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Abstract

We develop an analytical model of information dissemination for a gossiping protocol
that combines both pull and push approaches. With this model we analyse how fast
an item is replicated through a network, and how fast the item covers the network.
We also determine the optimal size of the exchange buffer, to obtain fast replication.
Our results are confirmed by large-scale simulation experiments.

1 Introduction

Today, large-scale distributed systems consisting of thousands of nodes are
commonplace, due to the wide availability of high-performance and low-cost
devices. In practice, these systems are often diagnosed through performing
simulations to discover correlations between design parameters and observed
behaviour. Such experimental results provide essential data on system be-
haviour, and can aid in understanding the emergent behaviour of the system.
However, experiments can be time consuming and the infinite space of the
parameter settings for probabilistic systems is often too large to be explored
experimentally. Consequently, the experiments do not always clarify how pa-
rameter settings influence the extra-functional properties of the system. As a
result, it is very difficult to predict what the effects of certain design decisions
are, as it is practically infeasible to explore the full range of input data. A
challenge is to develop analytical models that capture (part of) the behaviour
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of a system, and then subsequently optimise design parameters following an
analytical rather than an experimental approach.

We are interested in developing and validating analytical models for gossip-
based systems (cf. [5]). These systems rely on epidemic techniques for the
communication and exchange of information. These communication proto-
cols, while having simple specifications, show complex and often unexpected
behaviour when executed on a large scale (e.g. [22,14]). Our analytical models
of gossip protocols need to be realistic, yet, sufficiently abstract to allow for
easy prediction of systems behaviour. By ‘realistic’ we mean that they can be
applied to large-scale systems and can capture functional and extra-functional
behaviour such as replication, coverage, convergence, and other system dynam-
ics (see [16]). Such models are amenable for mathematical analysis, to make
precise predictions. Furthermore, we will exploit the fact that because an an-
alytical model presents an abstraction of the original protocol, a simulation of
the model tends to be much more efficient (in computation time and memory
consumption) than a simulation of an implementation of this protocol.

In this paper, we develop an analytical model of an epidemic protocol by Ga-
vidia et al. [17], which was originally developed to disseminate data items to a
collection of small devices in a decentralised fashion. A decentralised solution
considerably decreases the probability of information loss or unavailability
that may occur due to a single point of failure, or high latency due to the
overload of a node. Nodes executing the protocol periodically contact each
other, and exchange data items. Concisely, a node initiates a contact with a
random neighbour, pulls a random subset of items from the contacted node,
simultaneously pushing its own random subset of items. This push/pull ap-
proach has a better performance than a pure push or pull approach [22,23].
The amount of information exchanged during each contact between two com-
municating nodes is limited. Replication ensures the availability of the data
items even in the face of dynamic behaviour. Thus, nodes not only conserve
the data collectively stored in the network, but also relocate it in a random
fashion; hence, nodes will eventually see all data items.

The central point of our study is a thorough probabilistic analysis of informa-
tion dissemination in a large-scale network using the aforementioned protocol.
Our modelling framework for a gossip protocol differs from the ones, presented
by other papers in that we do not follow the traditional modelling using the
mathematical theory of epidemics [16]. Instead, the behaviour of the proto-
col is modelled at an abstract level as pairwise node interactions. When two
neighbouring nodes interact with each other (gossip), they may undergo a
state transition (exchange items) with a certain probability. The transition
probabilities depend on the probability that a given item in a node’s local
storage has been replaced by another item after the exchange. We calculated
accurate values for these probabilities, yielding a rather complicated expres-
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sion. This expression depends not only on the amount of items, message size
and local storage size, but also on the amount of items both gossiping nodes
have in common, in particular, how many of such items the contacted node re-
ceives during the exchange. The expression is complex because it incorporates
the expected value of the amount of such items, and a connection between the
parameters is not obvious. We also determined a close approximation that is
expressed by a much simpler formula, as well as a correction factor for this
approximation allowing for precise error estimations. Thus we obtain a better
understanding of the emergent behaviour of the protocol and how parameter
settings influence its extra-functional behaviour.

We investigated two properties characterising the protocol, namely, the num-
ber of nodes that have ‘seen’ a given item over time (coverage), and the number
of replicas of this item in the network at a certain moment in time (replica-
tion). Using the values of the transition probabilities, we determined the opti-
mal number of items to exchange per gossip, for a fast convergence of coverage
and replication. Moreover, we determined formulas that capture the dissemi-
nation of an item in a fully connected network. All our modelling and analysis
results are confirmed by large-scale simulations, in which simulations based
on our analytical models are compared with running the actual protocol. To
the best of our knowledge, we are the first to develop an accurate, realistic
formal model that can be used to optimally design and fine-tune a given gossip
protocol. In this sense, our main contribution is demonstrating the feasibility
of a model-driven approach to developing real-world gossip protocols.

The paper is structured as follows 1 . The remainder of this introduction dis-
cusses related work. Sec. 2 explains the shuffle protocol. In Sec. 3 the analytical
model is developed. Sec. 4 discusses the results of our experimental evalua-
tions. Sec. 5 presents a round-based perspective of replication and coverage.
In Sec. 6 we discuss the difference (in terms of time complexity) between sim-
ulation of the formal model and of the actual protocol. And Sec. 7 contains
the conclusions and future work.

Related work

Two areas of research are most relevant to our paper: rigorous analysis of
gossip (and related) protocols, and results from mathematical theory of epi-
demics [4,10]. The results from epidemics are often used in the analysis of

1 The current paper extends the results previously published in [6], notably the
calculation of the precise formula for the probability of dropping an item. It also
introduces both a simple and more refined model of the coverage property, accom-
panied by a thorough simulation study. In addition, we make a comparison between
the complexity of the shuffle protocol and the model.
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gossip protocols [16] (e.g. the traditional gossiping paper by Demers et al.
[12]). We restrict our overview to the most relevant publications from the area
of (analysis of) gossip protocols.

Several works have focused on gossip-based membership management pro-
tocols. Allavena et al. [2] proposed a gossip-based membership management
protocol and analysed the evolution of the number of links between two nodes
executing the protocol. The states of the associated Markov chain are the
number of links between pairs of nodes. From the designed Markov chain they
calculated the expected time until a network partition occurs. This case study
also includes a model of the system under churn. A goal of that paper is to
show the effect of mixing both pull and push approaches.

Eugster et al. [15] presented a lightweight probabilistic broadcast algorithm,
and analysed the evolution of processes that gossip one message. The states
of the associated Markov chain are the number of processes that propagate
one gossip message. From the designed Markov chain, the authors computed
the distribution of the gossiping nodes. Their analysis has shown that the
expected number of rounds to propagate the message to the entire system
does not depend on the out-degree of nodes. These results are based on the
analysis assumption that the individual out-degrees are uniform. However, this
simplification has shown to be valid only for small systems (cf. [22]).

Bonnet [8] studied the evolution of the in-degree distribution of nodes execut-
ing the Cyclon protocol [29]. The states of the associated Markov chain are
the fraction of nodes with a specific in-degree distribution. From the designed
Markov chain the author determined the distribution to which the protocol
converges.

