical
model of information dissemination for a gossip-based protocol,” Comp.
Netw., vol. 53, no. 13, 2009.

[4] R. Bakhshi and A. Fehnker, “On the impact of modelling choices for
distributed information spread,” in Proc. of QEST, 2009.

[5] R. Bakhshi, L. Cloth, W. Fokkink, and B. R. Haverkort, “Mean-field
framework for performance evaluation of push-pull gossip protocols,”
Performance Evaluation, vol. 68, no. 2, 2011.

[6] M. Jelasity, W. Kowalczyk, and M. van Steen, “Newscast computing,”
Vrije Universiteit, Tech. Rep. IR-CS-006, 2003.

[7] D. Gavidia, S. Voulgaris, and M. van Steen, “A gossip-based distributed
news service for wireless mesh networks,” in Proc. of WONS, 2006.

[8] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry, “Epidemic algorithms for
replicated database maintenance,” in Proc. of PODC, 1987.

[9] N. Drost, E. Ogston, R. van Nieuwpoort, and H. Bal, “ARRG: Real-
World Gossiping,” in Proc. of HPDC, 2007.

[10] M.-J. Lin and K. Marzullo, “Directional gossip: Gossip in a wide area
network,” in Proc. of EDCC-3. Springer, 1999.

[11] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip
algorithms,” IEEE/ACM TON, vol. 14, 2006.

[12] A. Stavrou, D. Rubenstein, and S. Sahu, “A lightweight, robust p2p
system to handle flash crowds,” in Proc. of ICNP, 2002.

[13] M. Jelasity, W. Kowalczyk, and M. van Steen, “Newscast computing,”
Vrije Universiteit Amsterdam, Tech. Rep. IR-CS-006, 2003.

[14] S. Voulgaris, D. Gavidia, and M. van Steen, “Cyclon: Inexpensive
membership management for unstructured p2p overlays,” J. Network
and Syst. Manage., vol. 13, no. 2, 2005.

[15] A. Dimakis, A. Sarwate, and M. Wainwright, “Geographic gossip:
efficient aggregation for sensor networks,” in Proc. of IPSN, 2006.

[16] A. Tanenbaum and M. van Steen, Distributed Systems: Principles and
Paradigms. Prentice Hall, 2007.

[17] R. Bakhshi, J. Endrullis, S. Endrullis, W. Fokkink, and B. Haverkort,
“Automating the mean-field method for large dynamic gossip networks,”
in Proc. of QEST, 2010.

[18] M. Gurevich and I. Keidar, “Correctness of gossip-based membership
under message loss,” in Proc. of PODC, 2009.

[19] A. Allavena, A. Demers, and J. Hopcroft, “Correctness of a gossip based
membership protocol,” in Proc. of PODC, 2005.

[20] P. Costa, V. Gramoli, M. Jelasity, G. P. Jesi, E. Le Merrer, A. Montresor,
and L. Querzoni, “Exploring the interdisciplinary connections of gossip-
based systems,” ACM SIGOPS Oper. Syst. Rev., vol. 41, no. 5, 2007.

[21] M. Jelasity, A. Montresor, G. P. Jesi, and S. Voulgaris, “PeerSim: A
peer-to-peer simulator,” http://peersim.sourceforge.net/.

[22] R. Bakhshi, D. Gavidia, W. Fokkink, and M. van Steen, “A modeling
framework for gossip-based information spread,” CoRR, Tech. Rep.
arXiv:1105.5986, 2011.

[23] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and M. van
Steen, “Gossip-based peer sampling,” ACM TOCS, vol. 25, no. 3, 2007.

[24] Y. Busnel, R. Beraldi, and R. Baldoni, “A formal characterization of
uniform peer sampling based on view shuffling,” in Proc. of PDCAT,
2009.

