
Service-Oriented Data Denormalization
for Scalable Web Applications

Zhou Wei
∗

Tsinghua University
Beijing, China

zhouw@few.vu.nl

Jiang Dejun
∗

Tsinghua University
Beijing, China

jiangdj@few.vu.nl

Guillaume Pierre
Vrije Universiteit

Amsterdam, The Netherlands
gpierre@cs.vu.nl

Chi-Hung Chi
Tsinghua University

Beijing, China

chichihung@mail.tsinghua.edu.cn

Maarten van Steen
Vrije Universiteit

Amsterdam, The Netherlands
steen@cs.vu.nl

ABSTRACT
Many techniques have been proposed to scale web appli-
cations. However, the data interdependencies between the
database queries and transactions issued by the applica-
tions limit their efficiency. We claim that major scalability
improvements can be gained by restructuring the web ap-
plication data into multiple independent data services with
exclusive access to their private data store. While this re-
structuring does not provide performance gains by itself,
the implied simplification of each database workload allows
a much more efficient use of classical techniques. We il-
lustrate the data denormalization process on three bench-
mark applications: TPC-W, RUBiS and RUBBoS. We de-
ploy the resulting service-oriented implementation of TPC-
W across an 85-node cluster and show that restructuring its
data can provide at least an order of magnitude improve-
ment in the maximum sustainable throughput compared to
master-slave database replication, while preserving strong
consistency and transactional properties.

Categories and Subject Descriptors
C.2.4 [Computer-Communication Networks]: Distri-
buted Systems; C.4 [Performance of systems]: Design
studies; H.3.4 [Information Storage and Retrieval]: Sys-
tems and Software.

General Terms
Performance.

Keywords
Scalability, Web applications, data denormalization.

1. INTRODUCTION
The world-wide web has taken an important place in ev-

eryday’s life. Many businesses rely on it to provide their

∗ Zhou Wei and Jiang Dejun also work at Vrije Universiteit
Amsterdam.

Copyright is held by the author/owner(s).
WWW2008, April 21–25, 2008, Beijing, China.
.

customers with immediate access to information. However,
to retain a large number of customers, it is important to
guarantee a reasonable access performance regardless of the
request load that is addressed to the system. Web appli-
cation hosting systems therefore need the ability to scale
their capacity according to business needs. Many research
efforts have been made to provide scalable infrastructures
for static content. However, scaling web applications that
dynamically generate content remains a challenge.

Web applications are commonly used to generate dynamic
content that is personalized to individual clients. Each user’s
request triggers the execution of specific business logic, which
issues any number of queries to an underlying database be-
fore returning a result to the client. Queries can simply
extract information from the database, but UDI queries will
also Update, Delete or Insert information to the database.
Queries may also be grouped into database transactions.

Many techniques have been proposed to improve the scala-
bility of Web applications. Scaling application-specific com-
putation is relatively easy as requests can be distributed
across any number of independent application servers run-
ning identical code. Similarly, one can reduce the network
bottleneck between the application and database servers [33].
The main challenge, however, is to scale access to appli-
cation data. Besides classical techniques such as master-
slave database replication, new techniques exploit knowl-
edge of the application data access behavior. Database
query caching relies on high temporal locality, and uses prior
knowledge of data overlap between different query templates
to efficiently implement invalidations [2, 4, 21, 30]. A query
template is a parametrized SQL query whose parameter val-
ues are passed to the system at runtime. Partial replication
techniques use similar information to reduce the data repli-
cation degree and limit the cost of database updates [14,
29]. However, we observe that these techniques work best
under very simple workloads composed only of a few dif-
ferent query templates. When the number of templates
grows, an increasing number of constraints reduces their ef-
ficiency: database caching mechanisms need to invalidate
more cached queries upon each update to maintain consis-
tency, and partial replication is increasingly limited in the
possible choices of functionally correct data placements.

In this paper, we claim that scalable Web applications
should not be built along the traditional monolithic three-
tier architecture. Instead, restructuring the application data
into independent data services, each of which having exclu-
sive access to its private data store, allows one to reduce
the workload complexity of each of the services. While this
restructuring by itself does not lead to any performance im-
provements, it does allow for a more effective application
of the aforementioned optimization techniques, thus lead-
ing to significantly better scalability. Importantly, this does
not imply any loss in terms of transactional or consistency
properties.

Restructuring a monolithic Web application composed of
Web pages that address queries to a single database into
a group of independent Web services querying each other
requires to rethink the data structure for improved perfor-
mance – a process sometimes named denormalization. Fu-
ture Web applications should preferably be designed from
the start along a service-oriented architecture. However, for
existing monolithic applications we show how one can de-
normalize the data into data services.

To demonstrate the effectiveness of our proposal, we study
three web application benchmarks: TPC-W [32], RUBiS [3]
and RUBBoS [26]. We show how these applications can be
restructured into multiple independent data services, each
with a very simple data access pattern. We then focus on
the UDI-intensive data services from TPC-W and RUBiS to
show how one can host them in a scalable fashion. For RUB-
Bos, this is almost trivial. Finally, we study the scalability
of TPC-W, the most challenging of the three benchmarks,
and demonstrate that the maximum sustainable throughput
grows linearly with the quantity of hosting resources used.
We were thus able to scale TPC-W by an order of magnitude
more than traditional systems.

This paper is structured as follows. Section 2 presents
related work. Then, Section 3 details our system model
and the issues that we need to face. Section 4 presents the
process of data denormalization, while Section 5 shows how
individual data services can be scaled. Section 6 presents
performance evaluations. Finally, Section 7 concludes.

2. RELATED WORK
In the past years, many techniques have been proposed

to improve the scalability of web applications. The simplest
one is edge-server computing where requests are distributed
among several edge servers running the same code [9, 24].
Although this technique is very effective at scaling the com-
putation part of the applications, the main challenge is to
scale the access to the application data.

