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a b s t r a c t

This paper focuses on the protection of the confidentiality of the data space content when
Shared Data Spaces are deployed in open, possibly hostile, environments. In previous
approaches, the data space content was protected against access from unauthorised
application components by means of access control mechanisms. The basic assumption
is that the hosts (and their administrators) where the data space is deployed have to
be trusted. When such an assumption does not hold, then encryption schemes can be
used to protect the data space content from malicious hosts. However, such schemes
do not support searching on encrypted data. As a consequence, performing retrieval
operations is very expensive in terms of resource consumption.Moreover, in these schemes
applications have to share secret keys requiring a very complex key management. In this
paper, we present a novel encryption scheme that allows tuple matching on completely
encrypted tuples. Since the data space does not need to decrypt tuples to perform the
search, tuple confidentiality can be guaranteed even when the data space is deployed on
malicious hosts (or an adversary gains access to the host). Our scheme does not require
authorised components to share keys for inserting and retrieving tuples. Each authorised
component can encrypt, decrypt, and search encrypted tuples without knowing other
components’ keys. This is beneficial inasmuch as it simplifies the task of key management.
An implementation of an encrypted data space based on this scheme is described and some
preliminary performance results are given.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

With its referential and temporal decoupling of processes, the Shared Data Space (SDS) model provides an attractive
paradigm for developing distributed applications. The model was introduced by Gerlenter in the coordination language
Linda [11] and its properties further analysed with Carriero in [12]. The referential decoupling property means that
application components exchange data without knowing each other’s references. The temporal decoupling property means
that application components do not need to synchronise their execution to communicate. This enables the loosely-coupled
model for building applications since components can be connected to or disconnected from the data space at any time,
making it easier to compose and/or replace them. The unit of data that is exchanged through the SDS is called tuple and it is
an ordered sequence of typed fields.
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Early implementations of SDSs were closed systems. These systems were realised by compiling together the code of
an application and of the SDS system. Once the system was deployed and executed, it was not possible to add or remove
application components. As a consequence, the original Linda model was conceived without addressing security concerns.
However, the SDS model becomes an effective coordination layer for distributed applications with the introduction of
open SDS systems. In open SDS systems, the SDS is an autonomous process with its own resources that are not bound to
applications. In this way, persistent data storage is offered to all applications allowing components to dynamically join
and leave the computational environment taking full advantages of its decoupling of communication in space and time
properties.
The SDS model has been successfully used for building distributed applications deployed in environments that range

from wide area networks [20] to small ad hoc sensor networks [9,4]. In light of the fact that the original Linda model does
not address security, in such open scenarios SDS models are vulnerable to security attacks. This security deficiency poses a
limitation on the usability of the SDS model for real-world applications since it is very simple for malicious components to
mount security attacks. For instance, a denial of service attack could beperformedby amalicious component that could insert
a large number of tuples into the data space or remove any tuples from the space, interfering with the other components
that are using the space. This can lead to even more serious consequences when tuples stored in the SDS contain sensitive
information.
In order to mitigate the effects of attacks against a SDS, several approaches have been proposed in the literature. Most

of the approaches [25,15,14,24] focus on providing access control mechanisms for allowing only authorised components to
access the data space. The common assumption of these approaches is that the hosts where the data space is deployed are
managed by trusted entities that will not try to compromise the data space and its content. As such, (1) the hosts correctly
enforce the access control mechanisms and (2) they are oblivious of the data that is stored in the data space. However, it
is becoming increasingly popular for its cost-effectiveness to outsource to third-party organisations the management of
servers where the SDS system could be deployed. In such a scenario, the assumption above does not always hold.
For instance, if the hosts where the data space is deployed are managed by a malicious administrator, then there are

several security attacks that the administrator could mount. The administrator could compromise the integrity of the data
space by either altering the semantics of the operations or thematching algorithm for finding a tuple. Data confidentiality can
also be violated since the administrator can easily gain access to the data, ultimately making the access control mechanisms
not effective.
The examples above are just some of the security threats that may be considered when a SDS host is compromised. One

of the main contributions of this paper is to provide a wide review of other security attacks and for each sketch possible
solutions. Our main goal is to trigger other research efforts in this direction. For this paper however, we focus on providing
confidentiality for the data space content even in the presence of compromised hosts. Our other main contribution is to
present a novel encryption scheme that supports encrypted tuple search. Our scheme guarantees tuple confidentiality
because the retrieval operation are performed without having the data space to decrypt the data. Therefore, the host
cannot gain anymeaningful information on the data being searched. Moreover, the scheme does not require the application
components to share secret keys, allowing for a more flexible key (user) management. In particular, the scheme avoids
having to re-encrypt the tuple space when a key needs to be revoked. To the best of our knowledge, this is the first approach
that implements such features for the SDS model.
The rest of this paper is organised as follows. Section 2 outlines the original SDS model. In Section 3, we review different

types of attack that an SDS deployment can face if an SDS host is compromised. In Section 4, we present an application
scenario to illustrate the application domain and security threats that our approach is targeting. In Section 5, we discuss
the architecture of our approach and its implementation. Section 6 describes our new encryption scheme that supports
encrypted searches over encrypted tuples without a shared key for clients. We formally prove the security properties of the
scheme in Section 7. Section 8 provides details on key management by revisiting the application scenario. An evaluation
of the prototype is then presented in Section 9. Section 10 compares our approach to other related approaches aimed at
providing security for the SDS model. We conclude in Section 11 with some final thoughts and future research directions.

2. The Shared Data Space model explained

The Shared Data Space model was introduced in the coordination language Linda [11]. Linda provides three basic
operations: out, in and rd. The out operation inserts a tuple into the tuple space. The in and rd operations respectively take
(destructive) and read (non-destructive) a tuple from the tuple space, using a template for matching. The tuple returned
must exactly match every parameter of the template. Templates may contain wildcards, which match any value. Putting a
tuple inside the tuple space is non-blocking (i.e. the process that puts the tuple returns immediately from the call to out),
reading and taking from the tuple space is blocking: the call returns only when a matching tuple is found. In the original
model two more operations were introduced: the inp and rdp. These operations are predicate versions of in and rd: they too
try to return a matching tuple. However, if there is no such tuple they do not block but return a value indicating failure.
In Linda it is also possible to fork a process inside a tuple space through so-called live tuples. To insert a live tuple inside

a tuple space the eval operation is used. eval is similar to an out and it is specific for live tuples. Once a live tuple is inserted in
a tuple space it carries out the specified computation. Afterwards, a live tuple turns into an ordinary data tuple, and it can
be used as such. In the implementation of a SDS presented later on in this paper the inp, rdp, and eval operations are omitted.
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3. The host attack model

Existing research on SDS security has focused on protecting the data space from attacks performed by malicious
application components. The assumption is that SDS hosts are fully trusted while application components are not. As
discussed in [8], existing approaches protect the data space against malicious components that:
1. remove and/or forge tuples from a data space to disrupt the collaboration between genuine components, and
2. insert into a data space a large number of tuples to consume all resources.

