
Network-level Synchronization in Decentralized Social Ad-Hoc Networks

Matthew Dobson, Spyros Voulgaris, Maarten van Steen
Dept. of Computer Science

Vrije Universiteit Amsterdam, The Netherlands
{mc.dobson, spyros, steen}@cs.vu.nl

Abstract

Social ad-hoc networks can be composed of a large
number of tiny, wireless, battery-powered nodes, and ex-
hibit arbitrary mobility. We aim to enable the execution
of distributed applications that depend on capturing net-
work dynamics across large-scale social ad-hoc networks.
Conservation of the nodes’ fixed energy budget is the
chief concern in all design decisions, and necessitates
that wireless communication is kept to a minimum. In
this paper we present GMAC1: a gossiping TDMA MAC
layer created to address these problems. We analyze its
efficiency in achieving and maintaining a tight network-
layer synchronization with respect to the active periods of
node radios.

Keywords: ad-hoc wireless networks, TDMA MAC
layer, duty cycle synchronization

I. Introduction

At the intersection of wearable computing, wireless
ad-hoc networks, and social networks, lies an area we
have dubbed social ad-hoc networks. Such networks are
composed of nodes carried or worn by people, use wireless
communication, do not rely on existing communication
infrastructures, and are battery powered. Unlike typical
wireless ad-hoc networks, that focus on propagating col-
lected data to a sink, social ad-hoc networks aim at
capturing network dynamics at regular intervals.

A number of applications can benefit from capturing
network dynamics. Consider, for instance, a (large) group
of people at a conference or similar social event, each
wearing a small unobtrusive electronic badge with a lim-
ited radio range. By simply measuring how often and for

1GMAC is protected by US Patent Application 12/215,040. GMAC is
available free of charge for academic use.

978-1-4244-9142-1/10/$26.00 c©2010 IEEE

how long two badges are within range of each other, we
can register social interaction and study the structure of the
social network. Furthermore, by aggregating and dissem-
inating data we can even stimulate social interaction, for
instance by a social game where groups of people (e.g.,
students of the same department) increase their score by
talking to members of other groups, and lose points when
sticking among themselves. Finally, a family or group of
friends attending a large social event may be informed
when they come in close proximity to each other, helping
them to stay in contact. Other applications easily come
to mind, including peer-to-peer messaging, finding people
with specific profiles, and crowd management, to name a
few.

There are three main challenges at the MAC layer that
must be overcome in order to implement large-scale social
ad-hoc networking. The first, and primary concern for
almost any mobile device, is energy consumption. As these
mobile nodes are battery powered, careful and judicious
use of a node’s fixed energy budget is essential. The
second problem we face is scalability. We require that our
platform operates efficiently on a wide variety of network
sizes, from a few tens of nodes (e.g., a birthday party
or small restaurant) to thousands of nodes (e.g., a large
sporting event or stadium rock concert). Our third major
challenge is node mobility. In the social settings where our
applications will be executing people are free to join and
leave the network, and to move anywhere they please (i.e.,
make arbitrary changes in the network topology). These
dynamic changes to network topology can wreak havoc on
many algorithms (e.g., routing and leader election) which
assume stable and symmetric connections between nodes.

As part of an overall solution, we propose GMAC: a
gossip-based MAC protocol, with energy-awareness being
a primary goal. GMAC is designed to run on highly
constrained sensor nodes and it therefore has very low pro-
cessing requirements and a small memory footprint. This
serves to reduce energy consumption, but GMAC’s chief
mechanism for energy conservation is duty cycling. Duty
cycling is a common technique from the area of wireless

Fig. 1. GMAC’s TDMA structure

sensor networks where individual nodes periodically turn
on their wireless radio for only a short period of time
to allow for communication. GMAC’s communication is
based on a periodic gossip paradigm, in which one period
of gossip-based communication is known as a gossip
round. During each gossip round, each node sends one
application message and one join message. Application
messages comprise a small GMAC header with synchro-
nization and strategy information, and the application data.
Join messages carry debug and/or statistical information
from the GMAC core, and are also used to aid network
synchronization.