10

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.7
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /AbadiMT-CondensedLight
 /ACaslon-Italic
 /ACaslon-Regular
 /ACaslon-Semibold
 /ACaslon-SemiboldItalic
 /AdobeArabic-Bold
 /AdobeArabic-BoldItalic
 /AdobeArabic-Italic
 /AdobeArabic-Regular
 /AdobeHebrew-Bold
 /AdobeHebrew-BoldItalic
 /AdobeHebrew-Italic
 /AdobeHebrew-Regular
 /AdobeHeitiStd-Regular
 /AdobeMingStd-Light
 /AdobeMyungjoStd-Medium
 /AdobePiStd
 /AdobeSansMM
 /AdobeSerifMM
 /AdobeSongStd-Light
 /AdobeThai-Bold
 /AdobeThai-BoldItalic
 /AdobeThai-Italic
 /AdobeThai-Regular
 /AGaramond-Bold
 /AGaramond-BoldItalic
 /AGaramond-Italic
 /AGaramond-Regular
 /AGaramond-Semibold
 /AGaramond-SemiboldItalic
 /AgencyFB-Bold
 /AgencyFB-Reg
 /AGOldFace-Outline
 /AharoniBold
 /Algerian
 /Americana
 /Americana-ExtraBold
 /AndaleMono
 /AndaleMonoIPA
 /AngsanaNew
 /AngsanaNew-Bold
 /AngsanaNew-BoldItalic
 /AngsanaNew-Italic
 /AngsanaUPC
 /AngsanaUPC-Bold
 /AngsanaUPC-BoldItalic
 /AngsanaUPC-Italic
 /Anna
 /ArialAlternative
 /ArialAlternativeSymbol
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialMT-Black
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /ArrusBT-Bold
 /ArrusBT-BoldItalic
 /ArrusBT-Italic
 /ArrusBT-Roman
 /AvantGarde-Book
 /AvantGarde-BookOblique
 /AvantGarde-Demi
 /AvantGarde-DemiOblique
 /AvantGardeITCbyBT-Book
 /AvantGardeITCbyBT-BookOblique
 /BakerSignet
 /BankGothicBT-Medium
 /Barmeno-Bold
 /Barmeno-ExtraBold
 /Barmeno-Medium
 /Barmeno-Regular
 /Baskerville
 /BaskervilleBE-Italic
 /BaskervilleBE-Medium
 /BaskervilleBE-MediumItalic
 /BaskervilleBE-Regular
 /Baskerville-Bold
 /Baskerville-BoldItalic
 /Baskerville-Italic
 /BaskOldFace
 /Batang
 /BatangChe
 /Bauhaus93
 /Bellevue
 /BellGothicStd-Black
 /BellGothicStd-Bold
 /BellGothicStd-Light
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlingAntiqua-Bold
 /BerlingAntiqua-BoldItalic
 /BerlingAntiqua-Italic
 /BerlingAntiqua-Roman
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BernhardModernBT-Bold
 /BernhardModernBT-BoldItalic
 /BernhardModernBT-Italic
 /BernhardModernBT-Roman
 /BiffoMT
 /BinnerD
 /BinnerGothic
 /BlackadderITC-Regular
 /Blackoak
 /Bodoni
 /Bodoni-Bold
 /Bodoni-BoldItalic
 /Bodoni-Italic
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /Bodoni-Poster
 /Bodoni-PosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /Bookman-Demi
 /Bookman-DemiItalic
 /Bookman-Light
 /Bookman-LightItalic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolOne-Regular
 /BookshelfSymbolSeven
 /BookshelfSymbolThree-Regular
 /BookshelfSymbolTwo-Regular
 /Botanical
 /Boton-Italic
 /Boton-Medium
 /Boton-MediumItalic
 /Boton-Regular
 /Boulevard
 /BradleyHandITC
 /Braggadocio
 /BritannicBold
 /Broadway
 /BrowalliaNew
 /BrowalliaNew-Bold
 /BrowalliaNew-BoldItalic
 /BrowalliaNew-Italic
 /BrowalliaUPC
 /BrowalliaUPC-Bold
 /BrowalliaUPC-BoldItalic
 /BrowalliaUPC-Italic
 /BrushScript
 /BrushScriptMT
 /CaflischScript-Bold
 /CaflischScript-Regular
 /Calibri
 /Calibri-Bold
 /Calibri-BoldItalic
 /Calibri-Italic
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Candara
 /Candara-Bold
 /Candara-BoldItalic
 /Candara-Italic
 /Carta
 /CaslonOpenfaceBT-Regular
 /Castellar
 /CastellarMT
 /Centaur
 /Centaur-Italic
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchL-Bold
