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Abstract. We develop an analytical model of information dissemination
for a gossip protocol. With this model we analyse how fast an item is
replicated through a network. We also determine the optimal size of the
exchange buffer, to obtain fast replication. Our results are confirmed by
large-scale simulation experiments.

1 Introduction

Today, large-scale distributed systems consisting of thousands of nodes are com-
monplace, due to the wide availability of high-performance and low-cost devices.
Such systems are highly dynamic in the sense that nodes are continuously in
flux, with new nodes joining and existing nodes leaving.

In practice, large-scale systems are often emulated to discover correlations
between design parameters and observed behaviour. Such experimental results
provide essential data on system behaviour. However, they usually show only
behaviour of a particular implementation, and can be time consuming. More-
over, in general experiments do not give a good understanding of the emergent
behaviour of the system, and into how parameter settings influence the extra-
functional properties of the system. As a result, it is very difficult to predict
what the effects of certain design decisions are, as it is practically infeasible to
explore the full range of input data. A challenge is to develop analytical models
that capture (part of) the behaviour of a system, and then subsequently optimize
design parameters following an analytical rather than an experimental approach.

We are interested in developing and validating analytical models for gossip-
based systems (cf. [1]). These systems rely on epidemic techniques for the com-
munication and exchange of information. These communication protocols, while
having simple specifications, show complex and often unexpected behaviour
when executed on a large scale. Our analytical models of gossip protocols need
to be realistic, yet, sufficiently abstract to allow for easy prediction of systems
behaviour. By ‘realistic’ we mean that they can be applied to large-scale systems
and can capture functional and extra-functional behaviour such as replication,
coverage, convergence, and other system dynamics (see [2]). Such models are
amenable for mathematical analysis, to make precise predictions. Furthermore,



we will exploit the fact that because an analytical model presents an abstrac-
tion of the original protocol, a simulation of the model tends to be much more
efficient (in computation time and memory consumption) than a simulation of
an implementation of this protocol.

In this paper, we develop an analytical model of a shuffle protocol from [3],
which was developed to disseminate data items to a collection of wireless devices,
in a decentralized fashion. A decentralized solution considerably decreases the
probability of information loss or unavailability that may occur due to a single
point of failure, or high latency due to the overload of a node. Nodes execut-
ing the protocol periodically contact each other, according to some probability
distribution, and exchange data items. The latter is important to achieve the
push-pull-based approach, which has a better performance than a pure push or
pull approach [4, 5]. Concisely, a node initiates a contact with its random neigh-
bour, pulls a random subset of items from the contacted node, simultaneously
pushing its own random subset of items. Replication ensures the availability of
the data items even in the face of dynamic behaviour, which is characteristic of
wireless environments. And since nodes relocate data in a random fashion, nodes
will eventually see all data items.

The central point of our study is a rigorous probabilistic analysis of infor-
mation dissemination in a wireless network using the aforementioned protocol.
The behaviour of the protocol is modelled on an abstract level as pairwise node
interactions. When two neighbouring nodes interact with each other (gossip),
they may undergo a state transition (exchange items) with a certain probability.
The transition probabilities depend on the probability that a given item in a
node’s cache has been replaced by another item after the shuffle. We calculated
accurate values for these probabilities. We also determined a close approximation
that is expressed by a much simpler formula, as well as a correction factor for this
approximation, allowing for precise error estimations. Thus we obtain a better
understanding of the emergent behaviour of the protocol, and how parameter
settings influence its extra-functional behaviour.

We investigated two properties characterizing the protocol: the number of
nodes that have ‘seen’ a given item over time (coverage), and the number of repli-
cas of this item in the network at a certain moment in time (replication). Using
the values of the transition probabilities, we determined the optimal number of
items to exchange per gossip, for a fast convergence of coverage and replication.
Moreover, we determined formulas that capture the dissemination of an item in
a fully connected network. All our modelling and analysis results are confirmed
by large-scale simulations, in which simulations based on our analytical models
are compared with running the actual protocol. To the best of our knowledge, we
are the first to develop an accurate, realistic formal model that can be used to
optimally design and fine-tune a given wireless gossip protocol. In this sense, our
main contribution is demonstrating the feasibility of a model-driven approach
to developing real-world gossip protocols.

