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Abstract. In this paper we propose an improvement on a fully dis-
tributed Peer-to-Peer (P2P) Evolutionary Algorithm (EA) based on au-
tonomous selection. Autonomous selection means that individuals decide
on their own state of reproduction and survival without any central con-
trol, using instead estimations about the global population state for de-
cision making. The population size varies at run-time as a consequence
of such a decentralized reproduction and death of individuals. In order
to keep it stable, we propose a self-adjusting mechanism which has been
shown successful in three different search landscapes. Key are the estima-
tions about fitness and size of the population as provided by a gossiping
algorithm. Such an algorithm requires several rounds to collect the in-
formation while the individuals have to wait for synchronization. As an
improvement, we propose a completely asynchronous EA which does not
need waiting times. The results show that our approach outperforms
qualitatively the execution time of the synchronous version.

1 Introduction

Spare cycles among interconnected nodes constitute a free and powerful source
for high performance computing, Peer-to-Peer (P2P) systems form an alternative
to jointly constitute a single virtual computer. Nowadays, there are successful
cases of virtual supercomputers based on volunteers sharing their CPU idle cycles
(e.g. the BOINC project [1]).

However, Evolutionary Computing has just recently entered this arena and
there are still many challenging issues. The DREAM project was one of the
pioneers on distributed P2P EAs coming up in with the equally named DREAM
framework [2]. Despite the P2P approach, the island-based parallelization of
DREAM was shown in [9] to be insufficient for tackling large-scale decentralized
scenarios.

Two of our most recent works, [12] and [8], have moved the focus from dis-
tributed P2P EAs into finer-grained approaches within the field of spatially
structured EAs. As stated in [11], a spatially structured EA can be modeled as



a graph in which the vertices are individuals and edges represent relationships
between them. Obviously, a graph can be easily mapped to a network topology
and consequently a spatially structured EA can be easily distributed.

In this paper, we analyse a distributed P2P EA in which the population
structure is defined by a P2P overlay network. The network keeps small-world
properties by means of the gossiping protocol Newscast [6]. Such a kind of small-
world graphs have been shown, by Giacobini et al. in [4], to be suitable as
population structure for an EA, outperforming panmictic approaches.

But population structure is not the only issue in a P2P EA. The absence of
a central control requires a mechanism to convey global estimations into each
local individual. This way, individuals can make local decisions about their status
in a decentralized evolution. In order to get estimates about population fitness
and size, we follow the counting algorithm proposed in [12] which deploys the
aggregation protocol described in [5]. It consists of an iterative gathering of
information that after several time steps (or rounds) becomes accurate enough
to proceed with local decision making.

Making a local decision in EAs is not straightforward when the parallelization
grain is a single individual. Despite crossover and mutation operators requiring
one or two individuals, selection involves all of them, or at least a few (such as
in tournament selection).

In fact, the autonomous selection presented by Eiben et al. in [3] uses lo-
cally available information about global estimations (e.g. those provided by the
counting algorithm) and determines the selection probabilities for each individ-
ual with a locally executable function based on its own fitness against averaged
global fitness. Subsequently, the fittest individuals survive for reproduction while
the worst are erased from population. The consequence of such a decentralized
process may lead to a run-time population resizing which could get out of control.

In [12], the authors overcame the issue of population size implosions/explosions
using an self-adjusting mechanism for controlling the parameters of a sigmoid
function (i.e. the seminal function for autonomous selection). Unfortunately,
preliminary experiments in different search landscapes have shown sigmoid to
be very sensitive under different roughness conditions. Hence, it turns out that
keeping the population size under control requires of a hand-made calibration of
the self-adjusting mechanism.

Our proposal focuses on the following improvements over the work presented
in [12]:

1. We propose a self-adjusting mechanism able to keep the population size
stable in different search landscapes. Instead of the sigmoid, we use a simple
linear function and a single adjustable parameter, p, which self-regulates the
local selection pressure by controlling the function slope.

2. In order to get accurate global estimations, the counting algorithm spends
several rounds in which the adaptation stage has to wait. In spite of such
a necessary synchronization for autonomous selection, we propose an asyn-
chronous EA that uses the counting rounds to evolve a population of indi-
viduals’ replicas. Each replica evolves with those in its neighbourhood using



tournament selection. If the original individual survives the autonomous se-
lection process, the evolved replica replaces it. As a consequence of reducing
the ratio of rounds per evaluations, the execution time of the algorithm is
improved.

The efficiency of our approach quantitatively outperforms previous large-
scale distributed EAs. The key is the combination of local evolution of individ-
uals’ replicas and global resynchronization of the decentralized EA.

The rest of the paper is structured as follows. The overall model is presented
in Section 2. We propose, in Section 3, a test suite composed of three real-coding
functions with different roughness degree. In Section 4, we deduce from the run-
time dynamics that the accuracy of the estimations is good enough to keep the
population size stable. Finally, we reach some conclusions and propose some
future work lines in Section 5.

