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ABSTRACT
Hierarchical routing is a promising approach for point-to-
point routing with very small routing state. While there are
many theoretical analyses and high-level simulations demon-
strating its benefits, there has been little work to evaluate it
in a realistic wireless sensor network setting. Based on nu-
merous proposed hierarchical routing infrastructures, we de-
velop a framework that captures the common characteristics
of the infrastructures and identifies design points where the
infrastructures differ. We then evaluate the implementation
of the framework in TOSSIM and on a 60-node testbed. We
demonstrate that from the practical perspective hierarchical
routing is also an appealing routing approach for sensor net-
works. Despite only logarithmic routing state, it can offer
low routing stretch: the average of ∼1.25 and the 99-th per-
centile of 2. Moreover, a hierarchical routing infrastructure
can be autonomously bootstrapped and maintained by the
nodes. By exploring the design points within our framework,
the hierarchy maintenance protocol can optimize different
metrics, such as the latency of bootstrapping and repairing
the hierarchy after failures or the traffic volume, depending
on the application requirements. Finally, we also identify a
number of practical issues which we believe the applications
employing hierarchical routing should be aware of.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network Pro-
tocols — routing protocols
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Performance, Design, Measurement, Experimentation
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1. INTRODUCTION
A plethora of recently proposed wireless sensor network

(WSN) applications as well as a new dedicated IETF work-
ing group [27] evidence that point-to-point routing is impor-
tant functionality for future low-power wireless systems [7].
In such systems, a point-to-point routing infrastructure di-
rectly affects scalability, efficiency, and reliability.

Since many of the proposed systems involve large net-
works, it is essential to provide routing infrastructures that
concurrently offer small routing state, small routing stretch,
and robustness [5, 12, 18]. Small state is crucial for scalabil-
ity and efficiency. With only a few kilobytes of memory in
typical sensor node platforms, minimizing the routing state
enables supporting large networks. Moreover, smaller rout-
ing state often implies lower maintenance traffic, as these
two are usually correlated. Small routing stretch, that is, few
extra routing hops compared to the minimal possible num-
ber, is in turn essential for efficiency and reliability. It re-
duces resource consumption and end-to-end latency, and can
improve end-to-end message delivery. Finally, since WSNs
experience topology and connectivity changes due to node
failures and environmental impact, robustness entails han-
dling such changes efficiently. More specifically, to min-
imize resource consumption and disruption of higher-level
system components, the routing infrastructure must handle
the changes in the network with minimal traffic and latency.

Considering these requirements, hierarchical routing (HR)
[6, 26] has often been mentioned as one of the four appealing
techniques (the other three being geographic routing [12],
graph embedding [5], and compact routing [18]). In HR,
nodes maintain a hierarchy of clusters that provides an ad-
dressing and routing scheme. The scheme necessitates only
O(logN) node state (where N denotes the node population
size) and offers relatively low average routing stretch. More-
over, numerous protocols that promise robust maintenance of
the hierarchical routing infrastructure have been proposed.

However, despite the merits of HR, surprisingly little has
been done to evaluate this technique in realistic WSN set-
tings. The proposed HR protocols have mostly been stud-
ied with high-level simulations in idealized environments:
a unit-disk connectivity model, no message loss, etc. While
such high-level simulations give insight into theoretical prop-
erties of a protocol, they do not provide enough information
on the practical performance of the protocol. Since numer-



ous examples evidence that in WSNs practice typically di-
verges from theory, real-world applications of HR demand
thorough implementation-based evaluations of this routing
technique. Yet, we are not aware of any evaluation of HR
that employs an actual embedded protocol implementation.
Moreover, prior simulations usually consider only a single
protocol without comparing it against alternative solutions
and discussing the trade-offs between them. However, be-
cause different applications may have different requirements
on the routing infrastructure, one should be able to make an
informed choice of a particular HR infrastructure. This re-
quires a systematic comparison of the proposed solutions.

We contribute by bridging the gap between theory and
practice. We have analyzed a few tens of hierarchical point-
to-point routing infrastructures presented in major network-
ing conferences and journals to select ones suitable for im-
plementation on resource-constrained sensor nodes. Rather
than simply implementing the selected infrastructures, how-
ever, we have developed a framework that captures their com-
mon characteristics and at the same time identifies various
design points that differentiate the infrastructures and allow
for exploring the design space. By building TinyOS 2.0 im-
plementations of the framework with different decisions at
these design points, we have obtained a means to systemati-
cally evaluate and compare many of the proposed infrastruc-
tures, as well as some novel ideas, in the real world.

We have conducted such evaluations in TOSSIM, a low-
level simulator with a realistic low-power wireless communi-
cation model, and on our 60-node WSN testbed. Our results
verify that despite only logarithmic routing state, HR can in-
deed offer low routing stretch: the average of ∼1.25 and
the 99-th percentile of 2. In terms of absolute values, how-
ever, these results diverge considerably from high-level sim-
ulation results, which confirms the need for practical evalu-
ations. We also show that the performance of different tech-
niques for maintaining the hierarchical routing infrastruc-
ture can vary dramatically; approaches based on hierarchical
scoped flooding offer the lowest latency of bootstrapping and
recovering the hierarchy, while approaches employing local
communication minimize the traffic volume. An application
can thus select the most suitable hierarchy maintenance tech-
nique or, as we demonstrate, combine some of the techniques
to optimize certain metrics. Furthermore, this is just one of
the identified issues that we believe the applications employ-
ing HR should be aware of. The final contribution of our
work is the fact that our framework fills in the last gap in the
implementations of routing techniques for WSNs, and hence,
it can be used to systematically compare all the techniques.

The rest of the paper is organized as follows. We start with
a survey of routing protocols for WSNs in Sect. 2, followed
by a basic HR algorithm in Sect. 3. We introduce our frame-
work and its implementation in Sect. 4, while in Sect. 5, 6,
and 7, we discuss the setup and the results of the conducted
experiments. Finally, we draw conclusions in Sect. 8.

2. RELATED WORK
Although point-to-point routing is a well-studied problem,

WSNs pose novel challenges, in particular, severely limited
effective node bandwidth and memory. These challenges
constrain the use of shortest-path routing protocols, such as
DSR [10] and AODV [20], in large WSNs as the control traf-
fic and state of such protocols do not scale well. Routing
protocols for large WSNs thus aim at minimizing the node
state and the traffic for infrastructure maintenance. This is
achieved with the following techniques: geographic routing,
graph embedding, compact routing, or hierarchical routing.