Because hosts are fully trusted, there are no mechanisms in place that protect the data stored from attacks performed by
malicious host administrators. In the following, we discuss several attacks that can be performed by such an adversary and
for each highlight possible solutions.

3.1. Integrity

An attacker that has access to the data space hosts can threaten the integrity of the data space in several ways. The
attacker could alter the authorisation process allowing unauthorised users to access the tuples (even if the users are not able
to decrypt them) or it could deny access to authorised users. An attacker can alter the semantics of the data space operations.
For instance, a user can be blocked in executing a retrieving operation while the matching tuple is in the space; the attacker
can re-send to a user a tuple that was the result of a previous operation (replay attack); additionally, the attacker can discard
tuples inserted by legitimate users modifying in this way the results of retrieval operations. Although no mechanisms can
prevent the attacker from performing such attacks, methods developed for database systems can help in detecting and
mitigating some of those attacks. For example, methods based on cryptographic techniques and hash functions would allow
a user to determine whether a returned result corresponds to the real content of the database. Such methods could be
extended to include the notion of time with the encrypted representation of the actual content of the data space. In this
way, a user would be able to detect whether the blocking for a removal operation was caused maliciously by a host or just
because the tuple was not present at the time the request was made. To make sure that tuples inserted by genuine users
are not discarded by malicious hosts global encrypted indexing [17] can be used. Finally, the integrity of tuples can also be
compromised. For instance, an attacker can change or reorder tuple fields (reordering attack).

3.2. Availability

Users that try to connect to the SDS hosts may experience some disruptions. For instance, the data space host is not
reachable or it requires a long time for replying. In order to mitigate such attacks, mechanisms that ensure accountability
are required. Accountability is the property that allows the participants of a system to determine and expose misbehaviour.
In this way, users can determine whether hosts are behaving correctly. Accountable mechanisms have been proposed for
network storage as in [26].

3.3. Traffic analysis

By monitoring the timing and frequency of the communication between hosts and users, an attacker can gather useful
information. By monitoring the execution time of encryption and decryption operations on tuples an attacker might be able
to gather enough information to efficiently recover the user key. For instance, in [22] Song shows that it is possible to use
such an attack to recover a password exchanged in the SSH protocol 50 times faster than using a brute force attack. The
attacker can also built a statistical attack by comparing the templates with the matching tuples.

3.4. Confidentiality

Tuple confidentiality can be violated when a privileged user or an adversary who becomes a privileged user has access to
the host where the data space is stored. Even if the space is protected by means of access control mechanisms, a privileged
user can still access the content of the tuples. To address this problem, Bettini and De Nicola proposed in [2] an encryption
scheme that could protect the tuple confidentiality from attacks from the hosts. However, because the tuples are encrypted
they are not meaningful therefore it is not possible to perform search operations. The encrypted tuple can be returned to
the user that decrypts the data locally. This results in an approach that is very inefficient in terms of bandwidth. Moreover,
issues related to key management (e.g., key distribution, key revocation) are not addressed.
In this paper, we concentrate on confidentiality attacks performed by an attacker that has access to the hosts where the

space is deployed. In the following, we present a case study to better illustrate the application domain and security threats
that our approach focused on.

4. An example of an application scenario

As an example of an application scenario, in this sectionwediscuss the case of amessaging application realised via the SDS
model. In our scenario, the SDS is deployed on a computing platformmanaged by a third-party company. This type of service
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Fig. 1. Overview of the case study realised through the SDS model.

Fig. 2. Overview of the architecture of the eSDS.

is increasingly becoming popular among companies like Amazon and Google that are expert in managing large numbers of
servers scattered across theworld. By paying a fee that is proportional to the actual usage of resources, it is possible to expect
the same level of availability and reliability that every day millions of users experience with the companies’ main portals
(Amazon’s book store and Google’s search engine).
Alice is a software engineer thatwants to sharemessageswith a groupof close friends and relatives (i.e., her boyfriendBob

and her sister Carol). Alice creates a messaging application based on the SDSmodel, with application components providing
a graphical interface for inserting and retrievingmessages to and from the space. Since Alice does not want to set up a server
to deploy the space, she decides to use the Exciting Computing Platform (ECP) service provided by the company Amtron.
The overview of the case study is depicted in Fig. 1.
Werner is a curious system administrator working for Amtron that manages the ECP hosts. If Alice uses a SDS

implementation that provides access control mechanisms for guaranteeing data confidentiality then for Werner it is not
too difficult to access the actual content of the space (since the tuples are stored in cleartext). Alice could use KLAIM [2]
as her SDS implementation to be deployed on the ECP. However, the KLAIM encryption scheme is not efficient in terms of
communication since it does not support encrypted searches. Moreover, since the scheme is based on all users sharing a
secret key, key management becomes a burden if the key needs to be revoked (i.e., the key is compromised or a user has to
be removed from the group).
The following sections discuss our implementation of an Encrypted Shared Data Space (eSDS) that is based on a novel

encrypting scheme that supports encrypted searches and does not require its users to share encryption keys. After the details
of our eSDS implementation and encryption scheme have been provided and its security properties formally proved, wewill
return to our case study discussing an implementation of the messaging application based on the eSDS.

5. Encrypted Shared Data Space

In this section, we discuss the implementation of the eSDS. The prototype is an extension of our implementation of a
distributed SDS, called GSpace [21].
Fig. 2 provides an overview of the modules that are part of our architecture. Components and the eSDS are different

processes that reside in different hosts. A component Ci communicateswith the eSDS bymeans of a proxy, called eSDSProxy.
The eSDSProxy takes care of hiding from the application component all the details for establishing a secure channel with
the eSDS and deals with the cryptographic operations. The eSDSProxy and the eSDS are provided with a KeyStore (KS) for
storing the appropriate keys used for encryption and decryption of tuples.
Tuples and templates are subclasses of the Tuple class. A tuple can be defined in such a way that when it is stored in the

eSDS it can contain both cleartext and encrypted fields. A field in a tuple will be stored encrypted only when its type is one
of the following: eInt, eChar, eDouble, and eString. These are classes that we define to represent the encrypted form
of the corresponding Java classes. For example, a tuple defined as follows:
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Fig. 3. Encryption steps executed for storing and retrieving a tuple using our scheme.