Replication is a common technique to improve the through-
put of a RDBMS. Many RDBMS replication solutions aim
at replicating data across multiple servers within a clus-
ter [5, 18, 23, 25]. Database replication allows one to dis-
tribute read queries among the replicas. However, in these
solutions, all UDI queries must first be executed at a mas-
ter database, then propagated and re-executed at all other
“slave” databases using 2-phase commit or snapshot isola-
tion mechanisms. A few commercial database systems such
as Oracle allow one to optimize the re-execution of UDI
queries at the slaves by transferring a log of the execution
at the master. However, these techniques do not improve the
maximum throughput as they require a single master server

to execute all UDI queries. The throughput of the master
server then determines the total system’s throughput.

As extensively discussed in [31], a number of techniques
have been developed specifically to scale Web applications.
Most of these techniques exploit the fact that Web applica-
tions issue a fixed number of query templates to the database.
Several systems propose to cache the result of database
queries at the edge servers. Static knowledge of conflicts
among different query templates allows one to invalidate
caches efficiently when a database update occurs. However,
such systems work best under workloads with high query
locality, few UDI queries, and few dependencies between
query templates. Furthermore, the efficiency of caches does
not grow linearly with the quantities of resources assigned
to it, so caches alone cannot provide arbitrary scalability.

Another approach based on query templates relies on par-
tial database replication, where not all tables get replicated
to all database servers [14]. This allows one to reduce the
number of UDI queries that must be issued to each database
server. However, although this technique allows one to im-
prove the system throughput, its efficiency is constrained by
the templates that query multiple tables simultaneously (be-
cause of join queries or database transactions). In contrast,
our proposal also relies to a certain extent on partial data
replication, but at a much finer granularity which allows one
to reduce the data placement constraints.

In [11], the authors propose an edge computing infras-
tructure where the application programmers can choose the
best suited data replication and distribution strategies for
the different parts of application data. By carefully reduc-
ing the consistency requirements and selecting the replica-
tion strategies, this approach can yield considerable gains
in performance and availability. However, it requires that
the application programmers have significant expertise in
domains such as fault-tolerance and weak data consistency.
In contrast, we strive to present a systematic method to de-
normalize and restructure data, with no implied loss in con-
sistency or transactional properties. Note that, although we
only focus on performance issues in this paper, improving
availability can be realized by applying classical techniques
to each individual service.

Several recent academic and industrial research efforts
have focused on the design of specialized data structures for
scalable and highly available services [6, 10, 13]. These sys-
tems usually provide a simple key-based put/get interface
and focus on scalability and availability properties rather
than rich functionality or transactional properties. These
design choices mean that these systems implicitly or explic-
itly assume that an application has been decomposed into
separate entities with very simple data access patterns. In
contrast, this paper demonstrates how one can design a Web
application along such a service-oriented architecture with
simplified workload.

Data fragmentation techniques have been commonly used
in the design of distributed relational database systems [15,
19, 20, 22]. In these works, tables are partitioned either ver-
tically or horizontally into smaller fragments. Partitioning
schemes are determined according to a workload analysis in
order to optimize access time. However, these techniques do
not fundamentally change the structure of the data, which
limits their efficiency. Furthermore, changes in the work-
load require to constantly re-evaluate the data fragmenta-
tion scheme [17]. We consider that dynamic environments

Business
logic

DB3a DB3bDB1 DB1

Data access
code

Data access
code

Data access
code

SOAPSOAPSOAP

DB2

Data service 1 Data service 2 Data service 3

Database partitioningDatabase replication

Figure 1: System model

such as Web applications would make such an approach im-
practical. In contrast, we propose a one-time modification
in the application data structure. Further workload fluctu-
ations can be handled by scaling each service independently
according to its own load.

Even though data denormalization is largely applied to
improve the performance of individual databases, few re-
search efforts have been made to systematically study them [27,
28]. Data denormalization often creates data redundancy by
adding extra fields to existing tables so that expensive join
queries can be rewritten into simpler queries. This approach
implicitly assumes the existence of a single database, whose
performance must be optimized. In contrast, we apply simi-
lar denormalization techniques in order to scale the applica-
tion throughput in a multi-server system. Denormalization
in our case allows one to distribute UDI queries among dif-
ferent data services, and therefore to reduce the negative
effects of UDIs on the performance of replicated databases.

3. SYSTEM MODEL

3.1 Goal
The idea behind our work is that the data access pattern

of traditional monolithic Web applications is often too com-
plex to be efficiently handled by a single technique. Indeed,
proposed techniques work best under specific simple access
patterns. Data replication performs best with workloads
containing few or no UDI; query caching requires high tem-
poral locality and not too many UDIs; partial replication
or even data partitioning demand that queries do not span
multiple partitions.

We claim that major gains in scalability can be obtained
by restructuring Web application data into a collection of
independent data services, where each service has exclusive
access to its private data store. While such restructuring
does not provide any performance improvement by itself, it
considerably simplifies the data access pattern generated by
each service. This allows one to apply appropriate scaling
techniques to each service.

Figure 1 shows the system model of a Web application af-
ter restructuring. Instead of being hosted in a single database,
the application data are split into three separate databases
DB1, DB2 and DB3. Each database is encapsulated into
a data service which exports a service interface to the ap-
plication business logic. Each data service and its database
can then be hosted independently using the technique that
suits it best according to its own data access pattern. Here,

DB1 is replicated across two database servers, DB2 is hosted
by only one server, while DB3 has been further partitioned
into DB3a and DB3b. Note that splitting the application
data into independent services also improves separation of
concerns: details about the internal hosting architecture of
a data service are irrelevant to the rest of the application.

3.2 Data denormalization constraints
Denormalizing an application’s data into independent data

services requires deep changes to the structure of the data.
For example, a table containing fields 〈key, attr1, attr2〉 and
queried by templates “SELECT key FROM Table where

attr1=?” and “SELECT key FROM Table where attr2=?”
may be split into two tables 〈key, attr1〉 and 〈key, attr2〉,
which may belong to two different data services.

However, not all tables can be split arbitrarily. In prac-
tice, data accessed by different queries often overlap, which
constrains the denormalization. We identify two types of
constraints: transactions and query data overlap.