In the first technique [11, 14, 17], a node’s routing ad-
dress corresponds to the node’s geographic coordinates, and
the node’s routing table consists of the coordinates of the
node’s neighbors (i.e., the nodes within the radio range of
the present node). In this way, the routing infrastructure re-
quires only O(1) state per node. However, practical, effi-
cient geographic routing is essentially still an open research
question due to the cases in which greedy forwarding toward
the destination fails. Because of real-world issues, such as
geographic localization errors or physical obstacles prevent-
ing radio communication, special solutions are necessary to
handle such cases [12]. These solutions involve protocols
for planarizing the neighborhood graph using cross-link de-
tection (CLDP) [12] or for building hull trees [16]. However,
such approaches make the maintenance or routing costly and
complex (e.g., many subtle corner cases and two-phase lock-
ing to ensure consistency) [12, 16]. In addition, provid-
ing nodes with their geographic coordinates requires special
hardware or additional localization algorithms, which both
consume resources. Finally, there is no practical way of port-
ing geographic routing to three dimensions, and thus, volu-
metric indoor networks may require different protocols.

In the second technique, graph embedding, instead of geo-
graphic coordinates, virtual coordinates synthesized by the
maintenance protocol are used as node routing addresses.
NoGeo [22] synthesizes coordinates through an iterative re-
laxation that embeds nodes in a Cartesian space. GEM [19],
in turn, embeds nodes in a polar coordinate space based on
a tree spanning from a base station. Finally, BVR [5] selects
a fraction of nodes as beacons and constructs multiple span-
ning trees rooted at the beacon nodes, so that the coordinates
of a node are the hop distances of the node from the beacons.
An important advantage of the graph embedding protocols is
that they do not require any additional localization mecha-
nisms and can be used in volumetric deployments. However,
this comes at a cost of heavy control traffic, large node state,
and excessive coordinate setup time [22], or intricate recov-
ery after a node failure [19], or costly flooding fallback due
to a lack of routing guarantees [5]. Because of these draw-
backs, other routing techniques are being studied in parallel.

One such a technique is compact routing, which explores
the trade-off between the routing state and stretch [13]. In
particular, S4 [18], the first complete compact routing proto-



col for WSNs, ensures a maximal routing stretch of 3 while
using O(

√
N) node state. S4 selects

√
N nodes as beacons.

In addition, each node forms a virtual local cluster consist-
ing of nodes whose distances to the present node are within
their distances to the closest beacons. A node maintains the
shortest-path routes to all nodes within its cluster as well as
the shortest-path routes to all the beacon nodes. Thus, to
reach a destination node outside its cluster, a source node
first routes toward the beacon closest to the destination node.
While S4 does well at bounding the maximal routing stretch,
it requires O(

√
N) node state and maintenance traffic, which

may be significant for very large networks and for some con-
strained sensor node platforms.

In contrast, the fourth technique, hierarchical routing (HR)
[6, 26], which we describe in detail in the next section, min-
imizes the node state to O(logN). Even though this may re-
sult in a high maximal stretch in some communication graphs,
the average internode distance in the graphs of WSNs grows
quickly with the node population (as ∼Nv, where v > 0),
and thus the average stretch of HR can still be close to 1
in WSNs [13]. Therefore, considering that numerous pro-
tocols that promise robust and efficient maintenance of the
hierarchical infrastructure exist (e.g., [1, 2, 3, 6, 9, 15, 24]),
HR can be an attractive alternative for large deployments of
highly constrained nodes [5, 15, 18]. However, as we ar-
gued in the previous section, to the best of our knowledge,
HR infrastructures have been neither evaluated with actual
embedded implementations run in realistic low-power com-
munication settings nor systematically compared with each
other. Therefore, since any practical application of HR in
WSNs requires both practically confirmed performance and
information on the trade-offs between the existing solutions,
our work complements prior work on HR.

3. HR ALGORITHM
HR has many variants, all based on the same basic princi-

ples [6, 26]. We have analyzed a number of HR infrastruc-
tures proposed to date to choose an addressing and routing
algorithm that, in our opinion, is well suited for implemen-
tation on resource-constrained sensor nodes. In the end, we
have selected an algorithm commonly known as landmark
routing [2, 15, 26], which we describe next. In addition to
delivering all the aforementioned properties of hierarchical
routing, the selected algorithm has many proposed protocols
for bootstrapping and maintaining the routing infrastructure,
which allows us to illustrate various trade-offs.

3.1 Basic Terms and Definitions
To support hierarchical routing, nodes are organized into

a multi-level hierarchy of clusters, based on connectivity.
At level 0, every node belongs to its own singleton clus-
ter. Neighboring singleton clusters are logically grouped into
level-1 clusters, which, in turn, are grouped into level-2 clus-
ters, and so on until there is one or a few top-level clusters
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Figure 1: Hierarchical routing.

that cover the whole network. As a result, at every level of
the hierarchy, each node belongs to exactly one cluster.

Each cluster has a cluster head that is the center of the
cluster. A level-i cluster is advertised to nodes up to Ri hops
away from its head (Ri depends exponentially on i). A node
can be a member of a level-i cluster if it is up to ri hops
away from the cluster head (ri≤Ri−1). Typically, Ri = 2i and
ri = bRi/2c. In this way, clusters at subsequent levels have
exponentially growing diameters, and thus, the hierarchy can
have O(logN) levels. Since all nodes have unique identifiers,
we use Ci

X to denote a level-i cluster with the head node X .
A sample cluster hierarchy is depicted in Fig. 1a.

A node’s label reflects the node’s membership in the clus-
ter hierarchy and is a concatenation of the cluster head iden-
tifiers of all the clusters the node belongs to, starting from
level 0. In the example from Fig. 1a, the label of node P,
a level-0 cluster head, is P.O.L, as P belongs to clusters C0

P,
C1

O, and C2
L. The label of node O, a level-1 cluster head,

is O.O.L, and the label of node L, a level-2 cluster head, is
L.L.L. The label acts as the node’s routing address.

A node’s routing table contains entries for all the cluster
heads the node receives advertisements from, that is, for each
level-i cluster head that is up to Ri hops away from the node,
for all i. An entry for a cluster head consists of the level and
the identifier of the head, as well as the link-layer address of
the next-hop neighbor on the shortest path to the cluster head
and the length of this path. In this way, a node’s routing table
contains only O(logN) a-few-byte-long entries [2, 15, 26].