 /CenturySchL-BoldItal
 /CenturySchL-Ital
 /CenturySchL-Roma
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /CGTimes-Bold
 /CGTimes-BoldItalic
 /CGTimes-Italic
 /CGTimes-Regular
 /CharterBT-Bold
 /CharterBT-BoldItalic
 /CharterBT-Italic
 /CharterBT-Roman
 /CheltenhamITCbyBT-Bold
 /CheltenhamITCbyBT-BoldItalic
 /CheltenhamITCbyBT-Book
 /CheltenhamITCbyBT-BookItalic
 /Chiller-Regular
 /CMB10
 /CMBSY10
 /CMBSY5
 /CMBSY6
 /CMBSY7
 /CMBSY8
 /CMBSY9
 /CMBX10
 /CMBX12
 /CMBX5
 /CMBX6
 /CMBX7
 /CMBX8
 /CMBX9
 /CMBXSL10
 /CMBXTI10
 /CMCSC10
 /CMCSC8
 /CMCSC9
 /CMDUNH10
 /CMEX10
 /CMEX7
 /CMEX8
 /CMEX9
 /CMFF10
 /CMFI10
 /CMFIB8
 /CMINCH
 /CMITT10
 /CMMI10
 /CMMI12
 /CMMI5
 /CMMI6
 /CMMI7
 /CMMI8
 /CMMI9
 /CMMIB10
 /CMMIB5
 /CMMIB6
 /CMMIB7
 /CMMIB8
 /CMMIB9
 /CMR10
 /CMR12
 /CMR17
 /CMR5
 /CMR6
 /CMR7
 /CMR8
 /CMR9
 /CMSL10
 /CMSL12
 /CMSL8
 /CMSL9
 /CMSLTT10
 /CMSS10
 /CMSS12
 /CMSS17
 /CMSS8
 /CMSS9
 /CMSSBX10
 /CMSSDC10
 /CMSSI10
 /CMSSI12
 /CMSSI17
 /CMSSI8
 /CMSSI9
 /CMSSQ8
 /CMSSQI8
 /CMSY10
 /CMSY5
 /CMSY6
 /CMSY7
 /CMSY8
 /CMSY9
 /CMTCSC10
 /CMTEX10
 /CMTEX8
 /CMTEX9
 /CMTI10
 /CMTI12
 /CMTI7
 /CMTI8
 /CMTI9
 /CMTT10
 /CMTT12
 /CMTT8
 /CMTT9
 /CMU10
 /CMVTT10
 /ColonnaMT
 /Colossalis-Bold
 /ComicSansMS
 /ComicSansMS-Bold
 /Consolas
 /Consolas-Bold
 /Consolas-BoldItalic
 /Consolas-Italic
 /Constantia
 /Constantia-Bold
 /Constantia-BoldItalic
 /Constantia-Italic
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /Copperplate-ThirtyThreeBC
 /Corbel
 /Corbel-Bold
 /Corbel-BoldItalic
 /Corbel-Italic
 /CordiaNew
 /CordiaNew-Bold
 /CordiaNew-BoldItalic
 /CordiaNew-Italic
 /CordiaUPC
 /CordiaUPC-Bold
 /CordiaUPC-BoldItalic
 /CordiaUPC-Italic
 /Courier
 /Courier-Bold
 /Courier-BoldOblique
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Courier-Oblique
 /CourierStd
 /CourierStd-Bold
 /CourierStd-BoldOblique
 /CourierStd-Oblique
 /CourierX-Bold
 /CourierX-BoldOblique
 /CourierX-Oblique
 /CourierX-Regular
 /CreepyRegular
 /CurlzMT
 /David-Bold
 /David-Reg
 /DavidTransparent
 /Desdemona
 /DilleniaUPC
 /DilleniaUPCBold
 /DilleniaUPCBoldItalic
 /DilleniaUPCItalic
 /Dingbats
 /DomCasual
 /Dotum
 /DotumChe
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversGothicBT-Regular
 /EngraversMT
 /EraserDust
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /ErieBlackPSMT
 /ErieLightPSMT
 /EriePSMT
 /EstrangeloEdessa
 /Euclid
 /Euclid-Bold
 /Euclid-BoldItalic
 /EuclidExtra
 /EuclidExtra-Bold
 /EuclidFraktur
 /EuclidFraktur-Bold
 /Euclid-Italic
 /EuclidMathOne
 /EuclidMathOne-Bold
 /EuclidMathTwo
 /EuclidMathTwo-Bold
 /EuclidSymbol
 /EuclidSymbol-Bold
 /EuclidSymbol-BoldItalic
 /EuclidSymbol-Italic
 /EucrosiaUPC
 /EucrosiaUPCBold
 /EucrosiaUPCBoldItalic
 /EucrosiaUPCItalic
 /EUEX10
 /EUEX7
 /EUEX8
 /EUEX9
 /EUFB10
 /EUFB5
 /EUFB7
 /EUFM10
 /EUFM5
 /EUFM7
 /EURB10
 /EURB5
 /EURB7
 /EURM10
 /EURM5
 /EURM7
 /EuroMono-Bold
 /EuroMono-BoldItalic
 /EuroMono-Italic
 /EuroMono-Regular
 /EuroSans-Bold
 /EuroSans-BoldItalic
 /EuroSans-Italic
 /EuroSans-Regular
 /EuroSerif-Bold
 /EuroSerif-BoldItalic
 /EuroSerif-Italic
 /EuroSerif-Regular
 /EuroSig
 /EUSB10
 /EUSB5
 /EUSB7
 /EUSM10
 /EUSM5
 /EUSM7
 /FelixTitlingMT
 /Fences
 /FencesPlain
 /FigaroMT
 /FixedMiriamTransparent
 /FootlightMTLight
 /Formata-Italic