MyTuple(eString name, eInt age, Integer weight)

is stored in the eSDS, only the first two fields will be encrypted while the field weightwill be stored in cleartext. The eSDS
provides a Tuple Repository (TR)where tuples can be stored and retrieved.
The idea of our encryption scheme is based on proxy cryptography [3]. In a proxy encryption scheme, a ciphertext

encrypted by one key can be transformed by a proxy function into the corresponding ciphertext for another key without
revealing any information about the keys and the plaintext. There are many applications of proxy encryption, e.g. secure
email lists [17], access control systems [18] and attribute based publishing of data [19]. A comprehensive study on proxy
cryptography can be found in [16].
In our implementation, the Proxy Encryption Module (PEM) and the Space Encryption Module (SEM) provide the

implementation details of our encryption scheme (more details on the encryption scheme will be provided in Section 6). A
put operation is used to insert a tuple in the space. read and take operations are used for retrieving tuples; the former returns a
copy of amatching tuple whether the latter destructively removes thematching tuple.When these operations are executed,
tuples and templates are transformed according to our encryption scheme. Fig. 3 shows the cryptographic transformations
executed in the PEM and SEM on tuples and templates for a put and a read operation (the case of a take operation is similar to
that of a read).
Fig. 3-(a) shows the steps executed for a put operation on a tuple t. First, tuple t is transformed in the PEM using the

submodule Ep.1 The encrypted tuple te is sent to the eSDS where it is re-encrypted by SEM’s submodule Es.2 The tuple t ′e is
stored in the TR.
Fig. 3-(b) shows the case of a read operation. For a read operation a template temp is used for finding a matching tuple.

The non-null fields in the template are encrypted by the submodule Ep that produces the encrypted template tempe. tempe is
sent to the eSDSwhere it is re-encrypted in temp′e. Once in this form, the template can be used for performing the encrypted
search. If an encrypted tuple t ′e matches the template temp′e, the tuple must be decrypted before it is returned to the client.
The decryption is also a two-step transformation. First, t ′e is transformed in te by the SEM using the Ds submodule. te is
returned to the client’s proxy that transforms it using Dp, returning the tuple in cleartext t to the client.
In the following, we describe our encryption scheme that guarantees the confidentiality of the tuples from untrusted

hosts while supporting search on encrypted data.

6. Multi-agent searchable encryption scheme

This section presents our encryption scheme for a multi-agent searchable encrypted data space. The aim of this section
is to describe the required cryptographic details of the scheme and its properties.

6.1. Cryptographic preliminaries

Our multi-user searchable encryption scheme employs RSA public-key encryption [19] and Discrete Logarithms. RSA
involves two asymmetric keys. The key pair is generated as follows: First choose two random large primes p and q such
that |p| ≈ |q|. Then compute n = pq and φ(n) = (p − 1)(q − 1). Find a random integer e < φ(n) and gcd(e, φ(n)) = 1.
Compute d such that ed ≡ 1mod φ(n). (n, e) is the public key and d is the private key. To encrypt, compute c = me mod n.
To decrypt, computem = cd mod n. In the rest of the paper, we assume all arithmetic to bemod n unless stated otherwise.
Discrete Logarithms in finite fields are one-way functions. Namely, given a prime p, a generator g of themultiplicative group
Z∗p and g

x mod p, it is hard to find x. Discrete Logarithms have been used in constructing public-key encryption schemes [6],
digital signature schemes and zero-knowledge proof protocols.
Both RSA and Discrete Logarithms use Modular exponentiation as basic operations and the exponents can be split

multiplicatively. In RSA, for example we can find e1, e2 such that e1e2 ≡ e mod φ(n). The two shares of e can be given
to two parties, then the two parties can collaboratively encrypt a message. Given a message m, one party encrypts it as
me1 mod n and the other party re-encrypts it as (me1)e2 ≡ me1e2 ≡ me mod n. The decryption key can also be split in the
same way.
The encryption schema that we use in our system combines the property of proxy cryptography where each authorised

agent has a unique key with the capability of performing tuple matching on encrypted data.

1 This submodule implements the algorithms CEnc and CEnc ′ that we will describe later in Section 6.
2 This submodule implements the algorithms SEnc and SEnc ′ that we will describe in Section 6.



G. Russello et al. / Science of Computer Programming 75 (2010) 426–439 431

6.2. Architecture

The system has the following components:

• Client: a client is any agent interacting with the data space (i.e., application components).
• Encrypted Shared Data Space (eSDS): this is used for storing and retrieving tuples, performing encrypted searching
operations, authenticating valid clients, and safely storing encryption and decryption keys. The eSDS is also capable of
storing and retrieving tuple fields in plaintext or encrypted. The basic assumption is that we trust the eSDS to perform
these operations correctly. Although conceptually we refer to the eSDS as a single component, it could be physically
distributed across several hosts.
• Key Management Server (KMS): The KMS is a fully trusted server which is responsible for all the key-related operations,
e.g. key generation, distribution, and revocation. Although requiring a trusted KMS seems at odds with using a less
trusted node where the data space is running, we will show that the KMS is lightweight, it requires less resources and
management. Securing the KMS is also much easier. Because of this, the KMS can be offline most of the time.

6.3. System setup

To initialise the encryption system, the KMS runs the setup algorithm to generate public and secret parameters which
will be used for the whole lifetime of the system. The algorithm is described as follows:
The algorithm first takes a security parameter k and runs the key generation algorithm using standard RSA which

generates (p, q, n, φ(n), e, d). It then generates {p′, q′, g, x, h, a, gaha} satisfying the following constraints: p′ and q′ are two
large prime numbers such that q′ divides p′−1; g is a generator ofGq′ , the unique order-q′ subgroup of Z∗p′ ; and h ≡ g

xmod p′

where x is chosen uniformly randomly from Zq′ . a is also a random number from Zq′ .
The parameters needed for encryption/decryption are n, p′, q′, g, h, gaha and need to be published system-wide. The key

material is represented by the parameters p, q, φ(n), e, d, x, a andmust be kept secretly. In particular, the (e, d, a) are called
‘‘Master Keys’’ for the system.