There are a number of theoretical results on gossip protocols, targeted to a
distributed aggregation. In these protocols, a set of data is distributed over
the nodes of a network and the nodes compute an aggregate of the data set.
Kempe et al. [24] proposed a push-only gossip-based aggregation protocol for
the fully connected network. In this paper, the authors used Gaussian mixture
modelling [13,26]. A performance of the protocol has been measured by how
quickly a data originating with a node diffuses through a network (for uniform
gossip). Each node locally maintains an aggregation vector vt,i. A state of the
associated Markov chain is the fraction of the vector node i sends to other
node. From the designed Markov chain, the authors studied the convergence
rate. In addition, the authors showed that the diffusion speed for flooding
corresponds to the mixing time of a random walk on the network. Validation
of the theoretical results with practical experiments is left as a future work.

The protocol [24] has been further tailored by Boyd et al. [9] to work on an
arbitrarily connected network. In their analysis, the Markov chain is defined
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by a weighted random walk on the graph. Every time step, a pair of nodes
(connected by an edge) communicates with a transition probability, and sets
their values equal to the average of their current values. A state of the as-
sociated Markov chain is a vector of values at the end of the time step. The
authors considered the optimisation of the neighbour selection probabilities
for each node, to find the fastest-mixing Markov chain (for fast convergence
of the algorithm) on the graph.

Jelasity et al. [21] proposed a push-pull solution for aggregation in large dy-
namic networks, supported by a performance analysis of the protocol. A state
of the system is represented by a vector, the elements of which correspond
to the values at the nodes, a target value of the protocol calculated from the
vector elements, and a measure of homogeneity characterising the quality of
local approximations. The vector evolves at every step of the system according
to some distribution. In the analysis, the authors considered different strate-
gies (e.g., neighbour selection) to optimise the protocol implementation, and
calculated the expected values for the above mentioned protocol parameters.

Deb et al. [11] studied the adaptation of random network coding to gossip
protocols. The authors analysed the expected time and message complexity of
two gossip protocols for message transmission with pure push and pure pull
communication models.

2 A Gossip-based Protocol for Information Dissemination

This section describes the shuffle protocol, originally introduced in [17] for the
dissemination of information in a wireless environment. The protocol itself
is, at heart, a simple push-pull gossip protocol which can be used also in
wired networks. The protocol disseminates data items of general interest to a
collection of nodes. The protocol relies on replication to ensure the availability
of data items in the face of dynamic behaviour.

The system consists of a collection of nodes, each of which contributes a limited
amount of storage space (which we will refer to as the node’s cache) to store
data items. The nodes periodically swap (shuffle) data items from their cache
with a randomly chosen neighbour. In this way, nodes update their caches on
a regular basis, allowing nodes to gradually discover new items as they are
disseminated through the network.

Items can be published by any user of the system, and are propagated through
the network. An item is a piece of information, and for each item several copies
may exist in the network. As items are gossiped between neighbouring nodes,
replication may occur when a node has available storage space to keep a copy
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of an item it just gossiped to a neighbour.

2.1 Protocol assumptions

All nodes have a common agreement on the frequency of gossiping. However,
there is no agreement on when to gossip.

In terms of storage space, we assume that all nodes dedicate the same amount
of storage space to keep items locally, and that all items are of the same size.
Therefore, we say that each node has a cache size of c. When shuffling, each
node sends a fixed number s of the c items in the cache.

The gossip exchange is performed as an atomic procedure, meaning that once
a node initiates an exchange with another node, this pair of nodes cannot
become involved in another exchange until the current exchange is finished.

2.2 Description

Nodes executing the shuffle protocol initiate a shuffle periodically. In order to
execute the protocol, the initiating node needs to contact a gossiping partner.
Such a random peer is delivered by an underlying layer that keeps track of
the neighbourhood membership. In a wired environment, this service could
be provided by, for instance, a peer sampling service [22] running at each
node. For wireless environments, the neighbourhood is determined by the radio
connectivity between nodes.

We describe the protocol from the point of view of each participating node.
We refer to [17] for a more detailed description.

Node A initiates the shuffle by executing the following steps:

(1) picks a neighbouring node B uniformly at random;
(2) selects randomly s items from the local cache, and sends a copy of these

items to B;
(3) receives s items from the local cache of B;
(4) checks whether any of the received items are already in its cache; if so,

these received items are eliminated;
(5) adds the rest of the received items to the local cache; if the total number

of items exceeds cache size c, removes items at random among the ones
that were sent by A to B, but not those that were also received by A

from B, until the cache contains c items.

In response to being contacted by A, node B executes the following steps:
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(1) receives s items from the local cache of A;
(2) selects randomly s items from its local cache, and sends a copy of these

items to A;
(3) checks whether any of the received items are already in its cache; if so,

these received items are eliminated;
(4) adds the rest of the received items to the local cache; if the total number

of items exceeds cache size c, removes items at random among the ones
that were sent by B to A, but not those that were also received by B

from A, until the cache contains c items.

According to the protocol, each node agrees to keep the items received from
a neighbour. Given the limited storage space available in each node, keeping
the items received during an exchange implies discarding some items that the
node has in its cache. By picking the items to be discarded from the ones that
have been sent to the neighbour, the conservation of data in the network is
ensured.

2.3 Properties

We are interested in the characteristics of the dissemination of data items
when the protocol is executed at a large scale, i.e. with a large set of nodes.
For this reason, we focus on two properties that can be observed in large
deployments: i) the number of replicas of an item in the network, and ii) the
coverage achieved by an item over time.

2.3.1 Replication

This property is defined as the fraction of nodes that hold a copy of a generic
item d in their cache, at a given moment. After an item is introduced into the
network, with every shuffle involving a node that has the item in its cache,
there is a chance that a new copy of the item will be created, or that the item
will be discarded. As a result, with every passing round the number of copies
in the network for a particular item fluctuates. Given that the storage space
at the nodes is limited, items are in constant competition to place copies
in the network. Since competition is fair (all items have the same chance
of being replicated or discarded), eventually the storage capacity is evenly
divided between the existing items. To be more precise, consider a network of
N nodes, in which n different items have been published in total. Since there
are N · c cache entries in the network in total, the average number of copies
that an individual item has in the network will converge to N ·c

n
. So the fraction

of nodes that have a replica of an item in their cache will converge to c
n

on
average.
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2.3.2 Coverage

This property is defined as the fraction of nodes in the network that have seen
a generic item d since it was introduced into the network. As explained earlier,
several copies of an item are generated after the item is first published. Due
to the periodic nature of the protocol, these copies continually move through
the network. This results in nodes discovering item d over several rounds.
With each passing round, more nodes will have seen d. Eventually, d will have
been seen by all nodes (i.e., the coverage is equal to 1). The speed at which
the coverage grows is influenced by several factors (as will be explained later
on) including the number of different items in the network (i.e. competition),
cache size, and the size of the exchange buffer.