 /Formata-Medium
 /Formata-MediumItalic
 /Formata-Regular
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothicITCbyBT-Book
 /FranklinGothicITCbyBT-BookItal
 /FranklinGothicITCbyBT-Demi
 /FranklinGothicITCbyBT-DemiItal
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FrankRuehl
 /FreesiaUPC
 /FreesiaUPCBold
 /FreesiaUPCBoldItalic
 /FreesiaUPCItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Frutiger-Black
 /Frutiger-BlackCn
 /Frutiger-BlackItalic
 /Frutiger-Bold
 /Frutiger-BoldCn
 /Frutiger-BoldItalic
 /Frutiger-Cn
 /Frutiger-ExtraBlackCn
 /Frutiger-Italic
 /Frutiger-Light
 /Frutiger-LightCn
 /Frutiger-LightItalic
 /Frutiger-Roman
 /Frutiger-UltraBlack
 /Futura-Bold
 /Futura-BoldOblique
 /Futura-Book
 /Futura-BookOblique
 /FuturaBT-Bold
 /FuturaBT-BoldItalic
 /FuturaBT-Book
 /FuturaBT-BookItalic
 /FuturaBT-Medium
 /FuturaBT-MediumItalic
 /Futura-Light
 /Futura-LightOblique
 /GalliardITCbyBT-Bold
 /GalliardITCbyBT-BoldItalic
 /GalliardITCbyBT-Italic
 /GalliardITCbyBT-Roman
 /Garamond
 /Garamond-Bold
 /Garamond-BoldCondensed
 /Garamond-BoldCondensedItalic
 /Garamond-BoldItalic
 /Garamond-BookCondensed
 /Garamond-BookCondensedItalic
 /Garamond-Italic
 /Garamond-LightCondensed
 /Garamond-LightCondensedItalic
 /Gautami
 /GeometricSlab703BT-Light
 /GeometricSlab703BT-LightItalic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /GeorgiaRef
 /Giddyup
 /Giddyup-Thangs
 /Gigi-Regular
 /GillSans
 /GillSans-Bold
 /GillSans-BoldItalic
 /GillSans-Condensed
 /GillSans-CondensedBold
 /GillSans-Italic
 /GillSans-Light
 /GillSans-LightItalic
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /Gothic-Thirteen
 /GoudyOldStyleBT-Bold
 /GoudyOldStyleBT-BoldItalic
 /GoudyOldStyleBT-Italic
 /GoudyOldStyleBT-Roman
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /GoudyTextMT-LombardicCapitals
 /GSIDefaultSymbols
 /Gulim
 /GulimChe
 /Gungsuh
 /GungsuhChe
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /Helvetica
 /Helvetica-Black
 /Helvetica-BlackOblique
 /Helvetica-Bold
 /Helvetica-BoldOblique
 /Helvetica-Condensed
 /Helvetica-Condensed-Black
 /Helvetica-Condensed-BlackObl
 /Helvetica-Condensed-Bold
 /Helvetica-Condensed-BoldObl
 /Helvetica-Condensed-Light
 /Helvetica-Condensed-LightObl
 /Helvetica-Condensed-Oblique
 /Helvetica-Fraction
 /Helvetica-Narrow
 /Helvetica-Narrow-Bold
 /Helvetica-Narrow-BoldOblique
 /Helvetica-Narrow-Oblique
 /Helvetica-Oblique
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Humanist521BT-BoldCondensed
 /Humanist521BT-Light
 /Humanist521BT-LightItalic
 /Humanist521BT-RomanCondensed
 /Imago-ExtraBold
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /IrisUPC
 /IrisUPCBold
 /IrisUPCBoldItalic
 /IrisUPCItalic
 /Ironwood
 /ItcEras-Medium
 /ItcKabel-Bold
 /ItcKabel-Book
 /ItcKabel-Demi
 /ItcKabel-Medium
 /ItcKabel-Ultra
 /JasmineUPC
 /JasmineUPC-Bold
 /JasmineUPC-BoldItalic
 /JasmineUPC-Italic
 /JoannaMT
 /JoannaMT-Italic
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kaufmann
 /KaufmannBT-Bold
 /KaufmannBT-Regular
 /KidTYPEPaint
 /KinoMT
 /KodchiangUPC
 /KodchiangUPC-Bold
 /KodchiangUPC-BoldItalic
 /KodchiangUPC-Italic
 /KorinnaITCbyBT-Regular
 /KozGoProVI-Medium
 /KozMinProVI-Regular
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothic
 /LetterGothic-Bold
 /LetterGothic-BoldOblique