6.4. Client key generation and revocation

When a new client is enrolled into the system, the KMS must generate a unique key set for the client. The key set is
derived from the key material using the following algorithm:
For a client i, the KMS generates ei1, ei2, di1, di2, ai1, ai2 such that ei1ei2 ≡ e mod φ(n), di1di2 ≡ d mod φ(n) and ai1ai2 ≡

a mod q′. Key generation can be efficiently done in the following way. Let us consider the generation of the ei1, ei2 pair. The
KMS randomly chooses ei1 < φ(n), where gcd(ei1, φ(n)) = 1. Since ei1x ≡ 1 mod φ(n) always has a solution, then ei2 ≡
ex mod φ(n) always satisfies ei1ei2 ≡ e mod φ(n). The KMS then sends (ei1, di1, ai1) to client i and (ei2, di2, ai2) to the eSDS
through secure channels.
In our system it is possible to authenticate a client and establish a secure channel between the client and the eSDS using

the corresponding key pairs. Because ei1di1ei2di2 ≡ ed ≡ 1 mod φ(n), k1 = ei1di1 and k2 = ei2di2 form another RSA key pair.
This key pair can be used for public key mutual authentication and for establishing a secure channel, e.g. SSL.
When a client’s access privilege is revoked, the KMS sends an instruction to the eSDS to request the removal of the client’s

corresponding keys. After the keys have been removed, the client cannot access the data unless the KMS generates new keys
for it.

6.5. Tuple encryption

In our system, tuple encryption is performed in two steps. A tuple is first encrypted by the client using its own private
key. The encrypted tuple is then sent to the eSDS, where the tuple is re-encrypted using the node’s key that correspond
to that client. Client side encryption prevents the eSDS (and its hosting site) from knowing the data in the tuple whereas
the eSDS side encryption makes it possible for other authorised clients in the system to retrieve the tuple in clear text. The
encryption process for client i is shown in Fig. 4. For a tuple t = 〈d1; . . . ; dn〉, we denote the value of a field at position x
by dx.
On the client side, a tuple is first encrypted using a semantically secure symmetric encryption algorithm E [13]. For each

tuple, client i randomly picks a key K from the key space of E. Each value of the tuple’s fields dx is encrypted under the key
K which generates a ciphertext cx1 = EK (dx). The symmetric key K is then encrypted by algorithm CEnc which is identical
to the RSA-OAEP (Optimal Asymmetric Encryption Padding) encryption algorithm [1] and uses ei1 as the encryption key.
RSA-OAEP enhances RSA by using a probabilistic padding scheme and has been proved to be IND-CCA2 (Indistinguishable
Adaptive Chosen Ciphertext Attack) secure [10]. The ciphertexts of the symmetric keys is cK = (Pad(K))ei1 .
During the search for amatching tuple, the data space content is kept encrypted. Thematching is doneusing appropriately

modified values of the tuple field, called keywords. Keywords are computed as follows by the client using the algorithm CEnc ′
and sent together with the tuple to the eSDS. For each value dx of a tuple field, the client i computes σx = H(dx) using a hash
function H . The client also picks a random number rx ∈ Zq′ and computes cx2 = (g rx+σxhrx)ai1 mod p′, cx3 = H((gaha)rx),



432 G. Russello et al. / Science of Computer Programming 75 (2010) 426–439

Fig. 4. Encryption of a tuple on client i and data space.

where g, h, gaha, p′ are public parameters in the system and ai1 is the client’s keyword encryption key. The client then sends
the encrypted tuple te = 〈(c11, c12, c13); . . . ; (cn1, cn2, cn3); cK 〉 to the eSDS.
After receiving the encrypted tuple, the eSDS retrieves ei2 and ai2, the corresponding encryption keys for the client i. It re-

encrypts the symmetric key by computing c∗K = c
ei2
K using the SEnc algorithm. The eSDS processes the keywords information

that is contained in the tuple using the SEnc ′ algorithm. For each field x, the eSDS computes c∗x2 = c
ai2
x2 = (g

rx+σxhrx)ai1ai2 =
(g rx+σxhrx)a mod p′. The final encrypted tuple stored is t∗e = 〈(c11, c

∗

12, c13); . . . ;
(cn1, c∗n2, cn3); c

∗

K )〉.

6.6. Encrypted search

The searching of a tuple in the data space is done by means of a template. A template may contains wildcard fields,
that in our system are represented as null values. When a client j wants to retrieve a tuple matching the template temp =
〈z1, . . . , zn〉, j first computes the hash value of all actual fields in the template. Since a wildcard field matches any actual
values in a tuple, it is not necessary that our encrypted search algorithm processes wildcard fields of a template. For each
non-null field x the client j generates σ ∗x = H(zx). Then j encrypts σ

∗
x as Qx = g

−σ∗x aj1 . At this point, the encrypted template
is tempe = 〈Q1; . . . ;Qn〉. j sends tempe to the eSDS.
The eSDS computes for each field of the received template Q ′x = Q

aj2
x mod p′ = g−σ

∗
x a mod p′. During the search, for each

encrypted tuple, the data space computes the following two values for each xth non-null field in the template:

yx1 = c∗x2Q
′

x = (g
rx+σxhrx)ag−σ

∗
x a = (garx+aσxharx)g−aσ

∗
x mod p′

yx2 = H(y1).

We can see that if dx = zx then aσx − aσ ∗x = 0, and therefore yx1 = (garxharx) = (gaha)rx mod p′. From this follows
that the value in the xth field of the template matches the value of the xth field in a tuple if and only if yx2 = cx3 (because
yx2 = H((gaha)rx) = cx3).

6.7. Tuple decryption

When a matching tuple is found, the eSDS computes the following before sending the tuple to the client j. For each field
x in the matching tuple t∗e = 〈(c11, c

∗

12, c13) ; . . . ; (cn1, c
∗

n2, cn3); c
∗

K )〉 the eSDS computes c
′

K = (c∗K )
dj2 and sends to j the

following tuple t ′e = 〈c11; . . . ; cn1; c
′

K )〉. The client j retrieves the key for encrypting the data items by computing (c
′

K )
dj1 =

(c∗K )
d
= (K)ed = K . The client j can decrypt the value of each field by computing dx = E−1K (cx1).
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7. Security analysis

7.1. Attack model

We focus the scope of our scheme on protecting data confidentiality, therefore we will not consider attacks on data
integrity and availability which can be handled by other mechanisms. For the scheme, we assume that the KMS and the
authorised users are fully trusted. We also assume they can properly protect their secrets, for example, the key pairs and
the parameters for generating keys. The server is modelled as ‘‘honest-but-curious’’, i.e. we trust it to correctly execute the
instructions from the clients, but do not want it to access the plain data. An adversary Adv is an attacker (or a software
agent) that gains privileged access to the data storage: either an outsider or a untrustworthy employee in the data centre.
The adversary can also intercept the communications between clients and the server, but it is computationally bounded. In
addition, the adversary is restricted to only performpassive attacks, i.e. attacks are based upon observed data. This restriction
is reasonable because: (1) in most cases Adv is physically isolated from the users; (2) most communications between the
clients and the server are one-round and initialised by the client, i.e. query-reply. The goal of the adversary is to gather direct
or indirect information about the stored data.