Although database transactions are known as an adver-
sary to performance, they sometimes cannot be avoided. An
example is a checkout operation in an e-commerce applica-
tion where a product order and the corresponding payment
should be executed atomically. ACID requirements provide
a strong motivation for maintaining all data accessed by one
transaction inside a single database, and therefore inside a
single data service. Splitting such data into multiple services
would impose executing distributed transactions across mul-
tiple services, for example, using protocols such as 2-phase
commit. We expect that this would negate the performance
gains of the data decomposition.

Another source of constraints is created by ordinary queries
executed outside transactions. Similar to constraints cre-
ated by transactions, it seems logical to cluster the data
accessed by each query. However, in most cases the over-
lap of different queries would lead to creating a single data
service. Instead, we can apply two other transformations.
First, certain complex database queries can be rewritten into
multiple, simpler queries. Doing this reduces the data inter-
dependency and allows better data restructuring. Second,
data dependencies induced by overlapping queries can also
be reduced by replicating certain data to multiple services.
However, this implies a trade-off between the gains of split-
ting the data into more services and the costs of replicating
update queries to these data over multiple services.

3.3 Scaling individual data services
In all our experiments, we noticed that the services result-

ing from data denormalization maintain extremely simple
data structures and are queried by very few query templates.
Such a simple workload considerably simplifies the task of
hosting services in a scalable fashion. For example, some
data services receive very few or even no UDI queries at all.
Such services can therefore benefit from massive caching or
replication. On the other hand, some other services con-
centrate on large number of UDI queries, often grouped to-
gether inside transactions. Such services are clearly harder
to scale. However, they at least benefit from the fact that
they receive less queries than the database of a monolithic
application would. Additionally, we show in Section 5.1 that
such services can often be partitioned so that UDI queries
are distributed across multiple database servers.

4. DATA DENORMALIZATION
Service-oriented data denormalization exploits the fact

that UDI queries and transactions often access only a part
of the columns of a table. Decomposing such tables into
multiple smaller ones helps distributing UDI queries and
transactions to more data services, and thereby simplifies
their workload. As discussed in Section 3, two main con-
straints must be taken into account when denormalizing an
application’s data. First, one should split the data into the
largest possible number of services, such that no transaction
or UDI query in the workload spans multiple services. Sec-
ond, one must make sure that read queries can continue to
operate over the then partitioned data.

4.1 Denormalization and transactions
As discussed in previous sections, we need to cluster the

data into services such that no transaction overlaps multiple
data services. To this end, we first mark which data columns
are accessed by each transaction. Then, simple clustering
techniques can be applied to decompose the data into the
largest possible number of independent data services.

We distinguish three types of “transactions” that must
be taken into account here. First, real database transac-
tions require ACID properties. This means that all the data
they access must be accessed atomically and must be placed
into the same service. One exception to this rule is formed
by data columns that are never updated, neither by the
transaction in question nor by any other query in the work-
load. An example is the table that matches zipcodes to local
names. Such read-only data does not need to be placed in
the same data service, and can be abstracted as a separate
data service.

The second type of transaction is a so-called “atomic set,”
where only the Atomicity property of a normal transaction
is necessary. Atomic sets appear, for example, in TPC-W,
where a query that reads the content of a shopping cart
and the one that adds another element must be executed
atomically [34]. For such atomic sets, only the columns that
are updated must be local to the same data service to be
able to provide atomicity. Columns that are only read by
the atomic set can reside outside the service, as they are not
concerned by the atomicity property1.

Finally, UDI queries that are not part of a transaction
must be executed atomically, and therefore must be consid-
ered as an atomic set composed of a single query.

Once one has marked each transaction, UDI query and
atomic set with the data columns that should be kept in
a single service, simple clustering techniques can provide
the first step of decomposition of the database columns into
services. However, this step is not functional, as it accom-
modates only the needs of transactions and UDI queries. To
become functional, one must further update this data model
to take read queries into consideration.

4.2 Denormalization and read queries
Clearly, one can consider read queries similarly to UDI

queries and transactions, and cluster data services further
such that no read query overlaps multiple services. However,
applying this method would increase the constraints to the

1In the case of actual database transactions, these data
columns must reside inside the data service to be able to
provide the Isolation part of ACID properties.

Data service 1

c1 c2 c3

Data service 2

c4 c5 c6

Data service 1

c1 c2 c3

Data service 2

c4 c5 c6

Read Query

Read Query1 Read Query2

Data service 1

c1 c2 c3

Data service 2

c4 c5 c6

Read Query1 Read Query2

c5

Data service 1+2

c1 c2 c3

Read Query

c4 c5 c6

Query Rewrite

Replication with Query Rewrite

Merge Data Services

Data service 1

c1 c2 c3

Data service 2

c4 c5 c6

Read Query

c5

Replication without Query Rewrite

c6

Figure 2: Different denormalization techniques for
read queries

data decomposition and lead to coarse-grain data services,
possibly with a single data service for the whole application.

Instead, as shown in Figure 2, two different operations
can be applied. First, certain read queries can be rewritten
into a series of multiple sub-queries, where each sub-query
can execute in one data service. For example, in TPC-
W, the CUSTOMER and ORDER tables are located in different
data services, whereas the following query spans both ta-
bles with a join operation: “SELECT o id FROM customer,

orders WHERE customer.c id = orders.o c id AND

c uname = ?”. However, this query can be easily rewritten
into two sub-queries that access only one table: i) “SELECT
c id FROM customer WHERE c uname = ?”; and ii) “SELECT
o id FROM orders WHERE o c id=?”. The returned result
of the first query is used as input for the second one and the
final result is returned by the second query.

Another transformation often applied in traditional data-
base denormalization techniques consists of replicating data
from certain database tables to other tables. This allows one
to transform join queries into simpler queries. Note that tra-
ditional denormalization applies this technique to optimize
the efficiency of query execution within a single database
whereas we apply this technique to be able to split the data
into independent data services. For example, the follow-
ing query accesses two tables in two different data services:
“SELECT item.i id,item.i title FROM item,order line

WHERE item.i id=order line.ol i id AND item.subject=?

LIMIT 50”. Replicating column i subject from table ITEM

to the other data service allows one to transform this query
and target a single data service. The only constraint is that
any update to the i subject column must be applied at
both data services, preferably within a (distributed) trans-
action. This scheme is therefore applicable only in cases
where the data to be replicated are rarely updated.