3.2 Routing Algorithm
The routing is performed hierarchically: a packet is for-

warded toward cluster heads corresponding to the elements
of the destination label at subsequently decreasing levels (see
Fig. 1b). More specifically, when a node receives a packet
to forward, it searches its routing table for entries that corre-
spond to the clusters represented by the elements of the desti-
nation label. The forwarding node will always find a routing
entry for the top-level cluster of the destination node. How-
ever, as the packet is routed toward the destination, or even
toward the top-level cluster head, forwarding nodes are also



likely to find entries for lower-level label elements in their
routing tables. A forwarding node always uses the lowest-
level entry found for the elements of the destination label.
It forwards the packet to the next-hop neighbor indicated by
that entry. Once a node has found a routing entry for a level-
i element of the destination label, all subsequent forwarding
nodes are guaranteed to find entries for elements at levels
lower than or equal to i. In this way, the packet is guaranteed
to gradually reach its destination.

A cluster head does not necessarily need to forward a packet
even if it is one of the elements in the destination label of the
packet. It is very likely that before the packet reaches this
cluster head, it is redirected toward a lower-level cluster head
of the destination node. In Fig. 1b, for instance, node C (la-
bel C.A.L) routes a packet to P (label P.O.L). The packet is
first routed toward P’s top-level cluster head, L. During this
process, however, when the packet reaches a node within R1
hops from O, it is redirected toward O, as the node has a rout-
ing entry for C1

O. Likewise, when the packet reaches a node
within R0 hops from P, it is routed toward P, as the node has
a routing entry for C0

P. In other words, the algorithm does not
create highly undesired routing hot spots at cluster heads.

Due to maintaining only O(logN) routing entries per node,
HR typically does not use optimal routes. Often when nodes
forward a packet, the packet moves toward higher-level clus-
ter heads before being redirected toward the destination. We
evaluate the routing stretch in our experiments.

4. IMPLEMENTING HR
The above HR algorithm is straightforward. However, to

use it, the routing infrastructure must organize nodes into
a hierarchy of clusters that determines the node labels and
routing tables. Constructing a cluster hierarchy is already an
NP-complete problem if the hierarchy is to be optimal, for
instance, with respect to the routing table size [6]. Moreover,
this is just the first step, as the hierarchy has to be maintained
during the whole network lifetime. When the node popula-
tion or connectivity changes, parts of the hierarchy may have
to be repaired to account for the change. Such hierarchy
maintenance can be even more problematic than its construc-
tion. Thus, the protocol for synthesizing and maintaining the
node labels and routing tables is the key component in any
HR infrastructure as well as in our framework.

To develop the framework, we have analyzed a number
of HR infrastructures from major networking conferences
and journals, focusing on the ones suitable for implemen-
tation on resource-constrained wireless devices. The frame-
work encompasses the common elements of the selected in-
frastructures and defines various design points where the in-
frastructures differ. Since the plethora of the design points
preclude detailed discussion in a 12-page paper, we give only
an overview of some major ones. We then present a simpli-
fied framework and focus on a single design point that, from
our experience, is determinant for hierarchy construction and

maintenance, but has not been studied thoroughly to date.

4.1 Sample Design Points
The first major design point is the cluster scaling func-

tion Ri = R(i), which determines cluster scaling properties
at subsequent levels. To enable O(logN) routing tables, R(i)
must depend exponentially on, i, the level; typically R(i) =
α i×R(0) (α > 1). By varying the scaling function, one can
explore the state-stretch trade-off within HR. Here, we as-
sume the most common scaling function: R(i) = 2i.

One can also choose between a recursive and nonrecursive
hierarchy. In a recursive hierarchy, two members of the same
level-i cluster are also members of the same level-i+1 cluster
[3, 9]. In a nonrecursive hierarchy, this may not hold [2, 15].
Maintaining a recursive hierarchy is more intricate than a
nonrecursive one as the infrastructure must ensure that nodes
with labels equal at level i also have their labels equal at all
levels j ≥ i. However, this property enables more efficient,
per-cluster notifications of label changes. In contrast, in a
nonrecursive hierarchy, the notifications must be performed
per node. Here, we assume recursive hierarchies.

Node labels can be synthesized offline, prior to the de-
ployment [6, 26] or at runtime, using a self-organizing algo-
rithm [1, 2, 3, 9, 15, 24]. Low-power wireless connectivity
is highly unpredictable [28], and thus, after the deployment
it may turn out that a pre-constructed hierarchy is invalid be-
cause nearby nodes, which have been expected to commu-
nicate, cannot hear each other. In addition, reconstructing
node labels offline after a cluster head failure may be inef-
ficient in large networks. Therefore, in this paper, we use
runtime label synthesis and maintenance algorithms.

Such algorithms can operate in a bottom-up or top-down
fashion. In a bottom-up algorithm, the labels are constructed
from level 0 by merging lower-level clusters into higher-level
clusters [2, 15, 9] . In a top-down algorithm, in turn, the la-
bels are constructed from the top level by splitting higher-
level clusters into lower-level clusters [25]. In this paper
we concentrate on bottom-up algorithms as top-down ap-
proaches have problems adapting to varying topology para-
meters, such as nonuniform node densities [15].

Label maintenance algorithms can further be divided into
deterministic [6] and probabilistic [1, 24], depending on their
clustering heuristics. Since running multi-step deterministic
algorithms on a large network of resource-constrained nodes
is expensive, in this paper we use probabilistic algorithms.

Such algorithms employ a combination of local label up-
date operations and update propagation mechanisms. The
update propagation and cluster advertisement techniques con-
stitute another design point, discussed in more detail further.

4.2 Simplified Framework
The above sample of the design points illustrates that the

implementation of an HR infrastructure involves many intri-
cate details and decisions. As a result, in this paper, we are



unable to give a description of our whole framework or study
the performance impact of all design decisions. Instead, we
make all the aforementioned assumptions and present a com-
mon protocol for maintaining the node labels and routing ta-
bles that was used in the experiments presented in this paper.

Principal operation: A protocol for maintaining the HR
infrastructure operates in rounds that are local for each node.
In every round, a node is allowed to issue (broadcast) one
message that advertises the cluster the node is the head of
and propagates any label updates for this cluster. The nodes
receiving the message refresh their routing entries for the
cluster, adopt any label updates if they are members of the
cluster, and possibly rebroadcast the message. We discuss
different techniques for advertising clusters and propagat-
ing label updates in Sect. 4.3. At the end of its round, each
node analyzes its routing table to learn about any changes in
the network that have occurred since the last round. If the
changes require hierarchy modification, the node updates its
label locally. Such a local label update is then propagated to
the affected nodes in the node’s cluster in subsequent mes-
sages issued by the node. This simple mechanism is used
both for synthesizing and maintaining node labels.