2.4 Experimental observations

Before moving on to the analysis of the protocol, we would like to focus on
an important aspect that we have observed during our extensive simulation
study of the shuffle protocol: the tendency of items to replicate to even levels.
In other words, a newly published item generates replicas in the network over
time until its number of replicas reaches a level comparable to the number of
replicas of other items. This comes as a consequence of the random selection of
items to gossip and to keep in local storage. By applying random selection, no
item is favoured over the others resulting in a fair division of the storage space.
That is, once the system has reached equilibrium, each item in the network
will have, on average, the same number of replicas (N ·c

n
).

Figure 1 shows a set of experiments where the distribution of replicas for all
the items in the system is tracked over several gossip rounds. In all cases,
the network consists of N = 2500 nodes with a cache size of c = 100 and
each node sends s = 50 items when it gossips. The number of different items
that are inserted in the network is n = 500. Each graph shows three curves
corresponding to the following initial scenarios:

• Nodes are arranged in a 50× 50 grid. The insertion of items to be gossiped
occurs simultaneously at round 0. All nodes start with an empty cache,
except for 500 nodes randomly chosen nodes. A unique item is placed in
the cache of each of these 500 nodes. As a result, at round 0 our network
contains 500 different items and each of these items has a single replica.

• Nodes are arranged in a 50× 50 grid. The insertion of items to be gossiped
occurs at randomly chosen times before round 100. At round 100, all 500
items will be present in the network. However, items that were inserted
earlier will have more replicas due to having been shuffled for a longer time.

• Topology with higher density at the center. The insertion of items to be
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Fig. 1. Distribution of replicas over time.

gossiped occurs at randomly chosen times before round 100. In this topology,
nodes near the center have more neighbours to gossip with.

As can be seen from the graphs, the different initial conditions result in dif-
ferent replication patterns early on. However, note how as time progresses the
replication patterns become more and more similar. By round 350, it is clear
that items have on average N ·c

n
= 500 replicas, regardless of the initial condi-

tions of the experiment. This convergence to an equilibrium where the storage
space (N · c) is evenly divided between the number of items present (n) is a
result of the repeated execution of the protocol.
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In the shuffle protocol, there is no loss of information during the gossip ex-
change. We assume that the shuffle operation between two nodes is atomic and
since nodes swap items, no item can possibly disappear once inserted into the
network. For this reason, once the system has reached equilibrium in terms of
replication of items and assuming that there is a path between any two nodes
in the network, the replicas will continue to be shuffled, moving from one node
to another in a random fashion. Under these conditions, it is reasonable to as-
sume that the probability of finding any given item in a node’s cache is the
same for all items in the networks. To be more specific, based on our observa-
tions we make the assumption that items are uniformly distributed throughout
the network and that any item can be found in a node’s cache with probability
c
n
. This is the starting point for our probabilistic analysis. The observation of

uniform distribution is not entirely unexpected. Similar observations about
uniform distribution after repeated shuffling have been made regarding the
shuffling of decks of cards in [7,3].

3 An Analytical Model of Information Dissemination

We analyse dissemination of a generic item d in a network in which the nodes
execute the shuffling protocol.

3.1 Probabilities of state transitions

Fig. 2. Symbolic representa-
tion for caches of gossiping
nodes.

We present a model of the shuffle protocol
that captures the presence or absence of a
generic item d after shuffling of two nodes A

and B. There are four possible states of the
caches of A and B before the shuffle: both
hold d, either A’s or B’s cache holds d, or
neither cache holds d.

We use the notation P (a2b2|a1b1) for the
probability that from state a1b1 after a shuf-
fle we get to state a2b2, with ai, bi ∈ {0, 1}.
The indices a1, a2 and b1, b2 indicate the pres-
ence (if equal to 1) or the absence (if equal
to 0) of a generic item d in the cache of an
initiator A and the contacted node B, respec-
tively. For example, P (01|10) means that node A had d before the shuf-
fle, which then moved to the cache of B, afterwards. Due to the symme-
try of information exchange between nodes A and B in the shuffle protocol,
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P (a2b2|a1b1) = P (b2a2|b1a1).

Fig. 2 depicts all possible outcomes for the caches of gossiping nodes as a state
transition diagram. If before the exchange A and B do not have d (a1b1 = 00),
then clearly after the exchange A and B still do not have d (a2b2 = 00).
Otherwise, if A or B has d (a1 = 1 ∨ b1 = 1), the shuffle protocol guarantees
that after the exchange A or B still has d (a2 = 1∨b2 = 1). Therefore, the state
(−,−) has a self-transition, and no other outgoing or incoming transitions.

We now determine values for all probabilities P (a2b2|a1b1). They are expressed
in terms of probabilities Pselect and Pdrop . The probability Pselect expresses the
chance of an item to be selected by a node from its local cache when engaged
in an exchange. The probability Pdrop represents a probability that an item
which can be overwritten (meaning it is in the exchange buffer of its node,
but not of the other node in the shuffle) is indeed overwritten by an item
received by its node in the shuffle. Due to the symmetry of the protocol, these
probabilities are the same for both initiating and contacted nodes. In Sec. 3.2,
we will calculate Pselect and Pdrop . We write P¬select for 1 − Pselect and P¬drop

for 1 − Pdrop .

Scenario 1 (a1b1 = 00) Before shuffling, neither node A nor node B have d

in their cache.

a2b2 = 00: neither node A nor node B have item d after a shuffle because
neither of them had it in the caches before the shuffle: P (00|00) = 1

a2b2 ∈ {01, 10, 11}: cannot occur, because none of the nodes have item d.

Scenario 2 (a1b1 = 01) Before shuffling, a copy of d is only in the cache of
node B.

a2b2 = 01: node A does not have d because node B had d but did not select it
(to send) and, thus, B did not overwrite d, i.e. the probability is P (01|01) =
P¬select

a2b2 = 10: only node A has d because node B selected d and dropped it; that
is, the probability is P (10|01) = Pselect · Pdrop

a2b2 = 11: both nodes A and B have a copy of d because node B selected d

and kept it; that is, P (11|01) = Pselect · P¬drop

a2b2 = 00: cannot occur as completely discarding d is not possible in the pro-
tocol; that is, if either nodes send an item, its partner keeps this copy as
well, and if an item is not among the selected for a shuffle, the item is not
replaced by another one (see Sec. 2.2).

Scenario 3 (a1b1 = 10) Before shuffling, d is only in the cache of node A.

Due to the symmetry of nodes A and B, this scenario is symmetric to the
previous one with P (a2b2|10) = P (b2a2|01).
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Scenario 4 (a1b1 = 11) Before shuffling, d is in the cache of node A as well
as in the cache of node B.

a2b2 = 01: only node B has d because node A selected d and dropped it and
node B did not select d; that is, P (01|11) = Pselect · Pdrop · P¬select

a2b2 = 10: this outcome is symmetric to the previous one: P (10|11) = P¬select ·
Pselect · Pdrop

a2b2 = 11: after the shuffle both nodes A and B have d, because:
* nodes A and B had d but both did not select it, i.e. P¬select · P¬select ;
* both nodes A and B selected d (thus, both kept it), i.e. Pselect · Pselect ;
* node A selected d and kept it and node B did not select d: Pselect · P¬drop ·

P¬select ;
* symmetric case with the previous one: P¬select · Pselect · P¬drop .