Note that most existing MAC protocols, focusing on
adapting radios’ duty cycles to variable data propagation
needs, are not appropriate for monitoring network dynam-
ics at regular intervals. GMAC’s periodic duty cycling
provides an inherent solution to that, provided that nodes
are properly synchronized with each other. The synchro-
nization mechanism, which is what we concentrate on in
this paper, is the glue that holds the entire network to-
gether. Properly synchronized, GMAC’s gossip-based data
dissemination will epidemically spread application mes-
sages throughout the network. Improperly synchronized,
network-level packets will collide or go unheard entirely.
By extensive simulation, we show that it is feasible for
GMAC to dynamically establish and adaptively maintain
a synchronized duty cycle for networks of very large
scale, even in the presence of drifting clocks and diverse
topologies.

II. System model / GMAC description

GMAC’s core design considerations were predictable
(and low) energy consumption and self-adaptability. In or-
der to accomplish these goals, GMAC combines network-
level gossiping with a low duty-cycle Time-Division Mul-
tiple Access protocol. TDMA protocols divide time into a
repeated series of frames comprising a number of fixed-

length slots, each of duration Tslot. They attempt to
avoid message collisions by scheduling transmissions in
unused slots. This scheduling mechanism is known as
slot allocation, which GMAC provides in the form of
scheduling strategy modules. For the slot allocation to
be effective, nodes must be synchronized. That is, the
nodes participating in this protocol must closely align their
slots, minimizing the offset between all pairs of nodes.
To this end, GMAC also supports the use of various
synchronization modules. GMAC’s TDMA structure is
shown in Fig. 1.

GMAC maintains a fixed duty-cycle when in a synchro-
nized state, and thus constant and predictable energy con-
sumption. At compile-time GMAC computes the largest
integer number of TDMA slots that fit within the desired
frame time, Slotsframe = bTframe/Tslotc. Tslot is based
on the transmit time of a fixed-length GMAC packet and
a guard time, which is padded to both ends of a single
TX time to compensate for a possible synchronization
offset between nodes, as shown in Fig. 1. The TX and
guard times are measured at the granularity of the node’s
underlying hardware clock tick, Ttick

2, which determines
the minimum possible synchronization adjustment. The
transmit time is based on the radio hardware present on a
node, specifically the total time for the radio to transition
from standby mode to transmit mode (TStandbyToTX) and
the time to transmit a single packet (PacketSize

DataRate). Thus,
TicksTX = b(TStandbyToTX + PacketSize

DataRate)/Ttickc + 1.
The guard time is a compile-time constant, currently set
to 300µs, giving us Ticksguard = b300µs/Ttickc. This
yields a final formula for the length of a TDMA slot:
Tslot = (TicksTX + 2 × Ticksguard) × Ttick. Finally,
the GMAC’s duty cycle is Slotsactive/Slotsframe, where
Slotsactive (the number of active slots in a frame) is a
GMAC parameter.

A. Gossiping

GMAC addresses our issues of scalability and mobility
by using a simple gossip-based communication paradigm
[1]. Gossiping has had much success in peer-to-peer pro-
tocols for wired networks, partly due to its scalability
and robustness in the face of network churn (changes in
network membership or topology). For wireless networks,
our basic model is that nodes periodically broadcast mes-
sages consisting of various news items. Other nodes within
transmission range receive these messages and maintain a
cache of recently heard news items. During each gossip
period, or round3, a node selects and sends a number of

2In the case of a 32,768Hz clock, Ttick = 1s/32, 768 ' 30.5µs
3The term round and frame describe the same thing, a single period

of GMAC communication. Round is used to refer to gossip, while frame
is used at the MAC layer

news items from its cache, possibly including a freshly
generated news item of its own. Similarly, a node that
receives messages selects a number of news items that it
heard during the round to store in its local cache. This
simple protocol provides all nodes with an approximation
of the true global view of all the news items in the
network based purely on local data. The accuracy of this
approximation depends on several factors, including the
connectivity of the network, the size of a node’s cache,
and the algorithm a node uses to select which news items
to send or store.

Network-level gossiping does not rely on routing, node
IDs, or neighborhood maintenance. Still, it is highly fault
tolerant, an ideal property in networks where both wireless
links and individual nodes are unreliable. Such a simple
gossiping protocol is sufficient for many ad-hoc network-
ing operations, such as dissemination, aggregation, and
even maintenance of routing tables, as in [2], in case they
are needed.