 /LetterGothic-BoldSlanted
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LetterGothic-Slanted
 /LetterGothicStd
 /LetterGothicStd-Bold
 /LetterGothicStd-BoldSlanted
 /LetterGothicStd-Slanted
 /LevenimMT
 /LevenimMTBold
 /LilyUPC
 /LilyUPCBold
 /LilyUPCBoldItalic
 /LilyUPCItalic
 /Lithos-Black
 /Lithos-Regular
 /LotusWPBox-Roman
 /LotusWPIcon-Roman
 /LotusWPIntA-Roman
 /LotusWPIntB-Roman
 /LotusWPType-Roman
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Lydian
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MathA
 /MathB
 /MathC
 /Mathematica1
 /Mathematica1-Bold
 /Mathematica1Mono
 /Mathematica1Mono-Bold
 /Mathematica2
 /Mathematica2-Bold
 /Mathematica2Mono
 /Mathematica2Mono-Bold
 /Mathematica3
 /Mathematica3-Bold
 /Mathematica3Mono
 /Mathematica3Mono-Bold
 /Mathematica4
 /Mathematica4-Bold
 /Mathematica4Mono
 /Mathematica4Mono-Bold
 /Mathematica5
 /Mathematica5-Bold
 /Mathematica5Mono
 /Mathematica5Mono-Bold
 /Mathematica6
 /Mathematica6Bold
 /Mathematica6Mono
 /Mathematica6MonoBold
 /Mathematica7
 /Mathematica7Bold
 /Mathematica7Mono
 /Mathematica7MonoBold
 /MatisseITC-Regular
 /MaturaMTScriptCapitals
 /Mesquite
 /Mezz-Black
 /Mezz-Regular
 /MICR
 /MicrosoftSansSerif
 /MingLiU
 /Minion-BoldCondensed
 /Minion-BoldCondensedItalic
 /Minion-Condensed
 /Minion-CondensedItalic
 /Minion-Ornaments
 /MinionPro-Bold
 /MinionPro-BoldIt
 /MinionPro-It
 /MinionPro-Regular
 /MinionPro-Semibold
 /MinionPro-SemiboldIt
 /Miriam
 /MiriamFixed
 /MiriamTransparent
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MSAM10
 /MSAM5
 /MSAM6
 /MSAM7
 /MSAM8
 /MSAM9
 /MSBM10
 /MSBM5
 /MSBM6
 /MSBM7
 /MSBM8
 /MSBM9
 /MS-Gothic
 /MSHei
 /MSLineDrawPSMT
 /MS-Mincho
 /MSOutlook
 /MS-PGothic
 /MS-PMincho
 /MSReference1
 /MSReference2
 /MSReferenceSansSerif
 /MSReferenceSansSerif-Bold
 /MSReferenceSansSerif-BoldItalic
 /MSReferenceSansSerif-Italic
 /MSReferenceSerif
 /MSReferenceSerif-Bold
 /MSReferenceSerif-BoldItalic
 /MSReferenceSerif-Italic
 /MSReferenceSpecialty
 /MSSong
 /MS-UIGothic
 /MT-Extra
 /MT-Symbol
 /MT-Symbol-Italic
 /MVBoli
 /Myriad-Bold
 /Myriad-BoldItalic
 /Myriad-Italic
 /MyriadPro-Black
 /MyriadPro-BlackIt
 /MyriadPro-Bold
 /MyriadPro-BoldIt
 /MyriadPro-It
 /MyriadPro-Light
 /MyriadPro-LightIt
 /MyriadPro-Regular
 /MyriadPro-Semibold
 /MyriadPro-SemiboldIt
 /Myriad-Roman
 /Narkisim
 /NewCenturySchlbk-Bold
 /NewCenturySchlbk-BoldItalic
 /NewCenturySchlbk-Italic
 /NewCenturySchlbk-Roman
 /NewMilleniumSchlbk-BoldItalicSH
 /NewsGothic
 /NewsGothic-Bold
 /NewsGothicBT-Bold
 /NewsGothicBT-BoldItalic
 /NewsGothicBT-Italic
 /NewsGothicBT-Roman
 /NewsGothic-Condensed
 /NewsGothic-Italic
 /NewsGothicMT
 /NewsGothicMT-Bold
 /NewsGothicMT-Italic
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NimbusMonL-Bold
 /NimbusMonL-BoldObli
 /NimbusMonL-Regu
 /NimbusMonL-ReguObli
 /NimbusRomNo9L-Medi
 /NimbusRomNo9L-MediItal
 /NimbusRomNo9L-Regu
 /NimbusRomNo9L-ReguItal
 /NimbusSanL-Bold
 /NimbusSanL-BoldCond
 /NimbusSanL-BoldCondItal
 /NimbusSanL-BoldItal
 /NimbusSanL-Regu
 /NimbusSanL-ReguCond
 /NimbusSanL-ReguCondItal
 /NimbusSanL-ReguItal
 /Nimrod
 /Nimrod-Bold
 /Nimrod-BoldItalic
 /Nimrod-Italic
 /NSimSun
 /Nueva-BoldExtended
 /Nueva-BoldExtendedItalic
 /Nueva-Italic
 /Nueva-Roman
 /NuptialScript
 /OCRA
 /OCRA-Alternate