2 Proposed Model

Algorithms 1 and 2 show respectively the pseudo-code of the algorithm and the
work-flow of an iteration.

Algorithm 1 Outline of the self-adjusting distributed evolutionary algorithm
initialize individual
individual,epiica < individual
repeat
if adaptation stage then
exchange information by gossiping
estimate population size, average fitness and best fitness
evolve individual,cpiica Within the neighbourhood
update selection parameters by adaptation
end if
if resetting stage then
if individual is not able to survive then
die
else
individual <= individual,eplica
new individual < reproduction(individual + random individual)
end if
end if
until die or another stop criterion

During the adaptation stage (n+1 first rounds), each individual,epiicq €volves
within its neighbourhood using tournament selection. This stage is required for
estimations over the decentralized population. In the resetting stage (n + 2 time
step), the fittest individuals survive, acquire the evolved genome of their own
individual,eplice and generate a new individual. Additionally, the values of the
counting algorithm are reset and the number of rounds (n) is estimated for the
next iteration.



Algorithm 2 Outline of an iteration of the distributed algorithm

1 to n time steps: Gossiping rounds
Exchange information with neighbours
evolve individual,epiica Within the neighbourhood
Perform the counting algorithm

n + 1 time step: Adaptation
Call the adaptation process
Update the parameters for selection

n 4+ 2 time step: Resetting
Call survive process
Either die or individual < individual,eplica
Reset the values for the counting algorithm
Calculate steps needed (n) for next iteration

2.1 Counting algorithm

The counting algorithm was presented in [12] and extends a P2P aggregation
mechanism described in [5]. It provides estimations about the current best fit-
ness, average fitness and total size of the population to each individual. The
information is iteratively flooded among the nodes (individuals) and after sev-
eral iterations (rounds) estimations are available to the nodes. The number of
rounds needed is estimated as a logarithmic function of the total size of the pop-
ulation, growing as the size increases (i.e. a population size of 100 individuals
would need 12 rounds for estimations while 1000 would need of 18).

2.2 Adaptation and Survival

The autonomous selection determines the probability of survival for each indi-
vidual by the following equation:

1—p

= 7Af(xbest)Af(x) +p (1)

P(z) = linear,(Af(z))

Fig. 1. Linear function for different values of the adjustable parameter p



where Af(z) is the deviation of the fitness with respect to the average fitness,
Af(x) = f(z) — f. The function assigns a probability of survival equal to 1.0 for
the best individual P(Af(2pest)) = 1.0.

Additionally, the slope of the linear function is determined by the average
fitness f, with Af = f— f = 0, where the probability of survival is p, (P(Af) =
p)-

p is an adjustable parameter within the range [—0.1,0.55]. This range has
been empirically calibrated in preliminary experiments to prevent population
implosions/explosions. The self-adjusting procedure is shown in algorithm 3.

Algorithm 3 Outline of the self-adjusting procedure

P <= Initial Population Size
p < 0.5, p€[—0.1,0.55]
repeat
if adaptation stage then
Pestimated < Counting Algorithm
if Pestimatea > P then
p=p—0.1
else if Pestimated < P then
p=p+0.1
end if
end if
until stop criterion

Initially p = 0.5, which would probabilistically maintain the population size
if we assume normality conditions in the fitness distribution. If the population
size is bigger than the initial population, p is decreased by 0.1, otherwise p is
increased by 0.1 (such a value has been empirically calibrated). From the different
values of p (as shown in Figure 1) the algorithm self-adjusts the ratio of survival
by changing the selection pressure.

3 Experimental setup

In order to test the run-time dynamics of the algorithm, we have conducted
experiments in the P2P simulator PeerSim [7]. We have chosen as a benchmark
three real-coding test functions from the test suite proposed by Suganthan et
al. in [10]. This set includes different search landscapes derived from a sphere,
the Schwefel problem and the Rastrigin multimodal function. It is important to
note that our research objective is not to outperform existing results. Instead,
we are initially interested in exploring the extent in which fully decentralized
solutions can be successful. Therefore, to consider an EA run successful we allow
an error margin of 1 for all test functions. Additionally, we have set the size of
the problem instances to a medium degree of difficulty for a GA.

As a baseline for comparison, we have used the distributed P2P EA proposed
in [12] to which we will refer as synchronous version from here on. The adaptation
stage of the synchronous version has been set with the self-adjusting mechanism
proposed in Section 2.2, the rest of the parameter setup is shown in Table 1.



Initial Population Size 200 individuals

Recombination BLX-0.5 Crossover, p. = 1.0
Mutation BGA, p.,, = 0.01

Initial value of p 0.5

Termination condition optimum found with the required accuracy

or 100000 evaluation spent
or population size = 0 or population size > 600
Selection Parents (original) Autonomous Selection
Selection Parents (replica) Binary Tournament + individual
Table 1. Parameters of the algorithms

Shifted Sphere function. The shifted sphere function is a unimodal, scalable
function:

D
F(x) = Z 2’22 + fbias (2)
=1

where D represents the number of dimensions, —100 < x; < 100 and o
[01,09,...,0p] the shifted global optimum. The optimum (minimum) is fpiqs =
—450 . We have set D to 30 since it represents a medium degree of difficulty to
be solved by a GA.