To conclude, complex query rewriting should be the pre-
ferred option if the semantics of the query allows it. Other-
wise, column replication may be applied if the replicated
data are never or seldom updated. In last resort, when
neither query rewriting nor column replication is possible,
merging the concerned data services is always correct, yet
at the cost of coarser-grain data services.

4.3 Case studies
To illustrate the effectiveness of our data denormalization

process, we applied it to three standard Web applications:
TPC-W, RUBiS and RUBBoS.

4.3.1 TPC-W
TPC-W is an industry standard e-commerce benchmark

that models an online bookstore similar to Amazon.com [32].
Its database contains 10 tables that are queried by 6 trans-
actions, 2 atomic sets, 6 UDI queries that are not part of a
transaction, and 27 read-only queries.

First, the transactions and atomic sets of the TPC-W
workload impose the creation of four sets of transactions
whose targeted data do not overlap. The first set con-
tains transaction Purchase, and the two atomic sets Docart
and Getcart; the second set contains the Adminconfirm

transaction, the third set contains only the Updaterelated

transaction. Finally, the last set contains Addnewcustomer,
Refreshsession and Enteraddress. This means for ex-
ample that the original ITEM table from TPC-W must be
split into five tables: ITEM STOCK contains the primary key
i id and the column i stock; table ITEM RELATED contains
i id and i related1-5; table ITEM DYNAMIC contains i id,
i cost, i thumbnail, i image and i pub date; the last table
contains all the read-only columns of table ITEM.

The result of the first denormalization step is composed of
five data services: a Financial data service contains tables
ORDERS, ORDER ENTRY, CC XACTS, SHOPPING CART, SHOPPING-
CART ENTRY and ITEM STOCK; data service Item related takes
care of items that are related to each other, with table
ITEM RELATED; data service Item dynamic takes care of the
fields of table ITEM that are likely to be updated by means
of table ITEM DYNAMIC; finally, data service “Customer” con-
tains customer-related information with tables CUSTOMER,
ADDRESS and COUNTRY. The remaining tables from TPC-W
are effectively read-only and are clustered into a single data
service. This read-only data service can remain untouched,
but for the sake of the explanation we split it further during
the second denormalization step.

The second step of denormalization takes the remaining
read queries into account. We observe that most read queries
can either be executed into a single data service, or be
rewritten. One read query cannot be decomposed: it fetches
the list of the best-selling 50 books that belong to a speci-
fied subject. However, the list of book subjects i subject

is read-only in TPC-W, so we replicate it to the Financial
data service for this query2; i subject is also replicated to
the Item dynamic data service for a query that obtains the
list of latest 50 books of a specified subject.

The remaining read-only data columns can be further de-
composed according to the query workload. For example,
the “Search” web page only accesses data from columns
i title, i subject and table AUTHOR. We can thus encap-
sulate them together as the Item basic service. We similarly
created three more read-only data services.

The final result is shown in Table 1. An important remark
is that, although denormalization takes only data access pat-
terns into account, each resulting data service has clear se-
mantics and can be easily named. This result is in line with

2Note that we cannot simply move this column into the
Financial service, as it is also accessed in combination with
other read-only tables.

Data Service Tables Transactions
User USERS[U] Storecomment(U,C)

COMMENTS[C] Registeruser(U)
Auction ITEMS[I] Storebuynow(I,N)

BUY NOW[N] Registeritem(I)
BIDS[B] Storebid(I,B)

Categories CATEGORIES -
Regions REGIONS -

Table 2: Data services of RUBiS

observations from [12], where examples of real-world data
services are discussed.

4.3.2 RUBBoS
RUBBoS is a bulletin-board benchmark modeled after

slashdot.org [26]. It consists of 8 tables requested by 9
UDI queries and 30 read-only queries. RUBBoS does not
contain any transaction. Six tables incur UDI workload,
while the other two are read-only. Furthermore, all UDI
queries access only one table. It is therefore easy at the end
of the first denormalization step to encapsulate each table
incurring UDI queries into a separate data service.

All read queries can be executed in only one table except
two queries which span two tables: one can be rewritten
into two simpler queries; the other one requires to replicate
selected items from OLD STORIES into the USERS table. The
OLD STORIES table, however, is read-only so no extra cost is
incurred from such replication. Finally, the two read-only
tables are encapsulated as separate data services.

RUBBoS can therefore be considered as a very easy case
for data denormalization.

4.3.3 RUBiS
RUBiS is an auction site benchmark modeled after eBay.

com [3]. It contains 7 tables requested by 5 update transac-
tions. Except for the read-only tables REGIONS and CATE-

GORIES, the other five tables are all updated by INSERT
queries, which means that they cannot be easily split. This
means that the granularity at which we can operate is the
table. The transactions impose the creation of two data ser-
vices: the “Users” data service contains tables USERS and
COMMENTS, while the “Auction” data service contains tables
BUY NOW, BIDS and ITEMS. The final result of data denormal-
ization is shown in Table 2.

RUBiS is a difficult scenario for denormalization because
none of its tables can be split following the rules described
in Section 4.1. We note that in such worst-case scenario, de-
normalization is actually equivalent to the way GlobeTP [14]
would have hosted the application. We will show however
in the next section that scaling the resulting data services is
relatively easy.