Hierarchy construction: Initially, each node is a top-
level head of its level-0 singleton cluster. Hence, the node’s
label consists only of the node’s identifier. Whenever a top-
level head discovers in its routing table an entry for another
cluster head at the same or a higher level, it must either
spawn a new higher-level cluster itself or join the higher-
level cluster of the other node. In the first case, it would
extend its label with its own identifier, promoting itself to a
higher-level cluster head. In the second case, it would ex-
tend its label with the identifier of the other node. For ex-
ample, in Fig. 1, being initially a level-0 cluster head, node
O spawned its own level-1 cluster, C1

O, by extending its label
with its own identifier at level 1 (from O to O.O) and effec-
tively promoting itself to a level-1 head. In contrast, P joined
its level-0 singleton cluster, C0

P, to a higher-level cluster, C1
O,

by extending its label with O at level 1 (from P to P.O). A
similar situation occurred at level 2 for L and O.

Joining an existing cluster is preferred, as it decreases the
number of clusters at consecutive levels. However, depend-
ing on the distance to the cluster head, joining may not al-
ways be possible. In particular, a level-i cluster head must
not join its cluster to a higher-level cluster if the head of the
higher-level cluster is more than ri+1 hops away.

When no joining is possible, cluster heads must not pro-
mote themselves to higher levels at the same time, as this
would not guarantee the exponential drop in the number of
clusters at subsequent levels. Hence, a head probabilistically
defers its promotion by drawing a random promotion time
slot, s, and then waiting for s time slots. If within these s
time slots other nearby cluster heads promote themselves,
the head may join its cluster to one of their clusters; other-

wise, the head promotes itself. To ensure that a head defer-
ring a promotion learns timely about newly spawned higher-
level clusters, the time slot at level i is longer than the prop-
agation time of a cluster advertisement from a level-i head,
which is proportional to the cluster advertisement radius, Ri.

A cluster head that extended its label, either by spawning
its own or joining an existing higher-level cluster, embeds
the label update in its subsequent message. In this way, the
members of the cluster can also update their labels consis-
tently to ensure recursiveness, and other heads deferring a
promotion can learn about the new cluster.

Hierarchy recovery: When a cluster head has died, it no
longer issues messages advertising its cluster. As a result,
other nodes do not refresh the routing entries for that clus-
ter head. If a node has not received a cluster advertisement
refreshing an entry for a certain number of rounds, the en-
try is evicted from the routing table. If a level-i cluster head
discovers that the entry for its parent level-i+1 cluster head
has been evicted, it concludes that its cluster must not be a
subcluster of the no longer existing level-i+1 cluster. Conse-
quently, it cuts its label down to level i. Later, by virtue of the
above hierarchy construction mechanisms, the disconnected
cluster of this node will join some other higher-level cluster,
thereby restoring the hierarchy.

Label cutting could also be used for rotating cluster heads.
While this may be important to balance energy consumption
between nodes in applications that use hierarchical cluster-
ing for centralized data collection [1], it is not required from
the routing perspective. Neither when routing (cf. Sect. 3.2)
nor when maintaining the routing infrastructure, higher-level
cluster heads transmit more messages or perform more com-
putation than lower-level heads. Moreover, cluster head ro-
tation effectively changes node routing addresses, which in-
troduces additional problems for applications. Consequently,
cluster head rotation is not a part of our framework.

While this simplified HR infrastructure maintenance frame-
work makes particular design choices, it has two properties.
First, it captures the common hierarchy maintenance scheme
of several proposed HR infrastructures (e.g., [1, 2, 3, 9, 15]).
Second, it unifies the operation of these infrastructures to
enable systematic comparison of different design decisions
within this common scheme, as we discuss next.

4.3 Hierarchy Data Propagation Techniques
To diffuse label updates (extensions and cuts) and to ad-

vertise its cluster to other nodes, in every round each node
issues a message. The pattern according to which such mes-
sages are issued and the way they propagate hierarchy in-
formation determine the latency and the traffic of hierarchy
bootstrapping and maintenance. Consequently, they consti-
tute a crucial design point in our framework, which, however,
has not been thoroughly studied to date. Table 1 presents the
major hierarchy information propagation techniques.



Table 1: Hierarchy information propagation techniques.
Technique Acronym Some protocol examples

periodic hierarchical beaconing PHB
SCOUT [15], Safari [3],

Subramanian & Katz [24],
Bandyopadhyay & Coyle [1]

hierarchical distance-vector HDV Hagouel [6], Tsuchiya [26],
L+ [2], PL-Gossip [9]

hybrid of the above two Hybrid proposed in this paper

Periodic hierarchical beaconing: Each level-i cluster head
periodically issues a beacon message that is flooded in the
network up to Ri hops. A beacon message contains the la-
bel of the cluster head, a sequence number, and a hop count.
A node receiving the beacon refreshes the routing entry for
the cluster head, adopts any label updates performed by the
head (if it belongs to the head’s cluster), and rebroadcasts the
beacon if its hop count is smaller than Ri.

Often the inter-beacon interval of a cluster head is pro-
portional to the advertisement radius of the cluster head, Ri.
For example, a level-0 head issues a R0-hop beacon every R0
rounds, a level-1 head — a R1-hop beacon every R1 rounds,
and so on. This amortizes the high costs of forwarding higher-
level beacons over many rounds, but increases the latency
of bootstrapping and recovering the hierarchy. To mitigate
this increase, a cluster head is also allowed to issue a bea-
con immediately after it has changed its label locally. We
have implemented both variants: with (PHB[e]) and without
(PHB[c]) the exponentially increasing inter-beacon period.

Hierarchical distance-vector: Nodes run an enhanced
distance-vector protocol. At random time in every round,
each node broadcasts its state in a heartbeat message that
is received by the node’s neighbors and is not forwarded
by them. The state contains the node’s label, routing table,
and some consistency data corresponding to the label that
allow for propagating label updates. The neighbors receiv-
ing the message refresh their routing tables using a standard
distance-vector algorithm, but ensuring that a level-i routing
entry does not travel more than Ri hops. The neighbors can
also adopt any fresh label updates performed by the heads
of the clusters they share with the heartbeat issuer. Hence,
whereas in PHB cluster advertising and update propagation
is explicit, by forwarding beacon messages issued per clus-
ter, in HDV, it is implicit, by periodically exchanging and
merging the local state of neighboring nodes.

If a node’s state does not fit in a frame, it has to be frag-
mented. We have implemented HDV with two forms of frag-
mentation: (1) the MAC layer fragments the message into
multiple frames that are sent after a single preamble (HDV[s]),
and (2) the protocol fragments its state into multiple one-
frame messages, each with its own preamble (HDV[m]).