B. Duty-Cycle Synchronization

GMAC’s use of duty cycling makes proper node syn-
chronization essential. If a node’s frame is not synchro-
nized with those of its neighbors, it is very likely that the
node’s broadcasts will go unheard. For example, with a
typical duty-cycle of 1.5%, the odds of having the active
periods of unsynchronized nodes overlap is quite low,
meaning these nodes will not hear each other’s messages.
On the other hand, the better synchronized the nodes are,
the more energy we can save. This is because GMAC
is designed to be pessimistic, and currently uses a guard
time that is quite high, approximately equal to the radio’s
TX time. A guard time that is too large will result in
wasted energy as receivers wait with their radios on for
transmitters to begin. On the other hand, a guard time that
is too short will result in increased message collisions,
as transmissions from adjacent slots begin to overlap.
Shrinking this guard time as much as possible is one of
the direct benefits of sharp synchronization.

Groups of nodes whose active periods overlap are said
to form a synchronized subnetwork, or simply subnet-
work. Synchronization of all nodes participating in the
network then takes two forms: maintaining synchronized
subnetworks and joining separate subnetworks. Because no
two clocks are exactly identical, GMAC’s synchronization
module must maintain existing synchronized subnetworks
by compensating for the inherent clock drift between any
two nodes. GMAC operates in a completely decentralized
manner, so there is a chance that nodes will form inde-
pendently synchronized subnetworks or remain isolated.
GMAC’s join messages are responsible for joining these
isolated nodes and subnetworks together.

The goal of the maintenance portion of GMAC’s syn-
chronization is to minimize the offset (see Fig. 1), ∆Ti,j =
Ti − Tj between all pairs i, j of communicating nodes.
GMAC divides the offset between nodes’ notions of time
into two parts: slot offset and phase offset. We define slot
offset as the number of whole TDMA slots by which the
two nodes differ, i.e. b∆Ti,j/Tslotc. We define phase offset
as the number of clock ticks (intervals of Ttick) the two
nodes are offset within one TDMA slot. So, the total offset
between the nodes is the sum of the slot offset and phase
offset between them.

Currently GMAC provides one synchronization module
implementing a method known as the median algorithm,
described in Alg. 1. The median algorithm uses the number
of packets received during the current frame and the array
of packets as input. The algorithm sorts the received packet
entries by their offset from the local time, selects the
median entry, and increases (or decreases) the number of
slots for the next frame based on the timing data pertaining
to that entry.

Algorithm 1 Median Synchronization

Require: NumEntries > 0, array RxEntries
SortByOffset(RxEntries)
MedianEntry ← RxEntries[NumEntries

2]
TickCorrection←MedianEntry.Offset/2
SlotCorrection← TickCorrection div Ticksslot
PhaseCorrection← TickCorrection mod Ticksslot
NextFrameSlots← Slotsframe − SlotCorrection
NextSlotT icks← Ticksslot − PhaseCorrection

As GMAC nodes execute their synchronization algo-
rithm in a completely decentralized manner, it is possi-
ble that separately synchronized subnetworks form (i.e.,
subnetworks partitioned in time, rather than space). In an
attempt to join these separate subnetworks together to form
a single network, GMAC nodes send out join messages in
every TDMA frame. Each node randomly selects a slot
during the inactive portion of the frame and transmits a
message filled with synchronization and debugging infor-
mation. Occasionally, a join message from SubnetworkA
will be received during the active period of SubnetworkB .
Nodes receiving a join message will modify their local
clocks in an attempt to synchronize to the sending node.
Note that this join behavior is purely probabilistic, and it
is not uncommon for disjoint subnetworks to exist, despite
the nodes being in close physical proximity.

C. Slot Scheduling Strategy

GMAC’s slot allocation algorithms are based on Slotted
Aloha [3], and are used to share access to the wireless
medium. At a high level, the main difference between

GMAC and Slotted Aloha is GMAC’s use of duty cycling.
Slotted Aloha is an always-on protocol, whereas GMAC
turns the radio on only for a small percentage of the total
slots in order to save energy. Slots in which the radio
is powered up are known as active slots, in contrast to
inactive, or idle slots, where the radio is powered down.
At the moment, GMAC provides three different TDMA
strategy algorithms. For the purposes of this paper, we
restrict our investigation to the most basic strategy, known
as Simple TDMA.

The Simple TDMA strategy takes as a parameter the
number of active slots in a frame, denoted Slotsactive.
In each frame, the algorithm selects a random TX slot
in the range [1..Slotsactive]. This algorithm works well
in low- to moderate-traffic networks. However, highly
congested neighborhoods (i.e., where #Neighbors >>
#ActiveSlots) will result in a large number of collisions,
and thus significantly reduced throughput. The Distributed
TDMA strategy attempts to remedy this problem by adapt-
ing the number of active slots based on the perceived
number of neighbors. We leave the investigation of this
and other strategies to our future work.