The paper is structured as follows. Sec. 2 explains the shuffle protocol. In
Sec. 3 the analytical model is developed and exploited. Sec. 4 discusses the results
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of our experimental evaluations. Sec. 5 presents a continuous-time perspective
of replication. And Sec. 6 contains the conclusions. Due to space restrictions,
several parts of the full version of this paper, available as [6], were omitted:
notably an in-depth discussion on replication and coverage, the calculation of
the precise formula for the probability of dropping an item, the calculation of
the correction factor between this formula and its simplified estimation, and a
continuous-time perspective of coverage.

2 A Gossip-based Protocol for Wireless Networks

This section describes the shuffle protocol introduced in [3]. It is a gossip protocol
to disseminate data items to a collection of wireless devices. The protocol relies
on replication to ensure the availability of data items in the face of dynamic
behaviour, which is characteristic of wireless environments.

The system consists of a collection of wireless nodes, each of which contributes
a limited amount of storage space (which we will refer to as the node’s cache)
to store data items. The nodes periodically swap (shuffle) data items from their
cache with a randomly chosen neighbour. In this way, nodes gradually discover
new items as they are disseminated through the network.

Items can be published by any user of the system, and are propagated through
the network. Of each data item, several copies may exist in the network. Repli-
cation may occur when a node has available storage space to keep an item it
just gossiped to a neighbour.

All nodes have a common agreement on the frequency of gossiping. However,
there is no agreement on when to gossip. In terms of storage space, we assume
that all nodes have the same cache size c. When shuffling, each node sends a
fixed number s of the c items in the cache. The gossip exchange is performed
as an atomic procedure, meaning that once a node initiates an exchange with
another node, these pair of nodes cannot become involved in another exchange
until the current exchange is finished.

In order to execute the protocol, the initiating node needs to contact a gossip-
ing partner. We describe the protocol from the point of view of each participating
node. We refer to [3] for a more detailed description.

Node A initiates the shuffle by executing the following steps:

1. picks a neighbouring node B at random;
2. sends s randomly selected items from its local cache to B;
3. receives s items from the local cache of B;
4. checks whether any of the received items are already in its cache; if so, these

received items are eliminated;
5. adds the rest of the received items to the local cache; if the total number of

items exceeds cache size c, removes items among the ones that were sent by
A to B, but not those that were also received by A from B, until the cache
contains c items.

In response to being contacted by A, node B consecutively executes steps 3, 2,
4 and 5 above, with all occurrences of A and B interchanged.
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According to the protocol, each node agrees to keep the items received from
a neighbour. Given the limited storage space available in each node, keeping the
items received during an exchange implies discarding some items that the node
has in its cache. By picking the items to be discarded from the ones that have
been sent to the neighbour, the conservation of data in the network is ensured.

3 An Analytical Model of Information Dissemination

We analyse dissemination of a generic item d in a network in which the nodes
execute the shuffling protocol.

3.1 Probabilities of state transitions

Fig. 1. Symbolic representation for
caches of gossiping nodes.

We present a model of the shuffle protocol
that captures the presence or absence of a
generic item d after shuffling of two nodes
A and B. There are four possible states of
the caches of A and B before the shuffle:
both hold d, either A’s or B’s cache holds
d, or neither cache holds d.

We use the notation P (a2b2|a1b1) for
the probability that from state a1b1 af-
ter a shuffle we get to state a2b2, with
ai, bi ∈ {0, 1}. The indices a1, a2 and b1,
b2 indicate the presence (if equal to 1) or
the absence (if equal to 0) of a generic
item d in the cache of an initiator A and
the contacted node B, respectively. For
example, P (01|10) means that node A had
d before the shuffle, which then moved to the cache of B, afterwards. Due to
the symmetry of information exchange between nodes A and B in the shuffle
protocol, P (a2b2|a1b1) = P (b2a2|b1a1).