Hybrid approach: Since hierarchical beacons flood the
network, they propagate information fast. However, when
issued periodically, they result in myriads of inefficient short
transmissions. Moreover, with the exponential beacon issu-

ing interval, which reduces the number of transmissions, if a
node misses a beacon for a high-level cluster, it may not be
able to route to the members of the cluster for a long time.

In contrast, as the routing entries in a heartbeat message
advertise many clusters, HDV generates lower traffic. In ad-
dition, even if in some round a node misses a heartbeat with a
cluster advertisement, it will likely receive the advertisement
in subsequent rounds. However, since HDV propagates in-
formation by merging the state of neighboring nodes only
once per round, it may take up to R rounds to propagate an
advertisement over R hops, which is inferior to PHB.

The Hybrid approach we propose here combines the ad-
vantages of these two techniques. In this approach, nodes
normally run the HDV protocol, thereby generating lower
traffic. However, when a cluster head changes its label, for
instance, as a result of some failure, it issues a beacon mes-
sage to rapidly propagate the change among the members of
its cluster or to advertise a new cluster. In this way, hierarchy
bootstrapping and recovery after failures can be faster.

4.4 Implementation Remarks
As the implementation platform for our framework we have

chosen TinyOS 2.0 and assumed a standard protocol stack.
At the top, an application layer receives routing requests
from a PC and periodically reports back the state of the HR
infrastructure and the delivery status of the requests. We
have not implemented node-id-to-label resolution, and in-
stead, when routing, source nodes obtain destination labels
with out-of-band means. This is because naming in WSNs is
typically data centric, and thus, obtaining the destination ad-
dress is often application specific. If necessary, the node-id-
to-label mapping can be implemented as a distributed hash
table on top of the cluster hierarchy [2, 3, 15].

Below the application layer, our transport layer ensures
hop-by-hop delivery of the routed messages. To this end,
it employs standard message queuing, link-layer acknowl-
edgments, and retransmissions. When routing, to obtain the
link-layer address of the next-hop neighbor, the transport
layer contacts the HR layer. The HR layer corresponds to
our framework and is responsible for selecting routing hops
and maintaining node labels and routing tables. It makes
use of one-hop connectivity information provided by the link
quality estimation layer below. We use the standard link esti-
mator based on the exponentially weighted moving average
of packet reception rate [28]. Likewise, as the MAC layer,
we use the standard TinyOS 2.0 CSMA/CA [21].

5. EXPERIMENTAL SETUP
We conducted our experiments in a low-level TinyOS sim-

ulator, TOSSIM, and on a 60-node testbed. The TOSSIM ex-
periments aimed at evaluating the scalability of HR in realis-
tic networks. TOSSIM is a low-level simulator that incorpo-
rates a realistic signal propagation and noise model derived
from real-world deployments. Using the tools for this model



and real-world data, we generated a number of representative
topologies with realistic communication properties.

In all topologies, the nodes were placed inside a square
area and positioned in a grid, uniform, or random fashion,
which covers a broad range of node placement strategies, p:
from very regular (grid) to completely irregular (random). In
addition, to study the protocol scaling properties, we expo-
nentially varied the number of nodes, N, from 64 to 1024, ob-
taining diameters of 15-18 hops in 1024-node networks. To
also investigate the impact of node density, ρ , we varied the
size of the deployment area, obtaining different node densi-
ties from∼11 (sparse) to∼48 (dense) high-quality neighbors
per node on average. The resulting network configurations
cover many practical deployment scenarios.

Using the aforementioned TOSSIM tools and real-world
signal strength traces, for each configuration we generated
a realistic connectivity and noise environment. In these en-
vironments, there were many asymmetric links and nearby
nodes often could not communicate — phenomena that are
common in the real world [28]. All in all, our TOSSIM re-
sults should predict the real-world protocol behavior well.

Finally, to verify how well previous simulations match this
behavior, for each configuration, we also generated an envi-
ronment with a unit-disk connectivity model and no message
loss. In this model, each node has the same circular radio
range and can communicate only with the nodes within this
range. Hence, unlike in the real world, in the unit-disk model
the connectivity is very regular. To the best of our knowl-
edge, all previous evaluations of HR assumed this model.

The aim of the testbed experiments, in turn, was to evalu-
ate HR in a real WSN of a moderate size. The testbed con-
sists of 60 TelosB nodes in six office rooms. The detailed
information on the testbed can be found in a technical report
[8]. In short, with the -15 dBm radio transmission power we
used, the network diameter oscillated between 4 and 5 hops
and the node density was highly heterogeneous: from 8 to 34
neighbors per node. In addition, there were many asymmet-
ric links and considerable noise during office hours. We thus
believe that the testbed can serve as a representative example
of a real-world WSN deployment of a moderate size.

Since we were conducting the testbed experiments for many
weeks, the collected data illustrate the long-term behavior of
a routing infrastructure and even contain emergency events,
such as an incident in a nearby chemistry lab, followed by
an evacuation of the whole building. As such, the data pro-
vide noteworthy information on the real-world performance
of HR, in particular, and point-to-point routing, in general.

6. TOSSIM EXPERIMENTS
A routing infrastructure for WSNs should ensure small

routing state, small routing stretch, and low-cost, low-latency
maintenance. In the remainder of this section, we evaluate
hierarchical routing with respect to these goals.

6.1 Routing State
As the metric for the routing state, we use the number of

routing table entries as the entries dominate the memory con-
sumed by an HR protocol. In our implementation, a routing
entry at a node needs 8 bytes (for the fields listed in Sect. 3.1
and some additional maintenance counters) plus 4+ bytes of
overhead for a hash table. A routing entry transmitted in a
heartbeat message, in turn, is compressed to 4 bytes. Fig-
ure 2 compares the number of entries for different network
configurations. Each data point corresponds to the average
or the 99-th percentile over all nodes and ten protocol runs
resulting in ten different hierarchies, each with the maximal
level of 5, as this was enough for the employed cluster scal-
ing function, R(i), and the considered network diameters.
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Figure 2: The average and 99-th percentile routing table
size for different network sizes, densities, and topologies.

In accordance with the basic idea behind hierarchical rout-
ing, the routing state scales logarithmically with the network
size N, (left plots), but there is a small constant factor, on av-
erage 4 with respect to log2N. The state also grows linearly
with the network density (right plots). This is because, even
though the employed cluster head promotion heuristics can
adapt to increasing node density [1], they are still inherently
imperfect, and thus, in denser networks more cluster heads
get promoted, which increases the node routing state. We
suspect that this is also the case for other routing protocols
that employ probabilistic node election, such as S4 [18].