7.2. Formal security proof

We now give the formal notions of security and proof of security for our Multi-agent Searchable Encryption Scheme.
We first prove that the RSAproxy encryption scheme is semantically secure. Semantic securitymeans that the ciphertexts

are indistinguishable to the adversary, therefore the adversary learns nothing by looking at the ciphertext. Loosely speaking,
the proxy encryption scheme is semantically secure if by knowing the public parameter n, all the key pairs on the server
side, ciphertexts encrypted under an authorised user’s encryption key and any information can be derived from above, e.g.
intermediate ciphertexts calculated using the server side keys, but without knowing any key pairs in the authorised user
key pair setKu, no PPT adversary can distinguish the corresponding plaintext.
Lemma 1. Let IGen be the master key generation algorithm which is identical to the key generation algorithm in the standard
RSA; UGen be the algorithm for generating the key pairs for the users and the proxy; Ku be the set of user-side key pairs; Kp
be the set of server side key pairs. The proxy encryption scheme E is semantically secure against any PPT attacker (i.e. SuccA,E is
negligible) where

SuccA,E = Pr

b′ = b
m0,m1 ∈ {0, 1}l,

b
R
← {0, 1},

(p, q, n, φ(n), e, d)← IGen(1k),
(Ku,Kp)← UGen(φ(n), e, d),
b′ ← A(Kp, n,mεb), ε ∈ Ku

− 12
Proof. We will show that if a PPT attacker Adv can break the proxy encryption scheme, i.e. SuccA,E is not negligible, then
there is an attackerB who can break RSA-OAEP, which is semantically secure.
The goal ofB is to distinguish ciphertexts encrypted by RSA-OAEP where the corresponding RSA key pair is (e, d). Given

m0,m1 and a ciphertext cb where b
R
← {0, 1}, B can pick x pairs of random primes n2 < (eB, dB)i < n − 2161. The primes

are relatively prime to φ(n) because φ(n)2 < (eB, dB)i < φ(n).B then sendsm0,m1, cb, n, (eB, dB)i, i = 1, . . . , x to Adv.
Adv can computes cb1 = ceB1 , cb2 = c

dB1
b1 . Next we will show that cb, cb1, cb2, n, (eB, dB)i, i = 1, . . . , x can correctly

simulate adv’s knowledge in the proxy encryption scheme. First we will show that cb, cb1, cb2 are valid ciphertexts for the
proxy encryption scheme. The ciphertexts are valid if there exists a d′ such that cd

′

b2 = mb, i.e. eeB1dB1d
′
≡ 1 mod φ(n).

Because eB1, dB1 are relatively prime toφ(n), we can always find y such that eB1dB1y ≡ 1 mod φ(n). Therefore there always
exists d′ ≡ dy mod φ(n) such that eeB1dB1d′ ≡ eeB1dB1dy ≡ (ed)(eB1dB1y) ≡ 1 mod φ(n). We also need to show that
(eB, dB)i, i = 1, . . . , x are valid server side key pairs, this can be easily proved using the similar method as above therefore
is omitted.
Nowwith themessage fromB, Adv can distinguishmbwith probability SuccA,E and returns the result toB. ThismeansB

can distinguish ciphertext encrypted under RSA-OAEP with non-negligible probability SuccA,E , which is impossible because
RSA-OAEP has been proved to be semantically secure. �

We then prove that the keyword encryption is semantically secure.
Lemma 2. Let the keyword encryptionKE = (Pub_para, Sec_para,Ku,Kp, Enc) where Pub_para is the public parameter set,
Sec_para is the secret parameter set,Ku,Kp are the user and proxy key sets respectively, Enc,Dec are the encryption/decryption
algorithms. It is semantically secure against any PPT attacker (i.e. SuccA,KE is negligible) where

SuccA,KE = Pr

b′ = b m0,m1 ∈ {0, 1}l,

b
R
← {0, 1},

b′ ← A(Pub_para,Kp, Enck(mb)), k ∈ Ku

− 1
2
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Proof. The ciphertext of a keyword mb in the form of cmb = ((g rmb+σmb hrmb )ai1 , H((gaha)rmb )). It is easy to see that if rmb
is selected uniformly randomly from Zq′ , then g rmb+σmb hrmb is distributed uniformly in Gq′ . We will show that if SuccA,KE

is non-negligible, then there is an attacker B who can win the following game with a non-negligible probability SuccB,C ,
which contradicts the fact that r is random.

SuccB,C = Pr

b′ = b m0,m1 ∈ {0, 1}l,

b
R
← {0, 1}, r

R
← Zq′ , σmb = H(mb)

b′ ← A(p′, q′, g, h,H, g r+σmb hr)

− 1
2

B first sends m0,m1 to the encryption oracle and receives g r+σmb hr . Then it chooses a random number a ∈ Zq′ and
generates n pairs of (ai1, ai2) such that ai1ai2 ≡ a mod p′. It also computes σm0 = H(m0) and θ = g

r+σmb hrg−σm0 , it is
clear that Pr[θ = g rhr ] = 1

2 . Then B sends (m0,m1, p′, q′, g, h, gaha, (g r+σmb hr)a11 , (g r+σmb hr)a,H(θ a), a12, . . . , an2) to
A. If θ = g rhr , then A can output b′ = b with probability SuccA,KE . Therefore the probability of B winning the game is
SuccB,C = SuccA,KE/2, which is non-negligible. �

The semantically secure definition for searchable encryption is tricky because searching leaks information inevitably. As
long as the searching algorithm is correct, it always returns the same result set for the same query. Although the queries and
the result sets are encrypted, the adversary can still build up search patterns. Therefore the security definition for searchable
encryption should be modified to reflect the intuition that nothing should be leaked beyond the outcome and the pattern
of a sequence of searches. Here we adapt the definition from [5] and prove our scheme is non-adaptive semantically secure.
Informally, non-adaptive semantic security means that given two non-adaptively generated query histories with the same
length and outcome, no PPT adversary can distinguish one from another with non-negligible probability. Non-adaptive
means the adversary cannot choose queries based on the prior queries and results. This is acceptable because in our setting,
only the authorised user can generate queries.
We first introduce some notions to be used in the definition. ∆ is the set of all possible data items, i.e. documents.