Thus, P (11|11) = P¬select ·P¬select + Pselect ·Pselect + 2 ·Pselect ·P¬select ·P¬drop

a2b2 = 00: cannot occur, discarding of an item is not permitted by the protocol
(see Sec. 2.2).

3.2 Probabilities of selecting and dropping an item

The following analysis assumes that all node caches are full (that is, the net-
work is already running for a while). Moreover, we assume a uniform distribu-
tion of items over the network; this assumption is supported by experiments
in [17,22].

Consider nodes A and B engaged in a shuffle, and let B receive the exchange
buffer SA from A. Let k be the number of duplicates (see Fig. 3), i.e. the items
of an intersection of the node cache CB and the exchange buffer of its gossiping
partner SA (i.e. SA ∩ CB). Recall from Sec. 2.1 that CA and CB contain the
same number of items for all A and B, and likewise for SA and SB; we use c

and s for these values. The total number of different items in the network is
denoted as n.

n

SA k CB

Fig. 3. k items in SA ∩ CB

SA

SB
bs

CB

Fig. 4. ŝ items in SA ∩ SB

The probability of selecting an item d in the cache is the number of selected
items (i.e. s) divided by the total number of items in the cache (i.e. c): Pselect =
s
c
. Thus, the probability that an item d in the cache is not selected is: P¬select =
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1 − Pselect = c−s
c

.

Consider Figs. 3 and 4. The shuffle protocol demands that all items in SA

are kept in CB after the shuffle. This implies that: a) all items in SA\CB will
overwrite items in SB ⊆ CB, and b) all items in SA∩CB are kept in CB. Thus,
the probability that an item from SB will be overwritten is determined by the
probability that an item from SA is in CB, but not in SB. Namely, the items in
SB\SA provide a space in the cache for items from SA\CB. We would like to
express the probability Pdrop of a selected item d in SB\SA (or SA\SB) to be
overwritten by another item in CB (or CA). Due to symmetry, this probability
is the same for A and B; therefore, we calculate only the probability that an
item in SB\SA is dropped from CB. The expected value of this probability
depends on how many duplicates a node receives from its gossiping partner 2 :

E[Pdrop ] =






s∑

k=0

(P
|SA∩CB |=k
drop · P|SA∩CB |=k) if s + c 6 n

s∑

k=(s+c)−n

(P
|SA∩CB |=k
drop · P|SA∩CB |=k) otherwise

where P|SA∩CB |=k is the probability of having exactly k items in SA ∩CB, and

P
|SA∩CB |=k
drop is the probability that an item in SB\SA is dropped from CB given

k duplicates in SA ∩ CB. The case distinction is because if s + c > n, then
clearly there are at least (s + c) − n items in SA ∩ CB.

From the
(

n

s

)
possible sets SA, we compute how many have k items in common

with CB. Firstly, there are
(

c

k

)
ways to choose k such items in CB. Secondly,

there are
(

n−c

s−k

)
ways to choose the remaining s−k items outside CB. So in total,

(
c

k

)
·
(

n−c

s−k

)
possible sets SA have k items in common with CB. Hence, under

the assumption of a uniform distribution of the data items over the caches of

the nodes, 3 P|SA∩CB |=k =
(

c

k

)(n−c
s−k)
(n

s)
. The expected value of P

|SA∩CB |=k
drop is 4 :

E[P
|SA∩CB |=k
drop ] =






k∑

ŝ=0

P
|SA∩SB |=ŝ
drop · P|SA∩SB |=ŝ if s + k 6 c

k∑

ŝ=(s+k)−c

P
|SA∩SB|=ŝ
drop · P|SA∩SB |=ŝ otherwise

where ŝ is the number of items in SA ∩ SB (see Fig. 4). The case distinction
is because if s + k > c (with k the number of items in SA ∩ CB), then clearly

2 The other case is presented for the sake of completeness.
3 Here we use a generalisation of the usual definition of binomial coefficients to
negative integers. That is, for all m and l ≥ 0,

(
m
l

)
= (−1)l

(−m+l−1
l

)
(cf. [20])

4 The other case is presented for the sake of completeness.
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there are at least (s + k) − c items in SA ∩ SB.

Among the s items in SB, there are ŝ items also in SA, and thus only the s− ŝ

items in SB\SA can be dropped from CB. P
|SA∩SB|=ŝ
drop is the probability that

an item in SB\SA is dropped from CB, given ŝ items in SA ∩ SB:

P
|SA∩SB |=ŝ
drop =





0 if s = ŝ
s−k

s−ŝ
otherwise

P|SA∩SB|=ŝ is the probability of having exactly ŝ items in SA∩SB: P|SA∩SB |=ŝ =
(

s

ŝ

)(c−s

k−ŝ
)

(c
k)

. The intuition behind this expected value of P|SA∩SB |=ŝ is similar to

the one of P|SA∩CB |=k. From the
(

c

k

)
possible sets SA, we compute how many

have ŝ items in common with SB. That is, there are
(

s

ŝ

)
ways to choose ŝ items

in SB, and
(

c−s

k−ŝ

)
ways to choose the remaining k − ŝ items outside SB.

Let us assume s + c ≤ n and s + k ≤ c. Then, substituting in the expression
for E[Pdrop ] in case s + c ≤ n, and noting that in the summand k = s the

factor P
|SA∩SB |=s
drop is equal to zero, we get:

E[Pdrop ] =
s−1∑

k=0

(
c

k

)(n−c

s−k

)

(
n

s

)
k∑

ŝ=0

s − k

s − ŝ

(
s

ŝ

)(c−s

k−ŝ

)

(
c

k

)

=
n − c
(

n

s

)
s−1∑

k=0

(
(n − c) − 1

(s − k) − 1

)
k∑

ŝ=0

(
c−s

k−ŝ

)(
s

ŝ

)

s − ŝ
(1)

The probability of keeping an item d in SB\SA ⊆ CB can be expressed as
P¬drop = 1 − Pdrop .