Fig. 1 depicts all possible outcomes for the caches of gossiping nodes as a
state transition diagram. If before the exchange A and B do not have d (a1b1 =
00), then clearly after the exchange A and B still do not have d (a2b2 = 00).
Otherwise, if A or B has d (a1 = 1 ∨ b1 = 1), the shuffle protocol guarantees
that after the exchange A or B still has d (a2 = 1∨ b2 = 1). Therefore, the state
(−,−) has a self-transition, and no other outgoing or incoming transitions.

We determine values for all probabilities P (a2b2|a1b1). They are expressed in
terms of probabilities Pselect and Pdrop . Here Pselect expresses the chance of an
item to be selected by a node from its local cache when engaged in an exchange.
And Pdrop represents a probability that an item which can be overwritten (mean-
ing that it is in the exchange buffer of its node, but not of the other node in
the shuffle) is indeed overwritten by an item received by its node in the shuffle.
Due to the symmetry of the protocol, these probabilities are the same for both
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initiating and contacted nodes. In Sec. 3.2, we will calculate Pselect and Pdrop .
We write P

¬select for 1 − Pselect and P
¬drop for 1 − Pdrop .

As explained above, P (00|00) = 1. We now focus on the case where a1b1 = 01,
meaning that before shuffling, a copy of d is only in the cache of B.

a2b2 = 01: B did not select (to send) d and, thus, B did not overwrite d; i.e.
P (01|01) = P

¬select .
a2b2 = 10: B selected d and dropped it; i.e. P (10|01) = Pselect · Pdrop .
a2b2 = 11: B selected d and kept it; i.e. P (11|01) = Pselect · P¬drop .
a2b2 = 00: as said, completely discarding d is impossible; i.e. P (00|01) = 0.

Due to the symmetry, the case a1b1 = 10 is similar. We now deal with the case
where a1b1 = 11, meaning that before shuffling, d is in the caches of A and B.

a2b2 = 01: A selected d and dropped it, and B did not select d; i.e. P (01|11) =
Pselect · Pdrop · P

¬select .
a2b2 = 10: symmetric to the previous one: P (10|11) = P

¬select · Pselect · Pdrop .
a2b2 = 11: after the shuffle both A and B have d, because either:

– A and B did not select d, i.e. P
¬select · P¬select ;

– A and B selected d (thus, both kept it), i.e. Pselect · Pselect ;
– A selected d and kept it and B did not select d: Pselect · P¬drop · P

¬select ;
– symmetric case to the previous one: P

¬select · Pselect · P¬drop .
Thus, P (11|11) = P

¬select ·P¬select+Pselect ·Pselect+2·Pselect ·P¬select ·P¬drop .
a2b2 = 00: as before, P (00|11) = 0.

3.2 Probabilities of selecting and dropping an item

The following analysis assumes that all node caches are full (that is, the network
is already running for a while). Moreover, we assume a uniform distribution of
items over the network; this assumption is supported by experiments in [3, 4].

Consider nodes A and B engaged in a shuffle, and let B receive the exchange
buffer SA from A. Let k be the number of duplicates (see Fig. 2), i.e. the items
of an intersection of the node cache CB and the exchange buffer of its gossiping
partner SA (i.e. SA ∩ CB). Recall that CA and CB contain the same number
of items for all A and B, and likewise for SA and SB; we use c and s for these
values. The total number of different items in the network is denoted as n.

n

SA k CB

Fig. 2. k items in SA ∩ CB

SA

SB
bs

CB

Fig. 3. bs items in SA ∩ SB
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The probability of selecting an item d in the cache is the probability of a
single selection trial (i.e. 1

c
) times the number of selections (i.e. s): Pselect = s

c
.