5. SCALING INDIVIDUAL DATA SERVICES
In all cases we examined, the workload of each individ-

ual data service can be easily characterized. Some services
incur either read-only or read-dominant workload. These
services can be scaled up by classical database replication
or caching techniques [31]. Other services incur many more
UDI queries, and deserve more attention as standard repli-
cation techniques are unlikely to provide major performance
gains. Furthermore, update-intensive services also often in-

Data service Data Tables(included columns) Requests
Financial ORDERS ORDER ENTRY CC XACTS

I STOCK(i stock) SHOPPING CART SHOP-
PING CART ENTRY

getLastestOrderInfo, createEmptyCart, ad-
dItem, refreshCart, resetCartTime, getCartInfo,
getBesterIDs, computeRelatedItems, purchase

Customer CUSTOMER ADDRESS COUNTRY getAddress, setAddress, getCustomerID, getCus-
tomerName, getPassword, getCustomerInfo, lo-
gin, addNewCustomer, refreshSession

Item dynamic ITEM DYNAMIC(i cost i pub date i subject
i image i thumbnail)

getItemDynamicInfo, getLatestItems, setItemDy-
namicInfo

Item basic ITEM BASIC(i title i subject) Author getItemBasicInfo, searchByAuthor, searchByTi-
tle, searchBySubject

Item related ITEM RELATED(i related1-5) getRelatedItems, setItemRelated
Item publisher ITEM PUBLISHER(i publisher) getPublishers

Item detail ITEM DETAIL(i srp i backing) getItemDetails
Item other ITEM OTHER(i isbn i page i dimensions i desc

i avail)
getItemOtherInfo

Table 1: Data services of the denormalized TPC-W

Insert into ORDER with o id=id;1

Insert into CC XACTS with cx o id=id;2

foreach item i within the order do3

Insert into ORDER ENTRY with ol o id=id,4

ol i id=i;
Update I STOCK set i stock=i stock-qty(i)5

where i id=i;
end6

Update SHOPPING CART where sc id=id;7

Delete from SHOPPING CART ENTRY where8

scl sc id=id;

Algorithm 1: The purchase transaction

cur transactions, which makes the scaling process more dif-
ficult. Instead, partial replication or data partitioning tech-
niques should be used so that update queries can be dis-
tributed among multiple servers. We discuss two represen-
tative examples from TPC-W and RUBiS and show how
they can be scaled up using relatively simple techniques.

5.1 Scaling the financial service of TPC-W
The denormalized TPC-W contains one update-intensive

service: the Financial service. This service incurs a database
update each time a client updates its shopping cart or does
a purchase. However, all tables from this service, except
one, are indexed by a shopping cart ID and all queries span
exactly one shopping cart. This suggests that, instead of
replicating the data, one can partition them according to
their shopping cart ID.

The Financial data service receives two types of updates:
updates on a shopping cart, and purchase transactions. The
first one accesses tables SHOPPING CART and SHOPPING CART-
ENTRY. Table SHOPPING CART contains the description of a
whole shopping cart, while SHOPPING CART ENTRY contains
the details of one entry of the shopping cart. If we are to
partition these data across multiple servers, then one should
keep a shopping cart and all its entries at the same server.

The second kind of update received by the Financial ser-
vice is the Purchase transaction. We present this transac-
tion in Algorithm 1. Similar to the Updatecart query, the
Purchase transaction requires that the order made from a
given shopping cart is created at the same server that al-

ready hosts the shopping cart and its entries. This allows
one to run the transaction within a single server of the Fi-
nancial service rather than facing the cost of a distributed
transaction across replicated servers.

One exception to this easy data partitioning scheme is the
ITEM STOCK table, in which any element can potentially be
referred to by any shopping cart entry. One simple solution
would be to replicate the ITEM STOCK table across all servers
that host the Financial service. However, this would require
to run the Purchase transaction across all these servers. In-
stead, we create an ITEM STOCK table in each server of the Fi-
nancial service in which all item details are identical except
the available stock which is divided by the number of servers.
This means that each server is allocated a part of the stock
that it can sell without synchronizing with other servers.
Only when the stock available at one server is empty, does
it need to execute a distributed transaction to re-distribute
the available stock.

The Financial service receives two more read queries that
access data across multiple data clusters. These queries re-
trieve respectively the 3333 and 10,000 latest orders from
tables ORDERS and ORDER ENTRY in order to obtain either the
list of best-selling items or the items most related to a given
other item. We implement these queries in a similar way
to distributed databases. Each query is first issued at each
server. The results are then merged into a single result set,
and the relevant number of most recent orders is re-selected
from the merged results.

In our implementation, we wanted to balance the load im-
posed by different shopping carts across all servers of the
Financial service. We therefore marked each row of ta-
bles SHOPPING CART, SHOPPING CART ENTRY and ORDERS with
a key equal to the shopping cart ID. We then hash this ID
to H = (7id + 4)%M (where M is the number of servers)
to determine which server H should be responsible for that
row. Our experiments show that this very simple hash func-
tion balances the load effectively in terms of data storage
size and computational load.

This example shows that, even for relatively complex data
services, the fact that each service has simple semantics and
receives few different queries allows one to apply application-
specific solutions. The resulting relative complexity of the
service implementation, however, remains transparent to other

parts of the application, which only need to invoke a simple
service interface.

5.2 Scaling RUBiS
The denormalized RUBiS implementation contains two

update-intensive services: “Auction” and “User.” Similar
to the previous example, most queries address a single auc-
tion or user by their respective IDs. We were thus able to
partition the data rows between multiple servers. A few
read-only queries span multiple auctions or users, but we
could easily rewrite them such that individual queries would
be issued at every server, before their results can be merged.

6. PERFORMANCE EVALUATION
As we have seen, RUBBoS and RUBiS are relatively sim-

ple to host using our denormalization technique. RUBBoS
can be decomposed into several rarely updated data services.
On the other hand, RUBiS requires coarser-grain update-
intensive services, but they can be scaled relatively easily.
We present here performance evaluations of TPC-W, which
we consider as the most challenging of the three applications.

Our evaluations assume that the application load remains
roughly constant, and focus on the scalability of denormal-
ized applications. To support the fluctuating workloads that
one should expect in real deployments, a variety of tech-
niques exist to dictate when and how extra servers should
be added or removed from each individual data service of
our implementations [1, 7, 35].

We compare three implementations of TPC-W. “OTW”
represents the unmodified original TPC-W implementation.
We then compare its performance to “DTW”, which repre-
sents the denormalized TPC-W where no particular mea-
sure has been taken to scale up individual services. Fi-
nally, “STW” (scalable TPC-W) represents the denormal-
ized TPC-W with scalability techniques enabled. All three
implementations are based on the Java implementation of
TPC-W from the University of Wisconsin [16]. For perfor-
mance reasons we implemented the data services as servlets
rather than SOAP-based Web services.

We first study the performance of OTW and DTW to
investigate the costs and benefits of data denormalization
with no scalability techniques being introduced. We then
study how replication and data partitioning techniques allow
us to scale individual data services of TPC-W. Finally, we
deploy the three implementations on an 85-node cluster and
compare their scalability in terms of throughput.