3.3 Simplification of Pdrop

In order to gain a clearer insight into the emergent behaviour of the gossiping
protocol we make an effort to simplify the formula for the probability Pdrop

of an item in SB\SA to be dropped from CB after a shuffle. Therefore, we re-
examine the relationships between the k duplicates received from a neighbour,
the ŝ items of the overlap SA ∩ SB, and Pdrop . Let’s estimate P

|SA∩CB |=k
drop by

considering each item from SA separately, and calculating the probability that
the item is a duplicate (i.e., is also in CB). The probability of an item from SA

to be a duplicate (also present in CB) is c
n
. In view of the uniform distribution

of items over the network, the items in a node’s cache are a random sample
from the universe of n data items; so all items in SA have the same chance
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to be a duplicate. Thus, the expected number k of items in SA ∩ CB can be
estimated by s· c

n
. The expected number ŝ of items in SA∩SB can be estimated

by k · s
c
, because only the k items in SA∩CB may end up in SA∩CB; s

c
captures

the probability that an item from CB is also selected to be in SB. It follows
that the probability of an item in SB\SA to be dropped from CB after the

shuffle is Pdrop = s−k

s−ŝ
=

s−s· c
n

s−s· c
n
· s
c

= n−c
n−s

. The complementary probability of

keeping an item is P¬drop = 1 − n−c
n−s

= c−s
n−s

. These estimates are valid for
general s ≤ c ≤ n.

Substituting the expressions for Pselect and the simplified Pdrop into the formu-
las for the transition probabilities in Fig. 2, we obtain:

P (01|01) = P (10|10) = c−s
c

P (01|11) = P (10|11) = s
c

c−s
c

n−c
n−s

P (10|01) = P (01|10) = s
c

n−c
n−s

P (11|11) = 1 − 2 s
c

c−s
c

n−c
n−s

P (11|01) = P (11|10) = s
c

c−s
n−s
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Fig. 5. The relative error of the difference of the accurate Pdrop and its approxima-
tion, for c = 250 (left) and c = 500 (right) and different values of n.

In order to verify the accuracy of the proposed simplification for E[Pdrop ], we
compare the simplification and the accurate formula (1) for different values of
n. We plot the difference of the accurate Pdrop and the simplification, for cache
sizes c = 250 and c = 500 (Fig. 5). These figures show that the simplification
gives a close approximation of the accurate formula for Pdrop (note the log
y-scale).

3.4 Correction factor

We now investigate how closely the simplified formula of Pdrop , that is n−c
n−s

(here referred to as S(n, c, s)) approximates formula (1) (here referred to as
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E(n, c, s)). We compared the difference between these two formulas using a
Java package based on common fractions, which provides loss-less calculation
[18]. We observe that the inverse of the difference of the inverse values of
both formulas, i.e. ec,s(n) = (E(n, c, s)−1 − S(n, c, s)−1)

−1
, exhibits a certain

pattern for different values of n, c and s.

For s = 1 and arbitrary values of n and c, E(n, c, 1) = n−c
n

, whereas S(n, c, 1) =
n−c
n−1

. This leads us to investigate the correction factor θ as in E(n, c, s) =
n−c

(n−s)+θ
. For s = 1 clearly the factor θ = 1. Yet, for s > 1 the situation is more

complicated. We therefore calculate the first, the second and other (forward)
differences 5 over n.

For s = 1, the result of the first difference of the function ec,1(n) is 1. However,
for s = 2 the first difference is, e.g. if c = 4: e4,2(7) − e4,2(6) = 3.5, e4,2(8) −
e4,2(7) = 4, e4,2(9) − e4,2(8) = 4.5 and so on. Thus, we observe that the
second difference of ec,2(n) is 1

2
. By calculating higher differences for s > 2,

we conclude that the s-th difference of the function ec,s(n) is always 1
s
.

Moreover, at the point n = 0 the first, . . . , s-th differences of the function
ec,s exhibit a pattern similar to the Pascal triangle [28]. That is, for d ≥ 1 the

d-th difference is (∆d ec,s)(0) = 1

s·(s−1

d )
(assuming

(
a

b

)
= 0, whenever b > a).

Knowing the initial difference at point n = 0, we were able to use the Newton
forward difference equation [1] to derive the following formula for n > 0:
E[Pdrop ] = n−c

(n−s)+ 1

γ

, where

γ =
s−1∑

d=0

(
n

d

)

s ·
(

s−1
d

) =

(
n

s

)

(n − s) + 1
·

s−1∑

d=0

1
(

n−d

(s−1)−d

) (2)

In this equation the sum is finite because due to the observation that the s-th
difference is constant 1

s
, all higher differences are 0.

Thus, the correction factor is θ = 1
γ
. Extensive experiments with Mathematica

and Matlab indicate that n−c

(n−s)+ 1

γ

and formula (1) indeed coincide. We can also

see from Fig. 5 that the correction factor is small.

3.5 Optimal size for the exchange buffer

We study the optimal value for fast convergence of replication and coverage
with respect to an item d. Since d is introduced at only one node in the

5 A forward difference of discrete function f : Z → Z is a function ∆f : Z → Z

with ∆f(n) = f(n + 1) − f(n) (cf. [1]).
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network, one needs to maximise the chance that an item is duplicated. That is,
the probabilities P (11|01) and P (11|10) should be maximised (then P (01|11)
and P (10|11) are maximised as well, intuitively because for each duplicated
item in a shuffle, another item must be dropped).

We give a rigorous argument for this claim in the case of a fully connected
network. Let α be a replication of the distinguished item at a given moment,
and 0 ≤ α ≤ 1. In the long run, α converges to c

n
. Suppose that a shuffle

takes place. The chance that after the shuffle there is one more copy of the
distinguished item in the system is

(P (11|01) + P (11|10)) · α · (1 − α) = 2 · P (11|01) · α · (1 − α)

Here α · (1 − α) expresses the chance that exactly one of the nodes in the
shuffle contains a copy of the item. Likewise, the chance that after the shuffle
a copy of the item has been removed from the system is

(P (01|11) + P (10|11)) · α2 = 2 · P (01|11) · α2 = 2 · n − c

c
· P (11|01) · α2

So after a shuffle, the change in the number of copies of the item in the system
is on average

2 ·P (11|01) ·α · (1−α)− 2 · n − c

c
·P (11|01) ·α2 = 2 ·P (11|01) ·α · (1− n

c
·α)

So as long as α < c
n
, maximising P (11|01) maximises replication of the item.
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Fig. 6. Optimal value of exchange buffer
size, depending on n.

These probabilities both equal s
c

c−s
n−s

;
we compute when the s-derivative
of this formula is zero. This yields
the equation s2−2ns+nc = 0; tak-
ing into the account that s ≤ n,
the only solution of this equation

is s = n −
√

n(n − c). We conclude
that this is the optimal value for s

to obtain fast convergence of repli-
cation (see Fig. 6). This will also be
confirmed by the experiments and
analyses in the following sections.

4 Experimental Evaluation

In order to test the validity of the analytical model of information spread
based on the shuffle protocol presented in the previous section, we follow an
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experimental approach. We compare properties observed while running the
shuffle protocol in a large-scale deployment with simulations of the model
under the same conditions. These experiments show that the analytical model
indeed captures information spread of the shuffle protocol. We note that a
simulation of the analytical model is much more efficient (in computation
time and memory consumption) than a simulation of the implementation of
the shuffle protocol. We discuss this further in Sec. 6.