Consider Figs. 2 and 3. The shuffle protocol demands that all items in SA

are kept in CB after the shuffle. This implies that: a) all items in SA\CB will
overwrite items in SB ⊆ CB, and b) all items in SA ∩CB are kept in CB . Thus,
the probability that an item from SB will be overwritten is determined by the
probability that an item from SA is in CB, but not in SB. Namely, the items
in SB\SA provide a space in the cache for items from SA\CB. We would like to
express the probability Pdrop of a selected item d in SB\SA (or SA\SB) to be
overwritten by another item in CB (or CA). Due to symmetry, this probability
is the same for A and B; therefore, we only calculated the expected probability
that an item in SB\SA is dropped from CB. Let 2s ≤ c ≤ n − s. Then

E[Pdrop ] =
n − c(

n

s

)
s−1∑

k=0

(
(n − c) − 1

(s − k) − 1

) k∑

bs=0

(
c−s

k−bs

)(
s

bs

)

s − ŝ
(1)

A detailed explanation of how this formula was calculated can be found [6].

3.3 Simplification of Pdrop

In an effort to simplify the formula for the probability Pdrop of item in SB\SA

to be dropped from CB after a shuffle, we re-examine the relationships between
the k duplicates received from a neighbour, the ŝ items of the overlap SA ∩ SB,
and Pdrop . Suppose that |SA ∩ CB| = k, and let’s estimate Pdrop by considering
each item from SA separately, and calculating the probability that the item
is a duplicate (i.e., is also in CB). The probability of an item from SA to be
a duplicate (also present in CB) is c

n
. In view of the uniform distribution of

items over the network, the items in a node’s cache are a random sample from
the universe of n data items; so all items in SA have the same chance to be a
duplicate. Thus, the expected number of items in SA ∩CB can be estimated by
E[k] = s · c

n
. And the expected number of items in SA ∩ SB can be estimated

by E[ŝ] = k · s

c
, because only the k items in SA ∩ CB may end up in SA ∩ CB ;

s

c
captures the probability that an item from CB is also selected to be in SB. It

follows that the probability of an item in SB\SA to be dropped from CB after

the shuffle is E[Pdrop ] = s−k

s−bs
=

s−s·
c
n

s−s·
c
n
·

s
c

= n−c

n−s
. This estimate is valid for general

s ≤ c ≤ n.
Substituting the expressions for Pselect and the simplified Pdrop into the for-

mulas for the transition probabilities in Fig. 1, we obtain:

P (01|01) = P (10|10) = c−s

c
P (01|11) = P (10|11) = s

c

c−s

c

n−c

n−s

P (10|01) = P (01|10) = s

c

n−c

n−s
P (11|11) = 1 − 2 s

c

c−s

c

n−c

n−s

P (11|01) = P (11|10) = s

c

c−s

n−s

In order to verify the accuracy of the proposed simplification for E[Pdrop ], we
compare the simplification and the accurate formula (1) for different values of
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n. We plot the difference of the accurate Pdrop and the simplification, for cache
sizes c = 250 and c = 500 (Fig. 4).
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Fig. 4. The difference of the accurate Pdrop and its approximation, for different values
of n and c.

We also investigated how closely the simplified formula E[Pdrop ] = n−c

n−s
ap-

proximates formula (1). We determined that E[Pdrop ] = n−c

(n−s)+ 1

γ

, where

γ =

s−1∑

d=0

(
n

d

)

s ·
(
s−1

d

) =

(
n

s

)

(n − s) + 1
·

s−1∑

d=0

1(
n−d

(s−1)−d

) (2)

In [6] it is explained how we discovered γ. Extensive experiments with Mathe-
matica and Matlab indicate that n−c

(n−s)+ 1

γ

and formula (1) coincide.

3.4 Optimal size for the exchange buffer
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Fig. 5. Optimal value of exchange buffer
size, depending on n.

We study what is the optimal value
for fast convergence of replication
and coverage with respect to an
item d. Since d is introduced at
only one node in the network, one
needs to optimize the chance that
an item is duplicated. That is, the
probabilities P (11|01) and P (11|10)
should be optimized (then P (01|11)
and P (10|11) are optimized as well,
intuitively because for each dupli-
cated item in a shuffle, another item
must be dropped). These probabili-
ties both equal s

c

c−s

n−s
; we compute

when the s-derivative of this for-
mula is zero. This yields the equa-
tion s2 − 2ns + nc = 0; taking into the account that s ≤ n, the only solution of
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this equation is s = n −
√

n(n − c). We conclude that this is the optimal value
for s to obtain fast convergence of replication and coverage. This will also be
confirmed by the experiments and analyses in the following sections.