III. Experimental setup

We implemented our GMAC simulator using the
MiXiM (http://mixim.sourceforge.net) extensions over
OMNET++ (http://www.omnetpp.org). The OMNET++
platform is expressive, efficient, modular, and increasingly
the de-facto simulation environment for mobile ad-hoc and
sensor networks [4].

A. Simulated Nodes

As we are interested only in synchronization, we can
ignore the difficulties of modeling sensors and actuators.
The behavior of the GMAC layer is then driven solely
by the interrupts from the internal clock and the radio.
We chose to model our simulated clocks and radios in
accordance with the hardware GMAC was designed to
run on in the real world, MyriaNed nodes. These nodes
have an Atmel ATXMega128 CPU with 8k of RAM, 128k
of Flash memory, a Nordic nRF24L01+ wireless radio,
and four colored LEDs, and several sensors. The internal
timer is an oscillator designed to operate at 32,768Hz,
and are specified to have a frequency offset ≤ ±20ppm
(parts per million). This may seem small, but it means
that after thirty seconds4, two initially synchronized clocks
may have drifted as much as 1.2ms (40 ticks) apart. That
is, one of the nodes may have counted as many as one
million and twenty ticks in this time interval, while another

4one million time intervals of Ttick = 1
Freq

' 30µs

TABLE I. Networks Investigated
Nodes Dimensions Spacing

16 320m× 320m

80m Matrix, Random
64 640m× 640m

256 1280m× 1280m

1024 2560m× 2560m

may have counted only nine-hundred ninety-nine thousand,
nine-hundred and eighty ticks in that same interval. With
Slotsactive = 8 active slots of Ticksslot = 28 ticks each,
two nodes can become completely isolated from each other
(i.e. their active periods do not overlap) in as little as
3 minutes. Compensating for this inherent divergence of
separate clocks is the goal of any clock synchronization
algorithm.

We designed our own OMNET++ modules to represent
the type of internal clocks described above. OMNET keeps
track of the global simulation time, Tsim, while an individ-
ual node computes its own local time. A node bases this on
its own clock’s frequency offset (Foffset) and phase offset
(Poffset) from the global simulation clock (provided as
OMNET parameters): Ti = (Tsim×Foffseti)+Poffseti . A
node’s phase offset determines the length of time between
the global start of the simulation and the start of that
particular node. The frequency offset determines how
much faster or slower than simulation time the node’s clock
runs.

For the purposes of this paper, we have restricted
our investigation to GMAC’s most basic synchronization
primitives: median synchronization maintenance and the
Simple TDMA strategy, which were discussed in Section II.

B. Input parameters to investigate

As our primary interests lie in GMAC’s synchronization
and stability in large mobile networks, our investigations
focus on the following parameters: clock drift, transmit
power and starting topology. Due to space constraints, our
investigation into GMAC’s handling of mobility will be
deferred to a future publication.

1) Clock Drift: Even clocks of the same specifica-
tions exhibit slight differences, as previously discussed.
We investigate a range of maximum clock drift settings
in our experiments. By selecting a maximum offset of
Omax, the simulator will assign each simulated node’s
clock a random clock frequency multiplier in the range
[1 − Omax, 1 + Omax]. This results in each node having
a similar but slightly varied value for Ttick, causing our
simulated clocks to slowly drift apart just as real clocks
do.

2) Starting Topology: In this investigation, we examine
two different network topologies: matrix topologies and

random topologies. In matrix topologies, N nodes are
deployed in a

√
N ×

√
N grid topology, where rows (and

columns) and placed 80m apart. This will show us the
behavior of the GMAC in a more ‘friendly’ setting, where
the network is fully connected and there exist many paths
between all nodes. In the random topologies, N nodes
are deployed at random locations in the same area as the
equivalent matrix topology (i.e., with the same number
of nodes). Random topologies present more difficulty in
synchronization as there will generally be some very
highly connected areas and some less connected areas, and
potentially even physically isolated nodes. These random
topologies, however, are more representative of the type
of topologies that will be encountered in the real world,
and hence of more interest to our investigation. Since
scalability is one of our primary interests, we investigate
networks of various combinations of size and deployment
pattern. A full list is given in Table I.