It is noteworthy that the 99-th-percentile routing state is
lower than twice the average. Hence, when provisioning
memory pools for routing entries, one can expect that a node
on average utilizes at least 50% of its pool. This, combined
with the low 99-th-percentile routing state size, is a strong
argument for utilizing HR on memory-constrained nodes.

Finally, the results for the the unit-disk model (unit-disk
grid in the plots) deviate significantly from the results for
realistic low-power communication. In a network with the



same number of nodes and a similar density (measured in
terms of connectivity rather than distance), the average node
state under the unit-disk model can be more than 3 times
smaller than under the realistic model. This is mainly due
to the aforementioned irregularities in real-world low-power
wireless connectivity that further impair the cluster head pro-
motion heuristics. In general, the more irregular the con-
nectivity is, the bigger the routing state. Since the unit-disk
model does not exhibit this phenomenon, the results for this
model deviate from the results for realistic communication.

This, in turn, can have further consequences for the hard-
ware node platform. A platform with memory that, based
on high-level simulations, was carefully minimized to sup-
port a given deployment, in practice may be unusable as
the memory may turn out far insufficient for the routing en-
tries. Therefore, when estimating memory for routing en-
tries, prior results on HR should be taken with a grain of salt.
This further substantiates the need for implementation-based
evaluation of HR, as presented in this paper.

6.2 Routing Stretch
We measure the routing stretch with the standard metric

[5, 12, 18]: the hop stretch (dilation). The hop stretch of a
routing path between two nodes is the ratio of the number of
hops on this routing path to the number of hops on the short-
est path between the two nodes in the internode connectivity
graph. A hop is defined over a wireless link with at least 55%
bidirectional packet reception rate, as measured by the em-
ployed link estimator [28]. Figure 3 depicts the hop stretch in
the hierarchies from Fig. 2. Despite using only ∼logN rout-
ing entries, HR offers low hop stretch that scales gracefully
with the network size (left plots). Moreover, the hop stretch
does not grow with the increase in node density (right plots),
which is a consequence of the aforementioned growth in the
routing table size (cf. Fig. 2, right plots).
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Figure 3: The average and 99-th percentile hop stretch
for different network sizes, densities, and topologies.

Although the theoretical upper bound on the hop stretch
between two nodes in HR is high [13], Fig. 3 shows that more
than 99% of routing paths in our experiments do not exceed
a hop stretch of 2 (bottom plots). Moreover, the worst path
we have obtained throughout our year-long experiments, had
a hop stretch of 5. This suggests that although in theory
one can presumably construct a hierarchy with a high-hop-
stretch path, the hierarchies synthesized by our framework
offer low-hop-stretch paths with very high probability. Con-
sequently, despite only∼logN routing state, HR may provide
reasonable hop stretch bounds in practice.

Like previously, the results for the unit-disk communica-
tion diverge significantly from the results for the realistic
communication. In the unit-disk model, the hop stretch is
much lower than in the realistic model, even though the rout-
ing tables in the realistic model are four times bigger than in
the unit-disk model (cf. Fig. 2). This is also a consequence
of the aforementioned connectivity irregularities, and again
evidences that in WSNs practice often diverges from theory.

Finally, since the hop stretch is a metric from wired and
unit-disk networks, which assume virtually no per-hop mes-
sage loss, it may not fully reflect the actual number of routing
transmissions in WSNs, which in contrast exhibit high mes-
sage loss. For example, a routing path may consist of few
hops but involving poor, lossy links, which overall results
in many (re)transmissions when routing a message over this
path. To quantify the discrepancy between the hop stretch
and the actual transmissions, we use the standard metric from
WSNs [5, 12, 18]: the transmission stretch. The transmis-
sion stretch of a routing path between two nodes is the ratio
of the number of transmissions to deliver a message using
the path to the number of hops on the path. When measuring
the impact of hop selection on the transmission stretch, we
minimized the message loss due to collisions and congestion
by routing only one message at any given moment.

The transmission stretch results (not plotted) indicate that
in our framework the discrepancy between the hop stretch
and the actual transmissions is low; the average transmis-
sion stretch is ∼1.02 and the 99-th percentile is not greater
than 2. This is because the framework uses neighbor tables
that are large enough to allow each node to select only high
quality links as routing hops. Thus, due to the bimodality of
wireless links [28], even though a hop is defined over a link
with≥55% packet reception, most of the hops in fact exhibit
nearly 100% packet reception, which effectively minimizes
the transmission stretch. Overall, the results for the hop and
transmission stretch indicate that despite only ∼logN state,
HR may perform reasonably well in practice, which makes
it particularly suitable for memory-constrained nodes.

6.3 Hierarchy Bootstrap
To study the costs of bootstrapping and maintaining the

routing infrastructure, we make use of the fact that all con-
sidered protocols operate periodically, in rounds. We thus



fix the duration of a round for all the protocols and study the
maintenance costs in terms of rounds. Such an approach is
accurate when a round is a few orders of magnitude longer
than a message transmission. This is typically the case as in
low-data-rate WSN applications the rounds are measured in
the order of minutes (5 minutes in our experiments) while a
message transmission takes in the order of milliseconds.

Figure 4 presents the number of rounds that different hi-
erarchy information propagation techniques require to boot-
strap the hierarchies from Fig. 2 and 3. In these experi-
ments, we started all nodes simultaneously and let them con-
struct the hierarchy. We consider the hierarchy as being boot-
strapped when 99% of the nodes have their labels assigned
and can successfully route to each other.
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Figure 4: The bootstrap time for different network sizes
and hierarchy information propagation techniques.

The hierarchy information propagation techniques that of-
fer the fastest bootstrap are the periodic hierarchical bea-
coning with beacons issued in every round irrespective of
the cluster head level (PHB[c]) and our novel hybrid ap-
proach (Hybrid). In these techniques, the number of boot-
strap rounds is directly proportional to the maximal hierar-
chy level, 5. In every round, a single hierarchy level is con-
structed (the right plot) with the initial 1-2 rounds necessary
for neighbor discovery and link estimation. This corresponds
to the lower bound in our framework, and thus, these two
techniques are optimal with respect to the bootstrap time.

In theory, the periodic hierarchical beaconing with the ex-
ponential beacon issuing pattern (PHB[e]) should perform
like these two techniques. In practice, however, it does not
due to message loss. If a node misses a beacon message from
a level-i cluster head, it and potentially some of its neighbors
will not record a routing entry for the head for Ri rounds,
which boosts the bootstrap time. In Fig. 4, this can be ob-
served at level 4 (Ri = 16), at which a missed beacon from a
level-4 cluster head delayed hierarchy construction at level 5
for 16 rounds. This can also happen in the two optimal tech-
niques. However, in PHB[c], the unlucky node will likely
receive a beacon in the next round, whereas in Hybrid, the
unlucky node will recover through heartbeat messages.