6.1 Experimental setup
All experiments are performed on the DAS-3, an 85-node

Linux-based server cluster [8]. Each machine in the cluster
has a dual-CPU / dual-core 2.4 GHz AMD Opteron DP 280,
4 GB of memory and a 250 GB IDE hard drive. Nodes are
connected to each other with a gigabit LAN such that the
network latency between the servers is negligible. We use
Tomcat v5.5.20 as application servers, PostgreSQL v8.1.8
as database servers, and Pound 2.2 as load balancers to dis-
tribute HTTP requests among multiple application servers.

Before each experiment, we populate the databases with
86,400 customer records and 10,000 item records. Other
tables are scaled according to the benchmark requirements.
The client workload is generated by Emulated Browsers (EBs).
We use the number of EBs to measure the client workload.
The workload model incorporates a think time parameter to

control the amount of time an EB waits between receiving
a response and issuing the next request. According to the
TPC-W specification, think times are randomly distributed
with exponential distribution and average value 7 seconds.

TPC-W defines three standard workloads: the browsing,
shopping and ordering mixes, which generate 5%, 20% and
50% update interactions respectively. Unless otherwise spec-
ified, our experiments rely on the shopping mix.

6.2 Costs and benefits of denormalization
The major difference between a monolithic Web applica-

tion and its denormalized counterpart is that the second
one is able to distribute its UDI workload across multiple
machines. Even though such an operation implies a perfor-
mance drop when hosting the application on a single ma-
chine, it improves the overall system scalability when more
machines are used. In this section, we focus on the costs and
benefits of data denormalization when no special measure is
taken to scale the denormalized TPC-W.

We exercise the OTW and DTW implementations using
2500 EBs, under each of the three standard workload mixes.
Both systems are deployed over one application server and
8 database servers. In the case of OTW, the database servers
are replicated using the standard PostgreSQL master-slave
mechanism. DTW is deployed such that each data service
is hosted on a separate database server.

We measure the system performance in terms of WIRT
(Web Interaction Response Time) as well as WIPS (Web
Interactions Per Second). According to the TPC-W speci-
fication, we defined an SLA in terms of the 90th percentile
of response times for each type of Web interaction: namely,
90% of web interactions of each type must complete under
500 ms. The only exception is the “Admin confirm” request
type, which does not have an SLA requirement. This re-
quest is issued only by the system administrator, and there-
fore does not influence the client-perceived performance of
the system.

Figure 3 shows the performance of the different systems
under each workload. Figure 3(a) shows the achieved system
throughput, whereas Figure 3(b) shows the number of query
types for which the SLA was respected.

The browsing mix contains very few UDI queries. Both
implementations sustain roughly the same throughput. How-
ever, the denormalized TPC-W fails to meet its SLA for two
out of the 14 interaction types. This is due to the fact that
the concerned interactions heavily rely on queries that are
rewritten to target multiple, different data services. These
calls are issued sequentially, which explains why the corre-
sponding request types incur higher latency.

At the other extreme, the ordering mix contains the high-
est fraction of UDI queries. Here, DTW sustains a high
throughput and respects all its SLAs, while OTW simply
crashes because of overload. This is due to the fact that
DTW distributes its UDI queries across all database servers
while OTW replicates them to all servers. Finally, the shop-
ping mix constitutes a middle case where both implementa-
tions behave equally good.

We conclude that data denormalization improves the per-
formance of UDI queries at the cost of a performance degra-
dation of rewritten read queries. We note, however, that the
extra cost of read queries does not depend on the number
of server machines, whereas the performance gain of UDI
queries is proportional to the size of the system. This sug-

Throughput comparision

0

40

80

120

160

200

240

280

320

360

Browsing Shopping Ordering

TPC-W mix

A
vg

. W
IP

S

Original TPC-W

Denormalized TPC-W

(a) Average throughput comparison

SLA-satisfied web interaction type comparision

0

2

4

6

8

10

12

14

16

Browsing Shopping Ordering

TPC-W mix

N
u

m
b

er
 o

f
S

L
A

-s
at

is
fi

ed
 w

eb

in
te

ra
ct

io
n

 t
yp

e

Original TPC-W

Denormalized TPC-W

(b) SLA-satisfied web interaction type number compar-
ison

Figure 3: Throughput and performance comparison
between original TPC-W and denormalized TPC-
W. Note that the Ordering mix for the original
TPC-W overloaded and subsequently crashed the
application.

gests that the denormalized implementation is more scalable
that the monolithic one, as we will show in the next sections.

6.3 Scalability of individual data services
We now turn to study the scalability of each data service

individually. We study the maximum throughput that one
can apply to each service when using a given number of
machines, such that the SLA is respected.

Since we now focus on individual services rather than the
whole application, we need to redefine the SLA for each in-
dividual data service. As one application-level interaction
generates on average five data service requests, we roughly
translated the interaction-level SLA into a service-level SLA
that requires 90% of service requests to be processed within
100 ms. The Financial service is significantly more demand-
ing than other services, since about 10% of its requests take
more than 100 ms irrespectively of the workload. We there-
fore relax its SLA and demand that only 80% of queries
return within 100 ms.

We measure the maximum throughput of each data ser-
vice by increasing the number of EBs until the service does
not respect its SLA any more. To generate flexible repro-
ducible workloads for each data service, we first ran the
TPC-W benchmark several times under relatively low load
(1000 EBs) and collected the logs of the invocation of data
service interfaces. We obtained several query logs represent-
ing the workload of 1000 EBs for a duration of 30 minutes.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 0 2 4 6 8 10 12 14

M
ax

im
um

 T
hr

ou
gh

pu
t (

E
B

s)

Number of database servers

Item_basic
Item_dynamic

Financial

Figure 4: Scalability of individual TPC-W services

We can thus generate any desired workload by replaying the
right number of elementary log files concurrently.

Figure 4 shows the throughput scalability of three rep-
resentative data services from the scalable TPC-W. The
Item basic data service is read-only. It is therefore trivial to
increase its throughput by adding database replicas. Simi-
larly, the Item dynamic service receives relatively few UDI
queries, and can be scaled by simple master-slave replica-
tion.