C. Observable metrics

When a simulated node begins a new round, it records
the round number and global simulation time (Tsim). By
later comparing the times that the nodes began each round,
we can analyze the synchronization behavior of a simulated
GMAC network.

IV. Simulation results

In this section, we present the results of our experiments
simulating the GMAC layer in the OMNET++ environ-
ment.

We elected to analyze the GMAC’s synchronization per-
formance in two ways. First, we ran a series of experiments
where all nodes were started in a synchronized state at the
very beginning of the run (Poffset = 0). Second, we ran
experiments where each node i was started at a randomly
chosen time in the first 15 seconds (0.0 ≤ Poffset < 15.0).
The first set of experiments is designed to show how
GMAC’s synchronization maintenance, i.e., the median
algorithm, performs in an already synchronized network.
The second set will give us insight into the performance
of GMAC’s subnetwork joining mechanism, i.e., the join
messages.

A. Synchronous Start

For this series of experiments, our primary metric for
measuring the level of synchronization in the network
is the standard deviation of the node start times. As
mentioned earlier, each node reports the time it begins
each round. For each round, we compute the standard
deviation of all node’s reported time for the start of

that round. This tells us how tightly synchronized the
network is at every round. This is a somewhat broad
measurement, as it pertains to the whole network. That
is, it cannot give us insight into which sections of the
network are suffering from poor synchronization. Note that
the best synchronization level we can realistically hope for
is Ttick

2 ' 15µs, or half the smallest adjustment that the
GMAC can make in its effort to compensate for the drifting
clocks. Consistent and stable synchronization to the level
of a single clock-tick is quite good, though, and indicates
that we could reduce Tguard significantly below its current
value of 300µs in order to save energy.

We begin by looking at Fig. 2a, depicting a set of
individual simulated runs. Each line is the result of a single
run on a 256-node matrix topology, with the standard devi-
ation plotted per round. These simulations used the default
transmission power of 20mW and MaxClockDrift=25ppm.
Here we can see much similarity between individual runs.
The median algorithm maintains a steady-state where it
compensates for the clock drift between the nodes.

In Fig. 2b, each line shows the average standard devi-
ation for each simulated round across the 10 experimental
runs for each MaxClockDrift setting. We explore the effects
of different clock drifts on the median algorithm, using the
same topology and transmit power settings as above. Thus,
the 10 lines from Fig. 2a comprise the single line in Fig. 2b
at 25ppm. Here we can see how the median algorithm
copes with various clock settings. More clock drift between
nodes leads to progressively looser synchronization. That
is, as clocks drift apart faster and faster, the median cannot
maintain the same level of synchronization between nodes.
This can be seen by the increased standard deviation at
higher drift settings.

Finally, in Fig. 2c we see the aggregation of a large
amount of experimental data. Each data point represents
the average standard deviation for the last half of the
10 runs of a particular parameter setting. We plot the
clock drift settings along the x-axis and average converged
standard deviation for the 10 runs of each MaxClockDrift
value. Thus, the single points along the line {Matrix, 256}
show the average value over the last 30 minutes of the
10 runs represented by the individual lines from Fig. 2b.
The solid lines show matrix topologies, while the dashed
lines show random topologies and, as expected, the random
topologies show much more variability.

B. Asynchronous Start

For our second series of experiments, our metric for
analyzing the joining of the nodes into a single synchro-
nized network is the fraction of nodes not belonging to
the largest synchronized subnetwork. When analyzing our
logs, we group nodes into subnetworks as follows: we

0 1000 2000 3000 4000 5000 6000 7000
Round Number

10

100

1000

(a) 10 individual runs of same settings. Topology:
256-node Matrix, MaxClockDrift: 25ppm.

0 1000 2000 3000 4000 5000 6000 7000
Round Number

1

10

100

1000

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 o

f
R

o
u
n
d
 S

ta
rt

 T
im

e
s

(u
s)

MaxClockDrift

1
5
10

25
50
100

(b) Average over 10 runs for each MaxClockDrift.
Topology: 256-node Matrix.

1 5 10 25 50 100
MaxClockDrift

101

102

103

104

105

106

S
ta

n
d
a
rd

 D
e
v
ia

ti
o
n
 o

f
R

o
u
n
d
 S

ta
rt

 T
im

e
s

(u
s)

(c) Converged offset standard deviations for combi-
nations of MaxClockDrift and Topology. From top
to bottom: {1024, 256, 64, 16} nodes, {Random,
Matrix} topologies.