D = {D1, . . . ,Dn} denotes an arbitrary subset of ∆, i.e. D ∈ P (∆), and each Di is a document. W = {w1, . . . , wd} is
a dictionary which contains all the possible words can be used in the queries. Each document in D is associated with a
local unique identifier id(Di), and a set of keywords kw(Di) which is a subset of W . The result set of a search query w on
a document set is denoted by rs(w), which is the set of document identifiers of all the documents in D that contain the
keyword, i.e. {id(D)|D ∈ D ∧ w ∈ kw(D)}. A history is defined in terms of a sequence of queries made on a document set.

Definition 1 (History). A history Hq ∈ P (∆) × W q is an interaction between a client and a server over q queries on a
document setD , i.e. Hq = (D, w1, . . . , wq).

During the interaction, the adversary cannot directly see the history because the documents, keywords and queries are
encrypted. What the adversary can see is a view, i.e. the encrypted version of the history. Let E be the symmetric key
encryption scheme, E be the proxy encryption scheme and KE be the keyword encryption scheme, Qi be an encrypted
query, the view of the adversary is then defined as:

Definition 2 (View). Given a document set D with n documents and a history over q queries Hq = (D, w1, . . . , wq), an
adversary’s view of Hq is defined as: V (Hq) = (id(D1), . . . , id(Dn), Ek1(D1), . . . , Ekn(Dn), E(k1), . . . , E(kn), KE(kw(D1)),
. . . ,KE(kw(Dn)),Q1, . . . ,Qq).

As we have stated above, searching leaks information. The maximum information we have to leak is captured by a trace. In
our settings, a trace contains information from three sources: the encrypted file stored on the server, e.g. the id, length and
number of keywords of each document, the result set and the query pattern.

Definition 3 (Trace). Given a document setD with n documents and a history over q queries Hq, the trace of Hq is defined
as:
Tr(Hq) = (id(D1), . . . , id(Dn), |D1|, . . . , |Dn|, |kw(D1)|, . . . , |kw(Dn)|, rs(w1), . . . , rs(wq),Πq).
Πq is the search pattern over the history which is a symmetric binary matrix whereΠq[i, j] = 1 ifwi = wj, andΠq[i, j] = 0
otherwise, for 1 ≤ i, j ≤ q.

The security definition is then based on the idea that the scheme is secure if no more information is leaked beyond
what the adversary can get from the traces. This intuition is formalised by defining a game where the adversary has
to distinguish two histories, possibly on two different document sets, which have the same trace. Since the traces are
identical, the adversary cannot distinguish the two histories by the traces, i.e. the knowledge he already has. Hemust extract
additional knowledge fromwhat he can see during the interactions, i.e. the views. The negligible probability of the adversary
successfully distinguishing the two histories implies that he cannot get extra knowledge and in consequence the scheme is
secure.

Definition 4 (Non-Adaptive Semantic Security). Our searchable data encryption is Non-Adaptive Semantically Secure if for
all q ∈ N, for all (H0,H1) which are histories over q queries and Tr(H0) = Tr(H1), and any PPT adversary A, SuccA is
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negligible:

SuccA = Pr

b′ = b
Pub_para, Sec_para,Ku,Kp ← SETUP(1k),

H0,H1 ∈ P (∆)×W q,

b
R
← {0, 1},

b′ ← A(Pub_para,Kp, V (Hb))

− 12
Theorem 1. The enhanced construction is non-adaptive semantically secure.
Proof. Let us examine each part of the view.

Document identifiers id(D1), . . . , id(Dn): Because Tr(H0) = Tr(H1), this part of the view must be identical for the two
histories. So the adversary cannot distinguish the two histories by the document identifiers.

Encrypted documents Ek1(D1), . . . , Ekn(Dn): The adversary cannot distinguish because E is semantically secure.
Encrypted symmetric keys E(k1), . . . , E(kn): E is based on RSA-OAEP which is IND-CCA2 secure. Therefore is also

indistinguishable.
Encrypted keywords KE(kw(D1)), . . . ,KE(kw(Dn)): We have proved they are indistinguishable to the adversary in

Lemma 2.
Encrypted queries Q1, . . . ,Qq: Because Tr(H0) = Tr(H1), we do not need to consider the query pattern and can reduce

the problem to distinguish any two sequences of distinct queries: (Q01, . . . ,Q0m), (Q11, . . . ,Q1m),m ≤ q. For each Qij,
i ∈ 0, 1, 1 ≤ j ≤ m, it is a pseudorandom number ga1H(wij) mod p′. Therefore the queries are not distinguishable as long as
the discrete logarithm problem is hard. �

8. Key management

In this section, we use the application scenario presented early in Section 4 to provide more details on how key
management is achieved through the eSDS. Firstly, we describe the actual implementation and deployment of the
application realised through the eSDS. Afterwards, we concentrate on the key initial setup and management.
Fig. 5 provides an overview of the actual deployment of the messaging application and eSDS. The application component

MessengerClient is deployed on the user’s host (in this case Alice’s host). The eSDS is deployed on the ECP on a host
managed by Werner. The application component provides a graphical interface for composing, sending and retrieving
messages. The component is securely connected to the eSDS via the eSDSProxy that establishes a secure channel with
a kernel deployed on the hosts managed by Amtron.
Messages are represented by means of tuples that are instances of the type defined as follows:

TupleMessage(eString sender,
eString receiver,
eString message,
String date);

The tuple contains four fields representing the sender, receiver, message content, and the date when the message was
sent, respectively. When the tuple is inserted in the space the sender, receiver and the content of the message will be
encrypted while the date is stored in cleartext (for Alice decided that the confidentiality of the date in the message is not
crucial for her application).
The sending of a message is executed by inserting a tuple in the space by means of a put operation. A user can send a

message to multiple receivers. In this case, for each receiver a new instance of a tuple is created and inserted according to
the following code excerpt:
while(!receiver_list.isEmpty())

put(new TupleMessage(MY_ID,
receiver_list.next(),
msg,
current_date);

The loop iterates through the receiver values inside the receiver_list, inserting a new instance of a tuple for each
receiver. The value MY_ID represents the id of the user running the application and in this case sending the message. msg
represents the content of themessage and current_date provides in the string form the date and timewhen themessage
is sent.
To retrieve the messages for a user, the client executes in a separate thread an infinite loop shown in the code excerpt

below:
tmp = new TupleMessage(null, MY_ID, null, null);
while(true){

message = take(tmp);
deliver(message);

}
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Fig. 5. Deployment of the Messenger application component and eSDS.

a b c

Fig. 6. (a) Initial setup. (b) Adding a new user. (c) Revocation of a user.