Schwefel function. This version of the Schwefel’s problem is another unimodal
function, whose definition is shown in equation 3

P(a) = (3" %) + foia 3)

where D represents the number of dimensions, —100 < z; < 100 and o =
[01,09,...,0p] the shifted global optimum. The optimum (minimum) is fpiqs =
—450 . We have used D = 10.

Shifted Rotated Rastrigin’s function. The shifted rotated Rastrigin’s func-
tion is a multimodal function with a huge number of local optima, it is defined
by the following function:

D
F(z) = (27 = 10cos(272;) + 10) + foias (4)

i=1
Z=T—0

where —5 < z; < 5 and the global optimum is fp;qs = —330. D has been set to
10.



4 Experimental Results

Figure 2 shows the dynamics of the counting algorithm and the self-adjusting
mechanism in the control of the population size.

On one hand, the counting algorithm provides accurate estimations about
the population size every n rounds (estimations are shown as circles). On the
other hand, the self-adjusting mechanism keeps the population size stable by
fluctuating around the pre-established initial size. From the observation we can
see how the peaks grow when the algorithm is getting close to the problems’ op-
tima (the convergence is represented in Figure 3). The most probable hypothesis
for these peaks is that the distribution of Afs is biased by the global optimum.
Hence, the distribution would lose normality conditions as it is getting close
to the optimum with the consequent lack of effectiveness in the self-adjusting
mechanism.
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Fig. 2. Dynamic of the population size in the synchronous and asynchronous versions
during one run (left) and respective values from p (right). From top to bottom the
run-time adjustment for the three functions. Circles represent the averaged estimation
of the population size provided by the counting algorithm



There is an important difference between our proposal and the synchronous
version. In our approach, the population size is fixed during the evolution of in-
dividuals’ replicas. Afterwards, the population size adjusts in the resynchroniza-
tion period. Figure 2 shows that the population size does not explode/implode,
which is coherent with the previous formulated hypothesis: Once that the algo-
rithm is approaching the problem optimum, local evolution yields success before
an explosion in the population size. In fact, such an hypothesis will have to be
validated in future works.

Not only is our method able to keep in check the population size, but it
is also able to find the optimum with the require accuracy. Figure 3 depicts
the convergence curves of the best and average fitness of our proposal and the
respective estimations by the counting algorithm. The counting algorithm shows
a very accurate estimation for the best fitness while the estimated average fitness
is not so accurate. The reason is that the decentralized aggregation of the average
fitness is a more complex process than a simpler flooding of the best solution by
gossiping. Nevertheless, it is important to note here that despite the estimation
errors, the algorithm is robust enough to converge to the problem solutions.
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Fig. 3. Convergence curves in the sphere, Schwefel and Rastrigin test functions. Circles
represent the averaged estimation of the best and average fitness

Finally, Figure 4 shows the best fitness curves of our asynchronous approach
and the globally synchronized one presented in [12]. Each curve depicts the
number of rounds needed to improve the fitness (i.e. number of cycles in simulator
driven experiments). Both approaches reach success criteria but our proposal
spends ~ 90% less time running. In fact, most of the cycles in [12] are employed
in the counting algorithm, being useless from an evolutionary point of view.
Therefore, the improvement consists in making those idle cycles useful, we use
the local evolution of individuals’ replicas to that end.
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Fig. 4. Best fitness convergence of the synchronous and asynchronous versions in the
sphere, Schwefel and Rastrigin test functions. On the z-axis, simulator cycles stand for
the number of rounds that best fitness needs to improve

5 Conclusions and Future Works

In this paper we have proposed an asynchronous and distributed Peer-to-Peer
Evolutionary Algorithm. The whole process is tackled in a decentralized manner
in which every individual decides on its own state of reproduction and survival
based on autonomous selection and global estimations. The variability on the
population size is adjusted by a self-adjusting mechanism that maintains the size
around the initial given value. In order to study the run-time dynamics of the
algorithm, we have proposed a test suite of three different search landscape with
different roughness degree. For all test functions our new EA (using adaptively
controlled selection) was able to find the optimum with the required accuracy.

The proposal also includes an asynchronous replica mechanism which avoids
the global synchronization presented in [12]. The execution time has been clearly
outperformed which is key in a parallel environment. Therefore, we conclude
that our proposal is a feasible approach towards a fully decentralized EA with
a special focus on P2P.

There are still many challenge to tackle concerning P2P EAs that will have
to be studied in future works. We plan to dive in the algorithmic performance
and compare our method with other spatially structured algorithms (not focused
in P2P necessarily). Additionally, a study on a real environment would provide
feedback on actual problems of full decentralization.
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