 /OCRAExtended
 /OCRB
 /OCRB-Alternate
 /OfficinaSans-Bold
 /OfficinaSans-BoldItalic
 /OfficinaSans-Book
 /OfficinaSans-BookItalic
 /OfficinaSerif-Bold
 /OfficinaSerif-BoldItalic
 /OfficinaSerif-Book
 /OfficinaSerif-BookItalic
 /OldEnglishTextMT
 /Onyx
 /OnyxBT-Regular
 /OzHandicraftBT-Roman
 /PalaceScriptMT
 /Palatino-Bold
 /Palatino-BoldItalic
 /Palatino-Italic
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Palatino-Roman
 /PapyrusPlain
 /Papyrus-Regular
 /Parchment-Regular
 /Parisian
 /ParkAvenue
 /Penumbra-SemiboldFlare
 /Penumbra-SemiboldSans
 /Penumbra-SemiboldSerif
 /PepitaMT
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PhotinaCasualBlack
 /Playbill
 /PMingLiU
 /Poetica-SuppOrnaments
 /PoorRichard-Regular
 /PopplLaudatio-Italic
 /PopplLaudatio-Medium
 /PopplLaudatio-MediumItalic
 /PopplLaudatio-Regular
 /PrestigeElite
 /Pristina-Regular
 /PTBarnumBT-Regular
 /Raavi
 /RageItalic
 /Ravie
 /RefSpecialty
 /Ribbon131BT-Bold
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /Rockwell-Light
 /Rockwell-LightItalic
 /Rod
 /RodTransparent
 /RunicMT-Condensed
 /Sanvito-Light
 /Sanvito-Roman
 /ScriptC
 /ScriptMTBold
 /SegoeUI
 /SegoeUI-Bold
 /SegoeUI-BoldItalic
 /SegoeUI-Italic
 /Serpentine-BoldOblique
 /ShelleyVolanteBT-Regular
 /ShowcardGothic-Reg
 /Shruti
 /SimHei
 /SimSun
 /SnapITC-Regular
 /StandardSymL
 /Stencil
 /StoneSans
 /StoneSans-Bold
 /StoneSans-BoldItalic
 /StoneSans-Italic
 /StoneSans-Semibold
 /StoneSans-SemiboldItalic
 /Stop
 /Swiss721BT-BlackExtended
 /Sylfaen
 /Symbol
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Tci1
 /Tci1Bold
 /Tci1BoldItalic
 /Tci1Italic
 /Tci2
 /Tci2Bold
 /Tci2BoldItalic
 /Tci2Italic
 /Tci3
 /Tci3Bold
 /Tci3BoldItalic
 /Tci3Italic
 /Tci4
 /Tci4Bold
 /Tci4BoldItalic
 /Tci4Italic
 /TechnicalItalic
 /TechnicalPlain
 /Tekton
 /Tekton-Bold
 /TektonMM
 /Tempo-HeavyCondensed
 /Tempo-HeavyCondensedItalic
 /TempusSansITC
 /Times-Bold
 /Times-BoldItalic
 /Times-BoldItalicOsF
 /Times-BoldSC
 /Times-ExtraBold
 /Times-Italic
 /Times-ItalicOsF
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Times-RomanSC
 /Trajan-Bold
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-CondensedMedium
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Univers-Bold
 /Univers-BoldItalic
 /UniversCondensed-Bold
 /UniversCondensed-BoldItalic
 /UniversCondensed-Medium
 /UniversCondensed-MediumItalic
 /Univers-Medium
 /Univers-MediumItalic
 /URWBookmanL-DemiBold
 /URWBookmanL-DemiBoldItal
 /URWBookmanL-Ligh
 /URWBookmanL-LighItal
 /URWChanceryL-MediItal
 /URWGothicL-Book
 /URWGothicL-BookObli
 /URWGothicL-Demi
 /URWGothicL-DemiObli
 /URWPalladioL-Bold
 /URWPalladioL-BoldItal
 /URWPalladioL-Ital
 /URWPalladioL-Roma
 /USPSBarCode
 /VAGRounded-Black
 /VAGRounded-Bold
 /VAGRounded-Light
 /VAGRounded-Thin
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VerdanaRef
 /VinerHandITC
 /Viva-BoldExtraExtended
 /Vivaldii
 /Viva-LightCondensed
 /Viva-Regular
 /VladimirScript
 /Vrinda
 /Webdings
 /Westminster
 /Willow
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /WNCYB10
 /WNCYI10
 /WNCYR10
 /WNCYSC10
 /WNCYSS10
 /WoodtypeOrnaments-One
 /WoodtypeOrnaments-Two
 /WP-ArabicScriptSihafa
 /WP-ArabicSihafa
 /WP-BoxDrawing
 /WP-CyrillicA
 /WP-CyrillicB
 /WP-GreekCentury
 /WP-GreekCourier
 /WP-GreekHelve