Inside the loop, a take operation is performed with the template tmp. The template specifies only the receiver id while the
other fields are set to the wildcard value null. If no messages are available for the user specified in the receiver field, the
template specified in take operation will not match with any tuple and the take blocks. Once a matching tuple is found, then
the take returns such a tuple (message) to the user application. It isworth noticing here that thematching operation is executed
on typed fields as for the Linda model. In fact, the template is just an instance of a tuple type where each field has a specific
type associatedwith it. Such an approach is for instance used in JavaSpaces [7] where all the tuples are subclasses of the Entry

class. In the example presented here, the template tmp will match only tuples where the first three fields have type eString

and the last one has type String.

8.1. Initial setup

Fig. 6-(a) shows the steps that Alice performs to deploy her application. The steps are described in detail in the following:

1. Alice creates an executable image of the eSDS that is deployed on the ECP. Alice initialises the eSDS for creating a
space instance called WonderSpace. Alice associates with her space instance a certificate of a trusted authority TA that
manages the KMS.

2. Alice is a registered user of TA and once she has authenticated herself Alice can request the KMS managed by the TA to
generate the keys for her space. The request contains the information about the users’ identity (i.e., Alice as owner of the
space; Bob and Carol as normal users); the name of the space instance (in this case WonderSpace) and the location of
where the instance is deployed (for example, ECP can provide a fixed IP address to identify the host where the image of
the eSDS is executing).

3. The KMS executes the setup algorithm as described in Section 6. For each user specified in Alice’s request, the KMS
generates two key pairs, the client key pair (CKP) and the space key pair (SKP). The KMS stores the information about
the users and pair keys for the WonderSpace in its local table. The information in the table can be updated by Alice. For
instance, Alice can request to create a new key pair for a new user or can revoke the key of an existing user (more details
on how a user can be added or an existing user removed will be provided in the following).

4. The KMS contacts the eSDS on the ECP and sends the user ids and SKPs regarding Alice’s WonderSpace encrypted with
the private key of the TA. The eSDS uses the public key in the certificate provided by Alice for the decryption and stores
the information in its key store.

5. The KMS sends back to Alice the CKPs. Alice stores her CKP into the key store of the space proxy deployed on her device.
Once the CKP is stored, Alice can connect to the space and deliver the first message for the other users.

6. Furthermore, it is Alice’s task to securely distribute and install in the key store of the proxies the CKPs to the respective
users. When this step is completed, then Bob and Carol will be able to retrieve the message that Alice sent to them and
(possibly) write back.

8.2. User management

User management is performed by the owner of the space. Adding and removing users requires the involvement of the
KMS and the eSDS to update their information about the users and key pairs. In the following, we describe the actions
required by Alice for adding and removing users from WonderSpace.
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Table 1
Performance of encryption and decryption
operations.
Execution step Execution time (ms)

Client encryption 53
eSDS encryption 37
eSDS decryption 37
Client decryption 37

Fig. 6-(b) depicts the case in which Alice wants to add Dick, Carol’s boyfriend, as a used of WonderSpace. Each step is
described in the following:

1. Alice authenticates to the TA and informs the KMS to add a new user for her space WonderSpace.
2. The KMS generates a new set of keys for the new user and updates its local table with the new information.
3. The KMS contacts the eSDS and sends the new information (Dick’s id and SKP).
4. The KMS sends back to Alice the new CKP for Dick. Once Alice has stored Dick’s CKP to the key store of Dick’s application,
Dick will be able to send new messages to the other and retrieve messages that have been sent to him even before he
was enrolled in the system by the KMS.

Let us assume that Alice and Bob split up. Alice decides to revoke Bob access to WonderSpace. To achieve this, Alice has
to perform the steps depicted in Fig. 6-(c) and described as follows:

1. Alice authenticateswith the TA and sends the request for the revocation of the key pairs for user Bob fromWonderSpace.
2. The KMS removes the entry for user Bob from its table.
3. Moreover, the KMS sends a request to the eSDS to remove the entry for user Bob from its key store.

It is important to note here that in order to exclude Bob from her space, Alice does not need to revoke all the other keys
or to re-encrypt the messages in the space. Once Bob’s SKP has been removed from the eSDS key store, it is impossible for
Bob to decrypt messages inserted in the space even if Werner would allow him to bypass the authentication mechanism of
the eSDS. In fact, with just Bob’s CKP it is impossible to decrypt the messages in the space.

9. Evaluation

The eSDS prototype is implemented in Java using the packages provided in the standard Java 1.5 distribution. We chose
AES as the symmetric cipher which encrypts the actual data and SHA-1 as the hash function. For the RSA-based proxy
encryption scheme, we used 1024-bit keys. For the keyword encryption scheme, q′ was 160-bit and p′ was 1024-bit. The
tests were executed on a Intel Pentium IV 3.2 GHz (dual core) with 1 GB of RAM.
The first evaluation consisted of measuring the execution time for the encryption and decryption submodules. In

particular, we measured the execution time for:

• Client Encryption: consists in the execution of Ep, that is encrypting tuple fields using the symmetric cipher, encrypting
the symmetric key and encrypting the keywords.
• eSDS Encryption: consists in the execution of Es, that is the re-encryption of the symmetric key and the keywords using
the eSDS keys.
• eSDS Decryption: pre-decryption of the symmetric key by executing Ds.
• Client Decryption: decryption of the symmetric key and the tuple fields by executing Dp.