On the other hand, the Financial service incurs many
database transactions and UDI queries, which implies that
simple database replication will not produce major through-
put improvements. We see, however, that the implementa-
tion discussed in Section 5.1 exhibits a linear growth of its
throughput as the number of database servers increases.

To conclude, we were able to scale all data services to a
level where they could sustain a load of 50,000 EBs. Dif-
ferent services have different resource requirements to reach
this level, with the Item basic, Item dynamic and Financial
services requiring 3, 3, and 13 database servers, respectively.

We believe that all the data services can easily be scaled
further. We stopped at that point as 50,000 EBs is the max-
imum throughput that our TPC-W implementation reaches
when we use the entire DAS-3 cluster for hosting the com-
plete application.

6.4 Scalability of the entire TPC-W
We conclude this performance evaluation by comparing

the throughput scalability of the OTW, DTW and STW
implementations of TPC-W. Similar to the previous exper-
iment, we exercised each system configuration with increas-
ing numbers of EBs until the SLA was violated. In this ex-
periment, we use the application-level definition of the SLA
as described in Section 6.2.

Figure 5(a) compares the scalability of OTW, DTW and
STW when using between 2 and 70 server machines. In all
cases we started by using one application server and one
database server. We then added database server machines
to the configurations. In OTW, extra database servers were
added as replicas of the monolithic application state. In
DTW, we start with one database server for all services, and
eventually reach a configuration with one database server
per service. In STW, we allocated the resources as depicted
in Figure 5(b). Note that in all cases, we deliberately over-
allocated the number of application servers and client ma-

 0

 10000

 20000

 30000

 40000

 50000

 0 10 20 30 40 50 60 70

M
ax

im
um

 T
hr

ou
gh

pu
t (

E
B

s)

Number of server machines

STW
OTW
DTW

(a) Maximum system throughput

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 10 20 30 40 50 60 70

M
ac

hi
ne

 u
sa

ge

Number of server machines

Financial service DB servers

Other DB servers

Application servers

Load balancers

Clients

(b) Allocation of machine resources for STW

Figure 5: Scalability of TPC-W hosting infrastructure

chines to make sure that the performance bottleneck remains
at the database servers.

When using very few servers, OTW slightly outperforms
DTW and STW. With increasing number of servers, OTW
can be scaled up until about 6000 EBs when using 8 servers.
However, when further adding servers, the throughput de-
creases. In this case, the performance improvement created
by extra database replicas is counterbalanced by the extra
costs that the master incurs to maintain consistency.

As no individual scaling techniques are applied to DTW, it
can be scaled up to at most 8 database servers (one database
server per service). The maximum throughput of DTW is
around 3500 EBs. Note that this is only about half of the
maximum achievable throughput of OTW. This is due to the
extra costs brought by data denormalization, in particular
the rewritten queries. Adding more database servers per
service using database replication would not improve the
throughput, as most of the workload is concentrated in the
Financial service.

Finally, STW shows near linear scalability. It reaches a
maximum throughput of 48,000 EBs when using 70 server
machines (11 database servers for the Financial service, 12
database servers for the other services, 33 application servers
and 14 load balancers). Taking into account the 14 client
machines necessary to generate a sufficient workload, this
configuration uses the entire DAS-3 cluster. The maximum
throughput of STW at that point is approximately 8 times
that of OTW, and 10 times that of a single database server.

We note that the STW throughput curve seems to start
stabilizing around 50 server machines and 40,000 EBs. This
is not a sign that we reached the maximum achievable through-
put of STW. The explanation is that, as illustrated in Fig-
ure 4, 40,000 EBs is the point where many small services
start violating their SLA with two database servers, and
need a third database server. In our implementation each
database server is used for a single service, which means
that several extra database servers must be assigned to the
small data services to move from 40,000 EBs to 50,000 EBs.
We expect that using more resources the curve would grow
faster again up to the point where the small data services
need four servers.

7. CONCLUSION
Most approaches toward scalable hosting of Web appli-

cations consider the application code and data structure as
constants, and propose middleware layers to improve perfor-
mance transparently to the application. This paper takes a
different stand and demonstrates that major scalability im-
provements can be gained by allowing one to denormalize
an application’s data into independent services. While such
restructuring introduces extra costs, it considerably simpli-
fies the query access pattern that each service receives, and
allows for a much more efficient use of classical scalability
techniques. We applied this methodology to three standard
benchmark applications and showed that it allows TPC-W,
the most challenging of the three, to scale by at least an or-
der of magnitude compared to master-slave database repli-
cation. Importantly, data denormalization does not imply
any loss in terms of consistency or transactional properties.
This aspect makes our approach unique compared to, for
example, [11].

Data denormalization exploits the fact that an applica-
tion’s queries and transactions usually target few data columns.
This, combined with classical database denormalization tech-
niques such as query rewriting and column replication, al-
lows us to cluster the data into disjoint data services. Al-
though this property was verified in all applications that we
examined, one cannot exclude the possible existence of ap-
plications with sufficient data overlap to prevent any service-
oriented denormalization. This may be the case of transaction-
intensive applications, whose ACID properties would impose
very coarse-grained data clustering. It is a well-known fact
that database transactions in a distributed environment im-
ply important performance loss, so one should carefully pon-
der whether transactions are necessary or not.

The fact that denormalization is steered by prior knowl-
edge of the application’s query templates means that any
update in the application code may require to restructure
the data to accommodate new query templates. However,
the fact that all data services resulting from denormalization
have clear semantics makes us believe that extra application
features could be implemented without the need to rede-
fine data services and their semantics. One can also imag-
ine to fully automate denormalization such that any neces-

sary change in the data structure could be applied trans-
parently to the application, using a proxy layer to trans-
late the original application query templates into their data
service-specific counterparts. We leave such improvements
for future work.

8. REFERENCES
[1] B. Abrahao, V. Almeida, J. Almeida, A. Zhang,

D. Beyer, and F. Safai. Self-adaptive SLA-driven
capacity management for internet services. In Proc.
NOMS, Apr. 2006.

[2] K. Amiri, S. Park, R. Tewari, and S. Padmanabhan.
DBProxy: A dynamic data cache for Web
applications. In Proc. ICDE, Mar. 2003.