 /WP-HebrewDavid
 /WP-IconicSymbolsA
 /WP-IconicSymbolsB
 /WP-Japanese
 /WP-MathA
 /WP-MathB
 /WP-MathExtendedA
 /WP-MathExtendedB
 /WP-MultinationalAHelve
 /WP-MultinationalARoman
 /WP-MultinationalBCourier
 /WP-MultinationalBHelve
 /WP-MultinationalBRoman
 /WP-MultinationalCourier
 /WP-Phonetic
 /WPTypographicSymbols
 /XYATIP10
 /XYBSQL10
 /XYBTIP10
 /XYCIRC10
 /XYCMAT10
 /XYCMBT10
 /XYDASH10
 /XYEUAT10
 /XYEUBT10
 /ZapfChancery-MediumItalic
 /ZapfDingbats
 /ZapfHumanist601BT-Bold
 /ZapfHumanist601BT-BoldItalic
 /ZapfHumanist601BT-Demi
 /ZapfHumanist601BT-DemiItalic
 /ZapfHumanist601BT-Italic
 /ZapfHumanist601BT-Roman
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440639063106360020063906440649002006270644063406270634062900200648064506460020062E06440627064400200631063306270626064400200627064406280631064A062F002006270644062506440643062A063106480646064A00200648064506460020062E064406270644002006350641062D0627062A0020062706440648064A0628061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043f043e043a0430043704320430043d04350020043d043000200435043a04400430043d0430002c00200435043b0435043a04420440043e043d043d04300020043f043e044904300020043800200418043d044204350440043d04350442002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020007a006f006200720061007a006f007600e1006e00ed0020006e00610020006f006200720061007a006f007600630065002c00200070006f007300ed006c00e1006e00ed00200065002d006d00610069006c0065006d00200061002000700072006f00200069006e007400650072006e00650074002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200064006900650020006600fc00720020006400690065002000420069006c006400730063006800690072006d0061006e007a0065006900670065002c00200045002d004d00610069006c0020006f006400650072002000640061007300200049006e007400650072006e00650074002000760065007200770065006e006400650074002000770065007200640065006e00200073006f006c006c0065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e400740074006500690064002000730065006c006c0069007300740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002c0020006d0069007300200073006f006200690076006100640020006b00f500690067006500200070006100720065006d0069006e006900200065006b007200610061006e0069006c0020006b007500760061006d006900730065006b0073002c00200065002d0070006f0073007400690067006100200073006100610074006d006900730065006b00730020006a006100200049006e007400650072006e00650074006900730020006100760061006c00640061006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003b103c103bf03c503c303af03b103c303b7002003c303c403b703bd002003bf03b803cc03bd03b7002c002003b303b903b100200065002d006d00610069006c002c002003ba03b103b9002003b303b903b1002003c403bf0020039403b903b1002d03b403af03ba03c403c503bf002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05EA05E605D505D205EA002005DE05E105DA002C002005D305D505D005E8002005D005DC05E705D805E805D505E005D9002005D505D405D005D905E005D805E805E005D8002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV <FEFF005a00610020007300740076006100720061006e006a0065002000500044004600200064006f006b0075006d0065006e0061007400610020006e0061006a0070006f0067006f0064006e0069006a006900680020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f0161007400690020006900200049006e007400650072006e0065007400750020006b006f00720069007300740069007400650020006f0076006500200070006f0073007400610076006b0065002e00200020005300740076006f00720065006e0069002000500044004600200064006f006b0075006d0065006e007400690020006d006f006700750020007300650020006f00740076006f00720069007400690020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006b00610073006e0069006a0069006d0020007600650072007a0069006a0061006d0061002e>