Table 1 provides the results of our test for the execution of the encryption and decryption operations. The time is given
in milliseconds for a single execution of each operation calculated on the average time for 10,000 executions. The tuple and
template used for the experiments consisted in a single field of type eStringwith 4 chars.
We also measured the time for finding a matching tuple using our encrypted search. In the data space, 10,000 encrypted

tuple were stored and only one was a match for the template used in the search. We ensured that the matching tuple was
the last tuple to be evaluated (worst case scenario). Tuples and template consisted of a single eString filed with 4 chars.
Under these conditions, the time required for finding the matching tuple is around 600 ms. Basically, each matching test
takes around 0.06 ms.
Given the results of this performance analysis, we can say that the use of our scheme is well suited for cases where a large

number of tuples need to be searched. The search is performed entirely within the data space and the result that is returned
is a tuple matching the given template. In contrast, when executing the same experiment using an approach as in KLAIM
[2], executing cycles and bandwidth would be wasted. In fact, the result that is given back to a client is a partial match to
the given template (only the fields not encrypted are used for the matching). The client has to decrypt the tuple and if the
values of the encrypted fields are not the intended ones then the client has to re-encrypt the tuple and send it back to the
space.
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10. Related work

This section provides a review of existing approaches to Shared Data Space (SDS) security.
Secure Lime, described in [15], introduces several security extensions to Lime [18]. Since Lime’s primary environment is

a network of mobile low-resource hosts, the main concern of the developers was to introduce security enhancements with
lowoverhead. Security extensions are implemented as two levels of access control: at tuple space level and single tuple level.
At the tuple space level, it is possible to protect access to a tuple space by means of a password. An agent will be considered
authorised to access a tuple space if it knows the password for the given tuple space. At the tuple level, agents can specify for
each tuple that they insert passwords for granting both read and take accesses. Inter-host communication uses unsecured
links. To counter eavesdropping of messages, each serialized tuple is encrypted using the respective password for accessing
the tuple space. It should be noted that it is not a good practice to use a password as an encryption key.
SecOS [24] introduces the notion of a lock for controlling access to a tuple. A lock is a labeled value that specifies the key

that should be used to grant access to a given tuple. The simplest lock is represented by a symmetric key where the same
label can be used for locking and unlocking a tuple. Also, asymmetric locks can be used. In this case, two different keys are
necessary for locking and unlocking a tuple. A public key is used for locking a tuple and a private one is used for unlocking it.
SecOS also provides finer grained access control at the level of single fields in a tuple. Each field in a tuple can be protected
by a separate lock.
SecSpaces [14] provides a similar approach to that of SecOS. In SecSpaces labels are used as an access control mechanism

to protect tuples and tuple fields. SecSpace provides two more extensions. The first extension concerns partitioning the
tuple space. The partitioning of a tuple space avoids all agents having the same view on the data contained in a tuple space.
Instead of a physical separation in different tuple spaces, in SecSpaces the tuple space partitioning is achieved through the
introduction of a partition field in the tuples. A template can match a tuple in a given partition only if the correct actual
value is given in the partition field. A template with a wildcard value in the partition field is considered not valid. This
means that a process has to know the name of the partition for accessing the content. The second extension regards the
distinction between consumers that can only execute read operations and consumers that can only execute take operations.
This extension is provided via specified fields in the tuples, called control fields. To be an authorised read consumer, the
process has to provide in the template issued by the read operation the exact value on the read control field of a tuple.
Linda with multicapabilities [23] is an approach where the capability concept is applied to the Linda model. Capabilities

are themeans bywhich agents can access tuples and the SDS. In particular, amulticapability is a special capability that refers
to a group of tuples. A multicapability consists of three parts: u, a unique identifier which is the reference to a collection
of tuples; t , a template that matches the tuples that the multicapability refers to; p, a set of permitted operations on the
matching tuples. To be able to exchange tuples, two or more agents have to share the same multicapability that refers to
the same set of tuples. In case a multicapability has to be revoked, the authors adopt the common solution of introducing
indirect multicapability objects. A multicapability now refers to the indirection object, which in turn refers to the intended
tuple set. The deletion of the indirection object has the effect of removing the multicapability.
In all the approaches presented above, tuples are stored in the data space as plaintext. Indeed, the basic assumption of

these approaches is that the data space host is trusted. However, if an adversary gets access to the host where the data space
is deployed, tuples can still be retrieved. The only exception to this is KLAIM [2]. KLAIM provides confidentiality by means
of encryption. In the framework proposed, a key can be used for encrypting the data value contained in a field. The model
does not provide any access restrictions to the tuple space. This means that encrypted tuples can be retrieved by agents that
do not have the right key for decrypting the content. If a tuple is withdrawn from the tuple space by an agent that cannot
access it, it is up to that agent to reintroduce the tuple back to the space. The tuple space API is extendedwith two operations
that execute the decryption process before returning the tuple to the application: ink and readk. If the decryption fails, then
the ink operation inserts the tuple back into the space. It should be made clear that the key used for encrypting the data is
not shared between the entities and the data space. The ink and readk operations perform the decryption locally to the node
where the entity is deployed. This has a negative impact on the communication costs.
Although KLAIM is the only approach that encrypts the data when it is stored in the space, it does not support encrypted

search. Therefore it is necessary to have in the tuples cleartext fields. Assuming that there is a secure channel between the
agent and the data space, an attacker can still gain some information on the matched tuple if it has access to the data space
host. However, if the data space supports encrypted search then an attacker cannot gather any information about the tuple
content by just looking at the ciphertext. Another common drawback of the above approaches is that agents are required to
share a secret (either a key or a password). The revocation of the secret in the event that it gets compromised requires the
re-distribution of a new secret and the creation and/or modification of the data space to be protected by the new secret. The
same needs to be done in the case that access privileges have to be removed to an agent.

11. Conclusions and future work

In this paper, we have presented a novel encryption scheme that ensures tuple confidentiality even in the case that the
data space is deployed on an untrusted hosts. The scheme supports encrypted search formatching tuples over the encrypted
data space and does not require the clients to share secret keys. Each client has its own key that can be used for retrieving
tuples encrypted by other clients’ keys. This greatly reduces the burden of key management — when the key of a client
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is revoked it is not necessary to invalidate all the other clients’ keys and re-encrypt the entire data space content. The
security properties of the scheme were proved. Although the scheme has been presented in the context of the SDS model,
it is applicable to any other system where the confidentiality of data shared among several entities must be protected, i.e.
databases, publish subscribe systems, email servers, etc.
The paper also discussed many of the additional security threats that can arise when data spaces are deployed on

untrusted hosts and suggested possible solutions for them. An implementation of the encrypted SDS scheme was described
and preliminary performance results presented. A case study of a messaging application based on our implementation of an
encrypted SDS was also described.
We are currently looking at Private Information Retrieval (PIR) schemes that would allow a user to retrieve tuples from

a data space without revealing to the SDS host which items were searched for.
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