The experiments simulate the case where a new item d is introduced at one
node in a network, in which all caches are full and uniformly populated by
n = 500 items. We use an event-based simulator that takes as input the
topology of the network to determine which pairs of nodes can gossip. The
experiments are performed on a network of N = 2500 nodes, arranged in a
square grid topology (50×50), where each node can communicate only with
its four immediate neighbours (to the North, South, East and West). This
configuration of nodes is arbitrary, except for the fact that we require a large
number of nodes for the observation of emergent behaviour. Our aim is to
validate the correctness of our analytical model, not to test the endless possi-
bilities of network configurations. The model and the shuffle protocol do not
make any assumptions about the network. The network configuration is pro-
vided by the simulation environment and can easily be changed into something
different, e.g. another network topology. For this reason, we have chosen this
large grid for testing, although other configurations could have been possible.
In the experiments that follow, after each gossiping round, we measure the
total number of occurrences of d in the network (replication), and how many
nodes in total have seen d (coverage).

Simulations with the shuffle protocol Each node in the network has
a cache size of c = 100, and sends s items when gossiping. In each round,
every node randomly selects one of its neighbours and shuffles. In order to
make a fair comparison with the simulations with the model, we let the nodes
gossip for 1000 rounds before initiating the measurements of the properties.
After this start-up period of 1000 rounds, items are replicated and the replicas
fill the caches of all nodes fulfilling the uniform distribution requirement of
the model. At round 1000, item d is inserted into the network at a random
location. From that moment on we track its replication and coverage.

Simulations with the model For the simulations with the model, n, c and
s are only system parameters. Instead of maintaining a cache, each node in the
network only maintains a variable that represents whether it holds item d or
not (state 1 or 0, respectively). Nodes update their state in pairs according to
the transition probabilities introduced before (Fig. 2). This mimics an actual
exchange of items between a pair of nodes according to the shuffle protocol.
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While in the protocol this results in both nodes updating the contents of their
caches, in a simulation using the analytical model updating the state of a node
refers to updating only one variable: whether the node is in possession of the
item d or not. To sum up, we use transition probabilities to update the state
of one variable. Since we do not need a start-up time for the simulations with
the model, at round 0 we set the state of a random node to 1 (while all the
other have state 0) and track the state of the nodes for the remainder of the
simulation.
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Fig. 7. The shuffle protocol (left) and the model (right), for N = 2500, n = 500,
c = 100 and different values of s.

Fig. 7 shows the behaviour of both the shuffle protocol and the analytical
model in terms of replication (upper row of Fig. 7) and coverage (lower row
of Fig. 7) of d, for various values of s. Each curve in the graphs represents
the average and standard deviation calculated over 100 runs. The experiments
with the model calculate Pdrop using the simplified formula n−c

n−s
described in

Sec. 3.3. It can be observed very clearly that the results obtained from the
model (right) resemble closely the ones from executing the protocol (left).

We note that in all cases, the network converges to a situation in which there
are 500 copies of d, meaning that replication is 500

2500
= 0.2; this agrees with

the fact that c
n

= 100
500

= 0.2. Moreover, our experiments show that replication
and coverage display the fastest convergence when s = 50; this agrees with

the fact that n −
√

n(n − c) = 500 −
√

500 · 400 ≈ 50 (cf. Sec. 3.5).
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5 Modelling of Protocol Properties with Differential Equations

In this section, we exploit the analytical model of information dissemination
to perform a mathematical analysis of replication and coverage with regard to
the shuffle protocol. For the particular case of a network with full connectivity,
we can find explicit expressions for the dissemination of a generic item d in
terms of the probabilities presented in Sec. 3. We construct two differential
equations that capture replication and coverage of item d from a round-based
perspective. The advantage of this approach is that we can determine the
long-term behaviour of the system as a function of the parameters. Differen-
tial equations have been previously used, for example, in [27,19,25] to model
probabilistic protocols for large-scale distributed systems.

The characteristics of the replication and coverage are influenced by the topol-
ogy of the network. It is the topology of the network that will dictate the
likelihood of any two nodes to gossip. In order to model the properties of the
protocol, it is crucial that we know the probabilities of a node in a given state
(0 or 1) to interact with another node in a given state. For this reason, we
choose to model the properties for a fully-connected network, where a node can
gossip with any other node in the network. This topology allows us to easily
calculate the probability of a node in state 1 to interact with a node in state 0
or to interact with another node in state 1. Knowing this, we concentrate on
applying the state transition probabilities that we calculated in Section 3. The
aim of this section is to provide an example of how the transition probabilities
can be used to model the properties of dissemination for a specific topology.

5.1 Replication

One node introduces a new item d into the network at time t = 0, by placing
d into its cache. From that moment on, d is replicated as a consequence of
gossiping among nodes.

Let x(t) represent the percentage of nodes in the network that have d in their
cache at time t, where each gossip round takes one time unit. The variation
in x per time unit dx

dt
can be derived based on the probability that an item

d will replicate or disappear after an exchange between two nodes, where at
least one of the nodes has d in its cache:

dx

dt
= [P (11|10) + P (11|01)] · (1 − x) · x − [P (10|11) + P (01|11)] · x · x

The first term represents duplication of d when a node that has d in its cache
initiates the shuffle, and contacts a node that does not have the item. The
second term represents the opposite situation, when a node that does not
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have the item d initiates a shuffle with a node that has d. The third and fourth
term in the equation represent the cases where both gossiping nodes have d in
their cache, and after the exchange only one copy of d remains. Substituting
P (11|10) = P (11|01) = s

c
c−s
n−s

and P (10|11) = P (01|11) = s
c

n−c
n−s

c−s
c

, we obtain

dx

dt
= 2 · s

c
· c − s

n − s
· x · (1 − n

c
· x)

The solution of this equation, taking into account that x(0) = 1
N

with N the
number of nodes in the network, is

x(t) =
eαt

(N − n
c
) + n

c
eαt

(3)

where α denotes 2 s
c

c−s
n−s

. By imposing stationarity, i.e. dx
dt

= 0, we find the sta-
tionary solution c

n
. Hence, this calculation confirms the observation in Sec. 2.3

that the network converges to a situation in which replication of d is c
n
.
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Fig. 8. Percentage of nodes in the network with a replica of item d in their cache,
for N = 2500, c = 100, s = 50, and n = 500, n = 1000 or n = 2000.

We evaluate the accuracy of x(t) as a representation of the fraction of nodes
carrying a replica of d, by running a series of experiments where N = 2500
nodes execute the shuffle protocol, and their caches are monitored for the

21



presence of d. Unlike the experiments in Sec. 4, we assume full connectivity;
that is, for each node, all other nodes are within reach. After 1000 rounds,
where items are disseminated and replicated, a new item d is inserted at a
random node, at time t = 0. We track the number of replicas of d for the
next 1000 rounds. The experiment is repeated 100 times and the results are
averaged. These simulation results (average and standard deviation) for the
protocol, together with x(t), are presented in Fig. 8. This figure shows the
same initial increase in replicas after d has been inserted, and in all cases
the steady state reaches precisely the expected value c

n
predicted from the

stationary solution.