Finally, the hierarchical distance vector (HDV) is the slow-
est. Since in this technique information is propagated through
periodic state merging once per round, in the worst case, it
may take R rounds to advertise a cluster over R hops. This

also requires extending the slot duration in the cluster head
promotion heuristics. As a result, the bootstrap time depends
mostly on the network diameter (15 hops in the figure).

With the message cost of bootstrapping, the relationship
between the techniques is opposite, as depicted in Fig. 5 (left
plot). A node running hierarchical distance-vector sends one
message per round, if a message can consist of a few frames
(HDV[s]), or a logarithmic number of messages with a tiny
constant, if the routing state is manually fragmented into
one-frame messages (HDV[m]). Likewise, other protocols
generate logarithmic traffic. The differences in constants
associated with the logarithms, however, can be substantial
(e.g., a factor of 10 between PHB[c] and HDV[m]).
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Figure 5: The per-node bootstrap traffic for different net-
work sizes and information propagation techniques.

For efficiency, message payloads should be maximized: a
protocol should preferably send fewer but longer messages.
This is crucial in WSNs because a message transmission or
reception typically involves a large energy overhead due to
synchronizing the transmitter and receivers to have their ra-
dios on. The right plot in Fig. 5 presents the efficiency of dif-
ferent hierarchy information propagation techniques. Bea-
con messages are small (10 bytes in our implementations),
and thus, protocols based on periodic hierarchical beaconing
(PHB) are inefficient when bootstrapping the hierarchy. In
contrast, heartbeat messages in hierarchical distance-vector
protocols (HDV), propagate information more efficiently as
each heartbeat contains the whole routing state of a node.
Our hybrid technique, which combines beacons and heart-
beats, lays in between. In the bootstrap phase, it resembles
more the beaconing protocols as during this phase the hier-
archy changes, hence beacons dominate over heartbeats.

6.4 Hierarchy Maintenance
After the hierarchy has been bootstrapped, the protocols

continue to maintain it during system lifetime. Such main-
tenance generates traffic, which again depends on the hierar-
chy information propagation technique, as depicted in Fig. 6.

During maintenance, like during bootstrap, the hierarchi-
cal distance-vector protocols (HDV) send the fewest and the
longest messages, while the periodic hierarchical beaconing
protocols (PHB) — the most and the shortest messages. For
instance, the difference in the number of messages sent per
round between PHB[c] and HDV[s] is nearly a factor of 18.
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Figure 6: The per-node stable traffic for different net-
work sizes and information propagation techniques.

Finally, since in the stable phase, unlike in the bootstrap
phase, our Hybrid protocol generates only heartbeat mes-
sages, it performs similarly to the protocols using HDV.

The maintenance traffic is necessary for detecting and re-
pairing failures in the hierarchy. To measure the failure re-
covery latency for every hierarchy information propagation
technique, we performed the following micro-benchmarks.
For each technique, after the hierarchy has been bootstrapped,
we killed a single node and measured the time to recover the
hierarchy. By recovery we mean a state in which neither
the label nor the routing table of any alive node contains the
identifier of the failed node (i.e., the information about the
failed node is completely removed from the network), and
all the alive nodes can successfully route to each other. Af-
terward, we reincarnated the dead node and let it fully rejoin
the system (the rejoining latency is small and thus is omitted
in the results). We then repeated the above steps for all other
nodes in the network. Figure 7 presents the average results
depending on the level of a failed node as cluster head.
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Figure 7: The avg. recovery time of routing tables and la-
bels depending on the failed node’s level as cluster head.

Periodic hierarchical beaconing with beacons issued in each
round irrespective of the issuer’s level (PHB[c]) performs
best. Since in this technique, each routing entry is refreshed
in every round, detecting a cluster head failure is fast irre-
spective of the head’s level (left plot). In our experiment
we assumed that an entry is considered dead if it is not re-
freshed for 4 consecutive rounds. Because PHB[c] also con-
structs the hierarchy fast (cf. Fig. 4), it recovers node labels
most quickly (right plot), as label synthesis and recovery
in the simplified framework use the same mechanisms (cf.
Sect. 4.2). In contrast, in the HDV and Hybrid approaches,
detecting a failure of a cluster head is proportional to the dis-

tance to the head. Hence, these techniques repair node rout-
ing tables and labels slower. Hybrid, however, is more effi-
cient than HDV in label recovery (right plot), because it con-
structs the hierarchy much faster (cf. Fig. 4). Finally, in pe-
riodic hierarchical beaconing with exponential inter-beacon
interval (PHB[e]), the time to detect a cluster head failure
is proportional to the head’s advertisement radius, Ri, which
for most of the nodes is longer than the actual distance to the
head. Consequently, PHB[e] is the slowest technique.

It is vital to note that these results present the total re-
covery time of all nodes affected by a level-i cluster head
failure, which is much longer than the average recovery time
of a node. Moreover, as most nodes are only level-0 cluster
heads, a failure of a random node requires few and local-only
repair activities. With some redundancy in the next-hop can-
didates for routing entries, routing is virtually undisrupted by
a failure of a level-0 head. Therefore, HR can be robust.

6.5 Comparison of the Techniques
To sum up, the three evaluated techniques for propagating

hierarchy information differ significantly. For a given round
length, periodic hierarchical beaconing with one-round inter-
beacon intervals (PHB[c]) bootstraps and recovers the hier-
archy fastest, but uses myriads of inefficient short messages.
As such, it is most suitable for applications in which heavy
traffic is less important than quick construction and recovery
of the routing infrastructure. In contrast, protocols based on
hierarchical distance-vector (HDV) generate the lowest traf-
fic with the lowest energy overhead on transmitted protocol
data, but they take time to construct and recover the hierar-
chy. Consequently, they are more appropriate for applica-
tions that operate on tighter energy budgets, but can tolerate
long periods of disruption (e.g., delay tolerant systems).

Our novel Hybrid approach may be a good alternative for
both these techniques. It offers optimal hierarchy bootstrap,
like PHB[c], uses mostly low and efficient traffic, like HDV,
and recovers after failures relatively fast. Moreover, the only
issue that slows recovery in Hybrid, as compared to PHB[c],
is the slow failure detection mechanism inherited from HDV.
In some applications, however, failure detection can be im-
proved with an ICMP-like protocol. If HR encounters a rout-
ing error, it can return a type-3 ICMP message (“Destination
Unreachable”) to the source, which then marks a given clus-
ter as failed, yielding almost immediate failure detection.