 /HUN <FEFF00410020006b00e9007000650072006e00790151006e0020006d00650067006a0065006c0065006e00ed007400e9007300680065007a002c00200065002d006d00610069006c002000fc007a0065006e006500740065006b00620065006e002000e90073002000200049006e007400650072006e006500740065006e0020006800610073007a006e00e1006c00610074006e0061006b0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b00790074006900200072006f006400790074006900200065006b00720061006e0065002c00200065006c002e002000700061016100740075006900200061007200200069006e007400650072006e0065007400750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f007400690020007201010064012b01610061006e0061006900200065006b00720101006e0101002c00200065002d00700061007300740061006d00200075006e00200069006e007400650072006e006500740061006d002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079015b0077006900650074006c0061006e006900610020006e006100200065006b00720061006e00690065002c0020007700790073007901420061006e0069006100200070006f0063007a0074010500200065006c0065006b00740072006f006e00690063007a006e01050020006f00720061007a00200064006c006100200069006e007400650072006e006500740075002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020006100660069015f006100720065006100200070006500200065006300720061006e002c0020007400720069006d0069007400650072006500610020007000720069006e00200065002d006d00610069006c0020015f0069002000700065006e00740072007500200049006e007400650072006e00650074002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f0020044d043a04400430043d043d043e0433043e0020043f0440043e0441043c043e044204400430002c0020043f0435044004350441044b043b043a04380020043f043e0020044d043b0435043a04420440043e043d043d043e04390020043f043e044704420435002004380020044004300437043c043504490435043d0438044f0020043200200418043d044204350440043d043504420435002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020007a006f006200720061007a006f00760061006e006900650020006e00610020006f006200720061007a006f0076006b0065002c00200070006f007300690065006c0061006e0069006500200065002d006d00610069006c006f006d002000610020006e006100200049006e007400650072006e00650074002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020007000720069006b0061007a0020006e00610020007a00610073006c006f006e0075002c00200065002d0070006f01610074006f00200069006e00200069006e007400650072006e00650074002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF0045006b00720061006e002000fc0073007400fc0020006700f6007200fc006e00fc006d00fc002c00200065002d0070006f00730074006100200076006500200069006e007400650072006e006500740020006900e70069006e00200065006e00200075007900670075006e002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f0062006100740020007600650020004100630072006f006200610074002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a0456043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043f0435044004350433043b044f043404430020043700200435043a04400430043d044300200442043000200406043d044204350440043d043504420443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