We repeat the calculation from Sec. 3.5, but now against x(t), to determine
which size of the exchange buffer yields the fastest convergence to the steady-
state for both replication and coverage. That is, we search for the s that
maximises the value of x(t). We first compute the derivative of x(t) with
respect to s (z(t, s)), and then derive the value of s that maximises x(t), by

taking z(·, m) = ∂x
∂s
|m = 0: z(t, s) = ∂x

∂s
= 2ekt(cN−n)(cn+s(−2n+s))t

(cN+(−1+ekt)n)
2

(n−s)2
, where k =

2 s
c

c−s
n−s

. Let z(t, s) = 0. For t > 0, cn = s(2n− s). Solving this equation we get

s = n ±
√

n(n − c). Taking into the account that s ≤ n, the only solution is

s = n −
√

n(n − c). This also coincides with the optimal exchange buffer size
found in Sec. 3.5.

5.2 Coverage

We use the term coverage to denote the percentage of nodes in the network
that have seen item d from the moment it was introduced into the network.
Let y(t) represent the coverage of d at time t. The variation in coverage per
time unit, dy

dt
, is determined by the fraction of nodes that have not seen d,

1 − y, that interacts with nodes that have d in their cache, x. Let ∗∈ {0, 1},
then:

dy

dt
=

1

2
· (P (1∗|01) ·P (∗1|∗1) · (1−y) ·x+P (∗1|10) ·P (1∗|1∗) ·x · (1−y)) (4)

The first term represents increased coverage due to nodes discovering d after
interacting with nodes that have d in their cache. This can occur when a node
initiates the exchange (P (1∗|01)), or when the node is contacted (P (∗1|10)).
Each of these scenarios has a 50% chance of occurring. The second part of
these terms represents the case when a node discovers and does not give away
its copy of d within the same round to another node. This is because coverage
is measured only at the end of a gossiping round, meaning that a node that sees
item d for the first time, and drops it in the same round, is considered not to
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have seen item d yet. 6 Since nodes shuffle, on average, twice per round (once
when they initiate the shuffle and again if they are contacted by a neighbour),
this could occur under two scenarios: i) the node acquired d by initiating an
exchange with a node that had d (P (1∗|01)) and next lost its copy of d when
shuffling with a node that contacted it, or ii) the node was first contacted by
a node that sent a copy of d (P (∗1|10)) and next initiated a shuffle and gave
away its copy of d.

The value of the probability P (∗1|∗1) can be calculated from the following
cases: a) the gossip partner of the node does not have d, and: i) the state of
two nodes does not change after the gossip (P (01|01) · (1 − x)), and ii) the
gossip partner obtains a copy of d after the gossip (P (11|01) · (1− x)); and b)
the gossip partner of the node has d, and: i) two nodes have the same state
after the exchange (P (11|11) · x), and ii) the gossip partner loses its copy of d

after the gossip (P (01|11) · x). Hence,

P (∗1|∗1)= (P (01|01) + P (11|01))·(1− x) + (P (11|11) + P (01|11))·x
=P¬select + Pselect ·(P¬drop ·(1 − x) + Pselect ·x + P¬drop ·P¬select)

Due to the symmetry of both gossiping nodes, P (∗1|∗1) = P (1∗|1∗).

Substituting these probabilities into (4), we obtain

dy

dt
=

s

c
·
(
1 − s

c
+

s

c
· c − s

n − s

(
2 − s

c

)
+
(

s

c
− c − s

n − s

)
· x
)
· (1 − y) · x

The solution of this equation, taking into account that y(0) = 1
N

, is

y(t) = 1 − (N − 1) · Nβ−1
((

N − n

c

)
+

n

c
· eαt

)−β

· e−λ

where λ denotes
s
c
·( s

c
− c−s

n−s)
α·n

c

(
1
N
− eαt

(N−n
c
)+ n

c
eαt

)
, and β denotes

n
c
·κ+ s

c
·( s

c
− c−s

n−s)
α·(n

c
)2

,

wherein κ is s
c
·
(
1 − s

c
+ s

c
· c−s

n−s

(
2 − s

c

))
. By imposing stationarity dy

dt
= 0, we

find the stationary solution 1, meaning that eventually all nodes will see d.
In order to evaluate how closely y(t) models coverage, we use the traces from
the simulations executed for Sec. 5.1. At every round, the nodes that carry a
replica of d are identified, and a record of the nodes that have seen d since
it was published is kept. Fig. 9 presents the coverage measured for three sets
of experiments, each set with a different value for n. As n increases, a newly
inserted item requires more time to cover the whole network. This is due to
having more competition from other items to create replicas in the limited

6 The reason for this is that the application has an opportunity to read from the
lower-level cache only once every round.
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Fig. 9. Percentage of nodes in the network that have already seen a replica of item
d, for N = 2500, c = 100, s = 50, and n = 500, n = 1000 or n = 2000.

space available, as was previously shown in Fig. 8. However, as predicted by
the stationary solution, in all cases the coverage eventually reaches 1. As shown
in Fig. 9, the solution y(t) models the behaviour observed in simulations in
case of n = 2000 and n = 1000, falling nicely within the standard deviation
of the simulation results. However, for smaller n (i.e. n = 500), the solution
y(t) becomes less accurate, converging slower than the simulation results. In
Appendix A we describe more accurate version of the coverage model for
arbitrary number of contacts between nodes, which is rather complicated for
understanding of the emergent behaviour of system.

6 Time Complexity of Experiments

In this section we discuss some topics/issues that arose during the development
and testing of the model for the shuffle protocol.

During the experimental phase of this work, we observed a remarkable dispar-
ity between the time required to run an experiment with the shuffle protocol
or with the model. In both cases, the experiment was the same in terms of
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properties being measured and parameters used (cache size c, exchange buffer
size s, number of different items n and network size N).

The difference in execution times can be traced back to the two different
algorithms executed at each simulated node. From a node’s point of view, the
shuffle protocol requires the selection of items to send to the gossiping partner
and the selection of items to keep for the next round. The first operation can
be done in linear time, O(c). The second operation requires checking if the
incoming items are already in the cache and removing entries from the cache
if space is needed. These steps can be done in O(c · log c) time. With the
second operation dominating the execution time, we can estimate the time
complexity for one round of the shuffle to be O(c · log c).

Now, let us look at the time complexity of the model. Unlike the protocol
implementation, the model requires very little state, namely the value of the
parameters and a variable to indicate the presence or absence of item d. At each
round, each simulated node and its gossiping partner only have to determine
their current state (a1, b1) and transition to a new state (a2, b2) according to the
appropriate transition probabilities. The transition probabilities themselves do
not change during the simulation (since they depend solely on the parameters
c, s and n), so they are precomputed at the initialisation phase. As a result,
the execution of the model for each node has a constant time complexity, O(1).

The defining factor in the execution time of the simulations with the shuffle
protocol is the size of the cache. With a cache size of 100 for all of our ex-
periments, the execution times for our simulations with the shuffle protocol
and the model differed by approximately two orders of magnitude. Considering
that large networks are needed to clearly observe emergent behaviour and that
this behaviour evolves over many rounds, the value of having a model becomes
evident. Being simply parameters in the model, the cache size and exchange
buffer size have no effect on the memory requirements and execution time of
the simulation, thus freeing computational resources to experiment with larger
networks and different topologies.