Fig. 2. Variation in round start times, synchronous start

0 1000 2000 3000 4000 5000 6000 7000 8000
Round Number

0%

0.1%

1%

10%

100%

(a) 10 individual runs of same settings. Topology:
256-node Matrix, MaxClockDrift: 25ppm.

0 1000 2000 3000 4000 5000 6000 7000 8000
Round Number

0%

0.1%

1%

10%

100%

%
 o

f
N

o
d
e
s

O
U

T
S
ID

E
 L

a
rg

e
st

 S
u
b
n
e
tw

o
rk

MaxClockDrift

1
5
10
25
50
100

(b) Average over 10 runs for each MaxClockDrift.
Topology: 256-node Matrix.

1 5 10 25 50 100
MaxClockDrift

0%

0.1%

1%

10%

100%

%
 o

f
N

o
d
e
s

O
U

T
S
ID

E
 L

a
rg

e
st

 S
u
b
n
e
t

(c) Per-Parameter Per-Topology Average

Fig. 3. Percentage of unsynchronized nodes, asynchronous start

sort all the reported times for the start of a particular
round. We iterate through the times, computing the offset
between the previous and current time. When there is an
offset between consecutive reported times greater than the
subnetwork threshold, we decide that the current reported
time marks the beginning of a new subnetwork. By separat-
ing the nodes into disjoint sets representing synchronized
subnetworks at various thresholds, we can analyze how
well GMAC’s join mechanism is working. We use thresh-
olds of 7000µs, 850µs, and 30µs which correspond to
approximately the length of an active period, a TDMA slot,
and a simulated clock tick, respectively. At each round, for
each threshold, we calculate the percentage of all simulated
nodes that are outside (i.e., not synchronized with) the
largest subnetwork. As such, we should expect this metric
to begin at or near 100% and fall towards 0%. In Fig. 3,
we show the results of our asynchronous start experiments.
In general, most runs behave as expected and rapidly
converge to a single network. However, in some runs, we
find that separate subnetworks can exist for a long time, to
the point where they never form a single network during
the entire simulated hour. We can see just such behavior

in Fig. 3a, which depicts the results of a set of twenty-
five 256-node matrix runs with a maximum clock drift of
±25ppm. In Fig. 3b, we show the average of 25 such runs
for each MaxClockDrift setting. As previously explained,
the behavior of the join mechanism is probablistic, and
this can be clearly seen in the variability of the simulated
results.

Finally, in Fig. 3c we plot (analogously to Fig. 2c) the
average fraction of nodes outside the largest subnetwork
over 25 runs for each setting, considering only the last
half of the rounds of each run. The settings correspond to
all combinations of clock drifts and topologies we exper-
imented with. Clearly, in all of our simulations GMAC
eventually achieved synchronization of at least 99% of
the participating nodes, irrespectively of the topology and
maximum clock drift.

V. Related work

In [5], the authors discuss why traditional synchro-
nization mechanisms, like NTP, are unsuitable for ad-hoc
sensor networks. In [6] the authors give an overview of the

problem of time synchronization in sensor networks and
evaluate several important protocols. [7] provides a more
recent survey of time synchronization protocols designed
for sensor networks, however the most scalable protocol
analyzed was run on networks up to 300 nodes, far below
what is required here.

Many popular energy-aware MAC protocols, e.g. S-
MAC [8], use carrier-sensing or ready-to-send/clear-to-
send handshakes, which necessarily use more energy than
a properly synchronized TDMA protocol that avoids col-
lisions without these mechanisms. Both Timing-sync Pro-
tocol for Sensor Networks (TPSN [9]) and Flooding Time
Synchronization Protocol (FTSP [10]) rely on creating a
spanning tree over the whole network, stemming from a
globally elected root node. The cost of leader election
and tree building make such solutions unsuitable for high
diameter and/or mobile networks. Reference Broadcast
Synchronization (RBS [11]) provides only post-facto syn-
chronization and is thus infeasible in our setting. Post-facto
synchronization is used to retroactively determine the time
a past event occurred at a neighbor node (i.e., to come to
consensus on what time an event sensed by several node
took place), but is not designed to synchronize the current
clock state of the nodes.