Finally, periodic hierarchical beaconing with the exponen-
tial beacon issuing pattern (PHB[e]) in practice offers nei-
ther fast bootstrap and recovery nor efficient traffic. Thus,
this technique is unappealing for real-world applications. Yet,
surprisingly many HR infrastructures are based on this tech-
nique [1, 3, 15], which again supports our initial claims.

7. TESTBED EXPERIMENTS
We have conducted numerous testbed experiments that in-

volved various micro-benchmarks of different design deci-



sions within our framework as well as investigated the long-
term performance of an HR infrastructure. Table 2 summa-
rizes the routing state and hop-stretch values obtained in the
experiments, while Table 3 illustrates differences between
selected techniques of propagating hierarchy information.

Table 2: The routing table size and hop stretch.
Metric Average 99th Percentile = Max.

routing table size 4.95-9.71 7-14
hop stretch 1.00-1.05 1.33-2.66

neighborhood size 19.51-23.65 26-34

Table 3: The convergence time and stable-state traffic for
different hierarchy information propagation techniques.

Technique Bootstrap Time Stable-State Messages
Per Node Per Round

PHB[e] 24 2.07413
HDV[m/s] 19 1.00000

Hybrid[m/s] 10 1.00036

Although, in general, the results from these experiments
are consistent with the results from TOSSIM, there are some
small differences. For example, the routing table sizes and
hop stretch values are slightly smaller than the results we ob-
tained with TOSSIM and the bootstrap times of the protocols
are higher. We attribute these differences respectively to the
small scale of the testbed experiments and to the fact that
we did not start all the nodes simultaneously. Apart from
such differences, however, the results from the testbed and
TOSSIM match, which indicates that TOSSIM can simulate
low-power wireless communication relatively well.

Yet, TOSSIM cannot accurately model the dynamic, ran-
dom interactions of the network with the surrounding en-
vironment. Examples of such interactions include wireless
noise generated by people’s 802.11 laptops and changes in
signal propagation due to mobility in the surrounding envi-
ronment. These interactions, however, make the internode
connectivity dynamic and hence impact the performance of
an HR infrastructure. Wireless noise, for instance, makes
some wireless links bursty [23]; such links display short pe-
riods of perfect or null packet reception. In turn, mobility,
like repositioning office furniture by just half a meter, can
change wireless links considerably and more permanently.

Such dynamic changes in connectivity impair the message
delivery rates and the transmission stretch. A next routing
hop for which the link quality has been estimated as high us-
ing the maintenance messages (i.e., heartbeats or beacons)
may deteriorate when the actual data is routed. To alleviate
this, our framework allows for redundancy in the next-hop
candidates for each routing entry. Moreover, the applica-
tions using the framework can employ a link estimator that
considers not only the maintenance traffic but also the actual
routed data traffic [4]. We leave the evaluation of the frame-
work with such an estimator as future work, as the estimator
can also be applied to other routing protocols for WSNs.

More importantly, however, the changes in connectivity
may result in the changes of node labels. Since a node’s
label is the node’s routing address, a change in the label
disrupts the application on top of the routing infrastructure.
Therefore, applications employing HR must be designed to
anticipate such changes and to recover from them. For ex-
ample, in some applications, a simple support for recovery
after address changes would involve statically designating a
few (special) nodes as the keepers of the node label assign-
ments. The keepers would also act as top-level cluster heads,
so that they could always be reached by all nodes. When a
source node receives “Destination Unreachable” message, it
can contact one of the keepers to verify the destination label.

A sample two-and-a-half-day run of the Hybrid variant
of our infrastructure, depicted in Fig. 8, demonstrates how
the aforementioned phenomena impact the performance of
an HR infrastructure. The pairwise routing reachability be-
tween nodes is lower and more variable during working hours
than during nights. During the first day (from 8:00 AM
to 8:00 PM), 6 nodes changed their labels as the result of
connectivity changes, amounting to 16 label changes in total
during that day. In contrast, there were no label changes dur-
ing the subsequent night. Those connectivity changes during
working hours resulted most likely from the aforementioned
noise and mobility in the testbed surroundings. Emergency
events, such as the one we experienced, can also affect the
routing infrastructure behavior. Although it is rather difficult
to verify this, a crowd of people with their laptops on storm-
ing through a corridor with the testbed office rooms may dis-
rupt connectivity. In effect, many rounds after the building is
deserted are required for the infrastructure to fully recover.
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Figure 8: The pairwise node reachability in a run. (Node
A can reach node B iff A can successfully route to B.)

All in all, however, HR infrastructures captured by our
framework are robust. During the worst disruptions in Fig. 8,
more than 84% of all N×(N−1) routing paths were valid.
In addition, the network was resilient to massive failures
and typically required few rounds to recover. Moreover, we
obtained similar routing success rates as reported by other
WSN point-to-point routing protocols. Consequently, we
hope that after some adaptation (including the aforementioned
improvements), HR can be used in real-world WSNs.



8. DISCUSSION AND CONCLUSIONS
The results obtained with the embedded implementations

of our framework indicate that hierarchical routing is indeed
an appealing point-to-point routing paradigm for large low-
power wireless networks. There are, however, some issues.

First, performance results reported for high-level simula-
tions should be considered with caution, as we demonstrated
that they can diverge significantly, in terms of both routing
state and routing stretch, from the results with a more real-
istic communication model. Such divergence can have pro-
found impact on a few systems aspects of WSNs using HR.
Examples of such aspects include provisioning node memory
for the routing infrastructure and ensuring certain quality of
service with respect to the routing latency.

Second, the protocols for maintaining the routing infrastruc-
ture vary considerably in terms of performance. Our results
evidence that there is no one-size-fits-all maintenance proto-
col. Instead, different techniques should be used when the
availability and robustness are the main concern, and differ-
ent when the energy efficiency is the primary objective. We
believe that our results enable an informed decision.

Finally, WSN applications on top of an HR infrastructure
should be partially aware of the limitations of the infrastruc-
ture. In particular, their design should anticipate disruptions
in node connectivity as well as changes in node addresses, so
that they can recover after such events (e.g., via buffering).
This also applies to other protocols with dynamic addressing.

Apart from the above results, the presented HR framework
is itself a major contribution as it allows for experimenting
with various design decisions and for comparing HR against
other point-to-point routing techniques. For these reasons,
we have made parts of the framework sources publicly avail-
able at the following website.

http://www.few.vu.nl/~iwanicki/Ad_Hoc_Hierarchical_Routing
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