7 Conclusions

In this paper, we have demonstrated that it is possible to model a gossip pro-
tocol through a rigorous probabilistic analysis of the state transitions of a pair
of nodes engaged in the gossip. We have shown, through an extensive simula-
tion study, that the dissemination of a data item can be faithfully reproduced
by the model. Having an accurate model of node interactions, we have been
able to carry out the following:
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• After finding precise expressions for the probabilities involved in the model,
we provide a simplified version of the transition probabilities. These sim-
plified, yet accurate, expressions can be easily computed, allowing us to
simulate the dissemination of an item without the complexity of executing
the actual shuffle protocol. These simulations use very little state (only some
parameters and variables, as opposed to maintaining a cache) and can be
executed in a fraction of the time required to run the protocol.

• The model reveals relationships between the parameters of the system.
Armed with this knowledge, we successfully optimised one of the param-
eters (the size of the exchange buffer) to obtain the fastest convergence of
the observed properties.

• Under the assumption of full connectivity, we are able to use the transi-
tion probabilities to model the properties of the dissemination of a generic
item. Each property is ultimately expressed as a formula which is shown
to display the same behaviour as the average behaviour of the protocol,
verifying the validity of the model. We are working to extend our results
with equational models, assuming various network topologies. We plan to
publish these results in a future work.

While gossip protocols are easy to understand, even for a simple push/pull pro-
tocol, the interactions between nodes are unexpectedly complex. Understand-
ing these interactions provides insight into the mechanics behind the emergent
behaviour observed in gossip protocols. We believe that understanding the me-
chanics of gossiping is the key to optimising (and even shaping) the emergent
properties that make gossiping appealing as communication paradigm for dis-
tributed systems.

Future work

In this paper, we consider a simple push-pull gossip protocol that was orig-
inally proposed for wireless environments. After successfully analysing this
protocol at an abstract level (pairwise node interactions) independent of net-
work topology or the characteristics of the environment itself, we are interested
in the following possibilities for future study:

• We would like to investigate how our transition probabilities can be applied
to model the properties of the protocol for other network topologies. As a
first step, we have analysed the modelling of properties for a fully-connected
network. We are interested in exploring the effect of more complex topologies
in the modelling of the properties.

• In order to have a more realistic representation of a wireless setting, we
would like to incorporate the presence of lossy links in our network. The
characteristics of the lossy links would model an underlying MAC layer. In
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other words, we would like to relax the assumption of atomic transactions
for the shuffle protocol. This would result in new possible transitions in the
state transition diagram (Fig. 2) due to loss of messages.
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A Coverage model (revisited)

The coverage model in Sec. 5.2 has an implicit assumption that a node shuffles
two times per round (once when it initiates the gossip and once when it is
contacted by another node). Although this is true on average, what actually
happens is that a node initiates a shuffle once per round (with some random
neighbour), but can be contacted an arbitrary number of times (≤ N − 1).
In Fig. A.1), it is depicted for k ≥ 1 which percentage of nodes, on average,
shuffle k times in a given round. The number of times a node shuffles in a
round has an impact on coverage. In this subsection, we revisit our coverage
model to take into account that there is a probability distribution for the
number of times a node is contacted.
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Fig. A.1. Distribution of nodes according to the number of shuffles they execute per
round, for a fully connected network of N = 2500 nodes.

We compute the probability that a node is contacted i times by other nodes
in the network:

C(i) =

(
N − 1

i

)(
1

N − 1

)i (N − 2

N − 1

)(N−1)−i

, i ≤ N − 1

Namely, there are
(

N−1
i

)
ways to choose i nodes in a network of N − 1 nodes

that contact the given node. Those i nodes contact the given node with prob-
ability 1

N−1
each, and the remaining (N−1)−i nodes do not contact the given

node with probability N−2
N−1

.

A node may discover d during any of its shuffles. However, coverage is only
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measured at the end of a gossip round, meaning that a node that sees item
d for the first time and drops it in the same round is considered not to have
seen item d at all. 7 Consequently, coverage increases only under the following
conditions: i) a node that has not seen item d obtains a copy of item d during
one of the contacts, and ii) by the end of the round (after i exchanges), it still
holds on to a copy of d.

In order to model coverage, we need to express the probabilities Pget that a
node that does not have a copy of d gets this copy in a shuffle, and Plose that
a node that has a copy of d loses this copy in a shuffle.

Pget = P (1∗|0∗) = x·P (1∗|01) = x·(P (10|01) + P (11|01))

P¬get = 1 − Pget

P¬lose = P (1∗|1∗) = x·P (1∗|11) + (1 − x)·P (1∗|10)

= x·(P (10|11) + P (11|11)) + (1 − x)·(P (10|10) + P (11|10))

Plose = 1 − P¬lose

The increase in coverage from one round to the next can be modelled by
identifying all the possible cases where a node that has previously not seen
item d discovers it by the end of the round. Let Φi express the probability
that a node that does not hold d, does hold d after performing i shuffles. We
have

Φi =
i−1∑

m=0

(1 − Φm) · Pget · (P¬lose)
(i−m)−1, i ≥ 0

where Φ0 = 0. Namely, the expression (1−Φm) ·Pget · (P¬lose)
(i−m)−1 captures

the case where a node does not have the item at the end of m < i shuffles (with
probability 1−Φm), then discovers it in the mth shuffle (with probability Pget),
and does not lose it in the remaining shuffles (with probability (P¬lose)

(i−m)−1).

In a given round, only the fraction 1 − y of nodes in the network that did
not yet see item d can contribute to an increase in coverage. Such a node is
contacted i ≥ 0 times in the round with probability C(i), and then performs
i + 1 shuffles in total. With probability Φi+1 the node will hold item d at the
end of the round. Thus, coverage can be modelled by the equation

dy

dt
= (1 − y) ·

k∑

i=0

C(i) · Φi+1

where k is the maximum number of times that a node is contacted in a round,
i.e., k = N − 1.

7 The reason for this is that in general the application has an opportunity to read
from the lower-level cache only once every round.
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As before, y(0) = 1
N

, as initially only one of the N nodes holds d.

For a network of 2500 nodes with full connectivity, the probability of a node
being contacted more than four times in one round is negligible (less than 1%).
We therefore use the aforementioned coverage model with a limit of k = 4 to
estimate the coverage and compare with our simulation traces. The results
can be seen in Fig. A.2.
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Fig. A.2. Percentage of nodes in the network that have already seen a replica of
item d, for N = 2500, c = 100, s = 50, and n = 500, n = 1000 or n = 2000.

Unlike the results from Fig. 9, the current model not only falls into the stan-
dard deviation of the shuffle simulation results, but also closely reproduces the
curve of average values in all three cases (n = 500, n = 1000 and n = 2000).
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