VI. Conclusions and Future Work

Our results indicate that the simple median synchro-
nization mechanism provided by GMAC is capable of
adaptively maintaining good clock synchronization, even at
very large network sizes. Simulations show that the median
algorithm is capable of compensating for clock frequency
offsets far greater than can be expected from real clock
components. Furthermore, simulations show the median
algorithm can maintain synchronization in networks as
large as 4096 nodes, and possibly beyond. This level of
scalability is an absolute necessity in the setting of large
social ad-hoc networks.

Though this synchronization maintenance algorithm is
quite simple, in practice it turns out to be quite effective.
One problem with the median algorithm is that it has no
‘memory’, or state. This means that the median algorithm
can maintain synchronization only while it is in regular
contact with other nodes. If a node becomes isolated
(without neighbors) for an extended period of time, the
node’s clock will tend to drift away from the other nodes
it was previously communicating with. It also seems that
for smaller networks, GMAC keeps nodes tightly coupled.
This indicates that there may be much energy to be saved
by reducing the TDMA guard time.

Though GMAC’s synchronization maintenance mecha-
nism was shown to be scalable, its join mechanism did
not prove as effective. As a node can only receive join

messages during its (short) active period, separately syn-
chronized subnetworks can persist for a long time. This is
undesirable as subnetworks will be unable to communicate
with each other, leading to significantly reduced utility of
the network as a whole. We plan to investigate using a
more active join mechanism, which periodically listens for
other subnetworks and actively tries to deterministically
join them. The frequency of this extended listening period
could be adaptively based on the size of the network,
neighborhood density, or other metrics.

If we can modify GMAC to efficiently join all reachable
nodes into a single synchronized network, we will have
a firm foundation on which to build scalable distributed
applications running on massive, dynamic social ad-hoc
networks.

References

[1] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker,
H. Sturgis, D. Swinehart, and D. Terry, “Epidemic algorithms for
replicated database maintenance,” in Proceedings of the sixth annual
ACM Symposium on Principles of distributed computing. ACM
Press New York, NY, USA, 1987, pp. 1–12.

[2] K. Iwanicki and M. van Steen, “Multi-hop cluster hierarchy
maintenance in wireless sensor networks: A case for gossip-based
protocols,” in Proceedings of the Sixth European Conference on
Wireless Sensor Networks (EWSN 2009). Cork, Ireland: Springer-
Verlag LNCS 5432, February 2009, pp. 102–117. [Online].
Available: http://www.few.vu.nl/ iwanicki/publications/2009-02-
EWSN/

[3] N. Abramson, “The throughput of packet broadcasting channels,”
IEEE Transactions on Communications, vol. 25, no. 1, pp. 117–128,
1977.

[4] E. Weingartner, H. vom Lehn, and K. Wehrle, “A performance
comparison of recent network simulators,” in IEEE International
Conference on Communications, 2009. ICC’09, 2009, pp. 1–5.

[5] J. Elson and K. R
”omer, “Wireless sensor networks: A new regime for time syn-
chronization,” ACM SIGCOMM Computer Communication Review,
vol. 33, no. 1, p. 154, 2003.

[6] F. Sivrikaya and B. Yener, “Time synchronization in sensor net-
works: A survey,” IEEE network, vol. 18, no. 4, pp. 45–50, 2004.

[7] S. Rahamatkar, A. Agarwal, and N. Kumar, “Analysis and Compar-
ative Study of Clock Synchronization Schemes in Wireless Sensor
Networks,” Analysis, vol. 2, no. 03, pp. 536–541, 2010.

[8] W. Ye, J. Heidemann, and D. Estrin, “An energy-efficient MAC
protocol for wireless sensor networks,” in IEEE INFOCOM 2002.
Twenty-First Annual Joint Conference of the IEEE Computer and
Communications Societies. Proceedings, 2002, pp. 1567–1576.

[9] S. Ganeriwal, R. Kumar, and M. Srivastava, “Timing-sync protocol
for sensor networks,” in Proceedings of the 1st international con-
ference on Embedded networked sensor systems. ACM New York,
NY, USA, 2003, pp. 138–149.

[10] M. Maróti, B. Kusy, G. Simon, and Á. Lédeczi, “The flooding time
synchronization protocol,” in Proceedings of the 2nd international
conference on Embedded networked sensor systems. ACM, 2004,
pp. 39–49.

[11] J. Elson and D. Estrin, “Time synchronization for wireless sensor
networks,” Parallel and Distributed Processing Symposium, Inter-
national, vol. 3, p. 30186b, 2001.