4 Experimental Evaluation

In order to test the validity of the analytical model of information spread under
the shuffle protocol presented in the previous section, we followed an experi-
mental approach. We compared properties observed while running the shuffle
protocol in a large-scale deployment with simulations of the model under the
same conditions. These experiments show that the analytical model indeed cap-
tures information spread of the shuffle protocol. We note that a simulation of
the analytical model is much more efficient (in computation time and memory
consumption) than a simulation of the implementation of the shuffle protocol.

The experiments simulate the case where a new item d is introduced at
one node in a network, in which all caches are full and uniformly populated
by n = 500 items. They were performed on a network of N = 2500 nodes,
arranged in a square grid topology (50×50), where each node can communicate
only with its four immediate neighbors (to the North, South, East and West).
Each node has a cache size of c = 100, and sends s items when gossiping. In
each round, every node randomly selects one of its neighbors, and updates its
state according to the transition probabilities introduced before (Fig. 1). This
mimics (the probabilities of) an actual exchange of items between a pair of nodes
according to the shuffle protocol. In the experiments, after each gossip round,
we measured the total number of occurrences of d in the network (replication),
and how many nodes in total have seen d (coverage).

To fill the caches of the nodes with a random selection of items, measurements
are initiated after 1000 gossip rounds. In other words, 500 different items are
inserted at the beginning of the simulation, and shuffled for 1000 rounds. During
this time, items are replicated and the replicas fill the caches of all nodes. At
round 1000, a copy of the fresh item d is inserted at a random location, and its
spread through the network is tracked over the next 2000 rounds.

Fig. 6 shows the behaviour of both the shuffle protocol and the analytical
model in terms of replication and coverage of d, for various values of s. Each
curve in the graphs represents the average and standard deviation calculated over
30 runs. The experiments with the model calculate Pdrop using the simplified
formula n−c

n−s
described in Sec. 3.3. Clearly the results obtained from the model

(right) resemble closely the ones from executing the protocol (left).

In all cases, the network converges to a situation in which there are 500
copies of d, meaning that replication is 500

2500 = 0.2; this agrees with the fact
that c

n
= 100

500 = 0.2. Moreover, replication and coverage display the fastest

convergence when s = 50; this agrees with the fact that n −
√

n(n − c) =

500 −
√

500 · 400 ≈ 50 (cf. Sec. 3.4).
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Fig. 6. The shuffle protocol (left) and the model (right), for N = 2500, n = 500,
c = 100 and different values of s.

5 Continuous-time Modelling of Replication

In this section we exploit the analytical model of information dissemination
to perform a mathematical analysis of replication with regard to the shuffle
protocol. For the particular case of a network with full connectivity, where a node
can gossip with any other node in the network, we can find explicit expressions
for the dissemination of a generic item d in terms of the probabilities presented
in Sec. 3. We construct a differential equation that captures replication of item
d from a continuous-time perspective. Thus we can determine the long-term
behavior of the system as a function of the parameters. In the full version [6],
also a differential equation for coverage is determined and exploited.

One node introduces a new item d into the network at time t = 0, by placing
it into its cache. From that moment on, d is replicated as a consequence of
gossiping among nodes. Let x(t) represent the percentage of nodes in the network
that have d in their cache at time t, where each gossip round takes one time unit.
The variation in x per time unit dx

dt
can be derived based on the probability that

d will replicate or disappear after an exchange between two nodes, where at least
one of the nodes has d in its cache:

dx

dt
= [P (11|10) + P (11|01)] · (1 − x) · x − [P (10|11) + P (01|11)] · x · x

The first term represents duplication of d when a node that has d in its cache
initiates the shuffle, and contacts a node that does not have d. The second term
represents the opposite situation, when a node that does not have d initiates
a shuffle with a node that has d. The third and fourth term in the equation
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represent the cases where both nodes have d in their cache, and after the ex-
change only one copy of d remains. Substituting P (11|10) = P (11|01) = s

c

c−s

n−s

and P (10|11) = P (01|11) = s

c

n−c

n−s

c−s

c
, we obtain

dx

dt
= 2 · s

c
· c − s

n − s
· x · (1 − n

c
· x) (3)