[3] C. Amza, E. Cecchet, A. Chanda, A. Cox, S. Elnikety,
R. Gil, J. Marguerite, K. Rajamani, and
W. Zwaenepoel. Specification and implementation of
dynamic web site benchmarks. In Proc. Intl.
Workshop on Workload Characterization, Nov. 2002.

[4] C. Bornhövd, M. Altinel, C. Mohan, H. Pirahesh, and
B. Reinwald. Adaptive database caching with
DBCache. Data Engineering, 27(2):11–18, June 2004.

[5] E. Cecchet. C-JDBC: a middleware framework for
database clustering. Data Engineering, 27(2):19–26,
June 2004.

[6] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A.
Wallach, M. Burrows, T. Chandra, A. Fikes, and
R. E. Gruber. Bigtable: A distributed storage system
for structured data. In Proc. OSDI, Nov. 2006.

[7] I. Cunha, J. Almeida, V. Almeida, and M. dos Santos.
Self-adaptive capacity management for multi-tier
virtualized environments. In Proc. Intl. Symposium on
Integrated Network Management, May 2007.

[8] DAS3: The Distributed ASCI Supercomputer 3.
http://www.cs.vu.nl/das3/.

[9] A. Davis, J. Parikh, and W. E. Weihl. Edge
computing: Extending enterprise applications to the
edge of the internet. In Proc. WWW, May 2004.

[10] G. DeCandia, D. Hastorum, M. Jampani,
G. Kakulapati, A. Lakshman, A. Pilchin,
S. Sivasubramanian, P. Vosshall, and W. Vogels.
Dynamo: Amazon’s highly available key-value store.
In Proc. SOSP, Oct. 2007.

[11] L. Gao, M. Dahlin, A. Nayate, and J. Zheng.
Improving availability and performance with
application-specific data replication. IEEE Trans.
Knowledge and Data Engineering, 17(1), Jan. 2005.

[12] J. Gray. A conversation with Werner Vogels. ACM
Queue, 4(4):14–22, May 2006.

[13] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and
D. Culler. Scalable, distributed data structures for
internet service construction. In Proc. OSDI, 2000.

[14] T. Groothuyse, S. Sivasubramanian, and G. Pierre.
GlobeTP: Template-based database replication for
scalable web applications. In Proc. WWW, May 2007.

[15] Y. Huang and J. Chen. Fragment allocation in
distributed database design. Information Science and
Engineering, 17(3):491–506, May 2001.

[16] Java TPC-W implementation distribution.
http://www.ece.wisc.edu/∼pharm/tpcw.shtml.

[17] L. Kazerouni and K. Karlapalem. Stepwise redesign of
distributed relational databases. Technical Report

HKUST-CS97-12, Hong Kong Univ. of Science and
Technology, Dept. of Computer Science, Sept. 1997.

[18] B. Kemme and G. Alonso. Don’t be lazy, be
consistent: Postgres-R, a new way to implement
database replication. In Proc. VLDB, Sept. 2000.

[19] S. Navathe, K. Karlapalem, and M. Ra. A mixed
fragmentation methodology for initial distributed
database design. Computer and Software Engineering,
3(4), 1995.

[20] S. Navathe and M. Ra. Vertical partitioning for
database design: a graphical algorithm. SIGMOD
Records, 18(2):440–450, 1989.

[21] C. Olston, A. Manjhi, C. Garrod, A. Ailamaki,
B. Maggs, and T. Mowry. A scalability service for
dynamic web applications. In Proc. Conf. on
Innovative Data Systems Research, Jan. 2005.

[22] M. T. Özsu and P. Valduriez. Principles of distributed
database systems. Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 2nd edition, Feb. 1999.

[23] C. Plattner and G. Alonso. Ganymed: Scalable
replication for transactional web applications. In Proc.
Middleware, Oct. 2004.

[24] M. Rabinovich, Z. Xiao, and A. Agarwal. Computing
on the edge: A platform for replicating internet
applications. In Proc. Intl. Workshop on Web Content
Caching and Distribution, Sept. 2003.

[25] M. Ronstrom and L. Thalmann. MySQL cluster
architecture overview. White Paper, Apr. 2004.

[26] RUBBoS: Bulletin board system benchmark.
http://jmob.objectweb.org/rubbos.html.

[27] G. L. Sanders and S. K. Shin. Denormalization effects
on performance of RDBMS. In Proc. HICSS, 2001.

[28] S. K. Shin and G. L. Sanders. Denormalization
strategies for data retrieval from data warehouses.
Decision Support Systems, 42(1):267–282, Oct. 2006.

[29] S. Sivasubramanian, G. Pierre, and M. van Steen.
GlobeDB: Autonomic data replication for web
applications. In Proc. WWW, May 2005.

[30] S. Sivasubramanian, G. Pierre, M. van Steen, and
G. Alonso. GlobeCBC: Content-blind result caching
for dynamic web applications. Technical Report
IR-CS-022, Vrije Universiteit, Amsterdam, The
Netherlands, June 2006.

[31] S. Sivasubramanian, G. Pierre, M. van Steen, and
G. Alonso. Analysis of caching and replication
strategies for web applications. IEEE Internet
Computing, 11(1):60–66, January-February 2007.

[32] W. D. Smith. TPC-W: Benchmarking an ecommerce
solution. White paper, Transaction Processing
Performance Council. http://www.tpc.org.

[33] N. Tolia and M. Satyanarayanan.
Consistency-preserving caching of dynamic database
content. In Proc. WWW, Nov. 2006.

[34] TPC-W frequently asked questions, question 2.10:
“Why was the concept of atomic set of operations
added and what are its requirements?”, Aug. 1999.
http://www.tpc.org/miscellaneous/TPC W.folder/

tpcwfaq0802.ps.

[35] B. Urgaonkar, P. Shenoy, A. Chandra, and P. Goyal.
Agile, dynamic capacity provisioning for multi-tier
internet applications. In Proc. ICAC, June 2005.