The solution of this equation, taking into account that x(0) = 1
N

with N the
number of nodes in the network, is

x(t) =
eαt

(N − n

c
) + n

c
eαt

(4)

where α denotes 2 s

c

c−s

n−s
. By imposing stationarity, i.e. dx

dt
= 0, we find the

stationary solution c

n
. This agrees with the fact that the protocol achieves a

uniform distribution of items over the network. Namely, since there are Nc cache
entries in the network in total, the average number of copies of an individual
item in the network converges to Nc

n
; so replication converges to c

n
.
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Fig. 7. Percentage of nodes in the network with a replica of item d in their cache, for
N = 2500, c = 100, s = 50, and n = 500 or n = 2000.

We evaluate the accuracy of x(t) as a representation of the fraction of nodes
carrying a replica of d, by running a series of experiments where N = 2500 nodes
execute the shuffle protocol, and their caches are monitored for the presence of
d. Unlike the experiments in Sec. 4, we assume full connectivity; that is, for
each node, all other nodes are within reach. After 1000 rounds, where items
are disseminated and replicated, a new item d is inserted at a random node, at
time t = 0. We track the number of replicas of d for the next 1000 rounds. The
experiment is repeated 30 times and the results are averaged. The simulation
results and x(t), presented in Fig. 7, show the same initial increase in replicas
after d has been inserted, and in both cases the steady state reaches precisely
the expected value c

n
predicted from the stationary solution.

We repeat the calculation from Sec. 3.4, but now against x(t), to deter-
mine which size of the exchange buffer yields the fastest convergence to the
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steady-state for both replication and coverage. That is, we search for the s that
maximizes the value of x(t). We first compute the derivative of x(t) with respect
to s (z(t, s)), and then derive the value of s that maximizes x(t), by taking

z(·, m) = ∂x

∂s
|m = 0: z(t, s) = ∂x

∂s
= 2e

kt(cN−n)(cn+s(−2n+s))t

(cN+(−1+ekt)n)2(n−s)2
, where k = 2 s

c

c−s

n−s
.

Let z(t, s) = 0. For t > 0, cn = s(2n − s). Taking into the account that s ≤ n,
the only solution for this equation is s = n −

√
n(n − c). So this coincides with

the optimal exchange buffer size found in Sec. 3.4.

6 Conclusions

We have demonstrated that it is possible to model a gossip protocol through a
rigorous probabilistic analysis of the state transitions of a pair of gossiping nodes.
We have shown, through an extensive simulation study, that the dissemination
of a data item can be faithfully reproduced by the model. Having an accurate
model of node interactions, we have been able to carry out the following:

– After finding precise expressions for the probabilities involved in the model,
we provide a simplified version of the transition probabilities. These sim-
plified, yet accurate, expressions can be easily computed, allowing us to
simulate the dissemination of an item without the complexity of executing
the actual shuffle protocol. These simulations use very little state (only some
parameters and variables, as opposed to maintaining a cache) and can be
executed in a fraction of the time required to run the protocol.

– The model reveals relationships between system parameters. Armed with
this knowledge, we successfully optimize one of the parameters (the size of
the exchange buffer) to obtain fast convergence of replication.

– Under the assumption of full connectivity, we are able to use the transi-
tion probabilities to model replication and coverage for a generic item. Each
property is ultimately expressed as a formula which is shown to display the
same behavior as the average behavior of the protocol, verifying the validity
of the model.

While gossip protocols are easy to understand, even for a simple push/pull pro-
tocol, the interactions between nodes are unexpectedly complex. Understanding
these interactions provides insight into the mechanics behind the emergent be-
havior of gossip protocols. We believe that understanding the mechanics of gos-
siping is the key to optimizing (and even shaping) the emergent properties that
make gossiping appealing as communication paradigm for distributed systems.
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