
Sloppy Management of Structured P2P Services

Paolo Costa1 Guillaume Pierre1 Alexander Reinefeld2

Thorsten Schütt2 Maarten van Steen1

1 Vrije Universiteit Amsterdam
2 Zuse Institute Berlin

1. INTRODUCTION
While most structured peer-to-peer services are conceptu-

ally very simple, their implementation is not. Even though
similar observations can be made about any type of soft-
ware, it can be shown that large parts of implementation
complexity derives from the way management tasks such as
error condition handling are dealt with.

The traditional way to manage distributed systems soft-
ware is to list all possible error conditions such as churn and
partial node or network failures, and come up with repair
algorithms that take care of maintaining the desired struc-
ture despite adversary conditions. However, implementing
repair algorithms is cumbersome, and any error can poten-
tially lead to complex liveness bugs [6], not to speak about
unwanted cross-interactions of repair schemes.

We observe that most — if not all — structured peer-to-
peer systems deploy strategies to sustain temporary struc-
ture inconsistencies that derive from error conditions. In
this context, our position is that explicit repair algorithms
can and should be avoided in the implementation of struc-
tured peer-to-peer services. Instead, we should use contin-
uous lazy background algorithms to handle non-functional
management tasks such as routing table maintenance, while
relying on the original structured algorithms for the func-
tional tasks such as routing messages through a DHT. We
call this form of probabilistic overlay maintenance “sloppy
management”.

We already demonstrated in two simple situations that
such a dual approach based on a structured determinis-
tic functional plane and an unstructured probabilistic non-
functional can actually work [2, 8]. As an example we briefly
discuss in Section 2 how gossip-based protocols can be used
to maintain the routing tables of a Chord DHT. However, if
we are to take the sloppy management approach seriously,
many other non-trivial management tasks should be handled
by the probabilistic plane. We discuss them in Section 3, and
finally conclude in Section 4.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

2. EXAMPLE
Teaching the algorithms from Chord to graduate students

can be done in no more than three slides, if one is willing
to ignore all management issues. The first slide introduces
the circular ID space and the way nodes and data items
are hashed into IDs; the second slide presents routing tables
and shows which fingers should be stored where; the last
slide shows how messages can be routed to a key in log N
hops. As every peer-to-peer expert knows, the real difficulty
is to build and maintain the routing tables over time in a
decentralized fashion.

In [8] we showed how very simple gossip-based probabilis-
tic algorithms can be used to efficiently maintain Chord
routing tables, without using any explicit repair algorithm.
The probabilistic routing table management algorithm is de-
composed in two separate gossip-based overlays. At the bot-
tom level, nodes periodically gossip with each other to create
an ever-changing random network within themselves. It is
important to note that gossipping takes place at a fixed pe-
riodicity, even if no structure inconsistency appears in the
Chord routing tables.

The second management overlay uses similar periodic gos-
sipping, but this time it does not aim at building a random
network. Instead, it selects links that are good candidates
for being used in the Chord finger table. Each node peri-
odically exchanges its current list of fingers with one peer
from either of the two gossipping overlays. Under steady
conditions, routing tables are kept unaltered. However, if
failures occur, the system can easily replace failed nodes by
acquiring new identities from its neighbors. Note that this
does not require any particular action from the periodic gos-
sip: all error conditions such as churned nodes and partial
network failures are simply ignored.

One can show that this algorithm converges extremely fast
and can maintain the Chord structure over time, even under
massive churn.

Gossip-based management algorithms have a cost, though:
gossipping takes place periodically irrespective of the ap-
pearance of structure inconsistencies to repair, which means
that some continuous background network traffic is created.
This traffic can however be kept low, in the order of less than
one message per second and per node on average, which is
of the same order (if not lower) to the typical overhead of
alive messages or periodic stabilization protocols executed
by structured systems [1].

3. RESEARCH PLAN
As discussed in the above example, epidemic protocols

have proved to efficiently maintain topological properties of
several overlay networks [8, 5]. Nevertheless, it is not yet
clear to what extent this can be generalized to any possible
structure. For instance, while maintaining Chord finger ta-
bles is relatively easy, maintaining more complex structures
such as [7, 4] may be harder.

The most prominent research challenge, however, is to ex-
tend this approach to the management of other non-functional
properties, beyond topological constraints. Ideally, one would
only need to specify the non-functional invariant that must
be maintained (e.g., routing tables should be consistent, sys-
tem load should be balanced, etc.); the probabilistic layer
would autonomously maintain the desired properties, with-
out the need to define explicit algorithms to detect and re-
pair invariant violations.

One interesting issue of large-scale distributed systems
that could be addressed by sloppy management is load bal-
ancing in the presence of skewed load distributions. Tradi-
tional techniques to avoid ‘hotspots’ resort to periodically
run network-wide protocols in order to compute the load of
each node, and reorganize the network if some inequality
is discovered. This may however incur significant overhead,
thus reducing the overall performance of the system. In ad-
dition, defining the optimal frequency of this operation is
highly critical. A too short period would result in exces-
sive overhead, while a too long period would poorly tolerate
unexpected bursts of activity. Similarly, on-demand proto-
cols, running only when one node considers itself overloaded,
would save some bandwith but may be inappropriate to en-
sure timely recovery.

In contrast, sloppy management would continuously work
in the background to balance the load. By periodically gos-
siping with random nodes in the network, a node could de-
tect if other nodes are less overloaded and could properly
repartition the load, before becoming a hotspot. Further-
more, potential inconsistencies arising in the process (e.g., a
node leaves while the takeover is occurring) could be seam-
lessly solved, relying on the aforementioned fast convergence
of gossip-based protocols.

A more difficult challenge is to autonomously deal with
other types of system misbehavior due to (partial) failures
or system peculiarities. For instance, most peer-to-peer pro-
tocols assume, unrealistically, the absence of firewalls and
the possibility to establish connections between any pair of
nodes. In reality things are more complicated and specific
machinery is required to encompass firewalls and network
policies. We believe that epidemic protocols have the poten-
tial to detect and work around these anomalies in a fully de-
centralized and autonomous way [3]. For example, in Chord,
if a firewall prevents a node to communicate with one of its
fingers, the local gossip-based layer will declare that finger
dead (from his perspective) and fill in the finger table with
another node, thereby maintaining correct routing.

We imagine that epidemic protocols could be used to au-
tonomously work around other types of misbehavior, such as
certain types of malicious attacks. For instance, the Eclipse
attack consists for one or several attackers of attracting most
of the overlay links to them before disconnecting, thus cre-
ating unrecoverable network partitions because most links
are gone. We imagine that, thanks to the very fast con-
vergence properties of epidemic protocols, innocent nodes
could autonomously detect and ‘repair’ the implied skew of

in-degree distributions, thereby defeating the attack. Inter-
estingly, in this case, it would not be necessary to identify
the origin of the attack nor the vector by which it intruded
into the system; simply, good nodes of the overlay would
detect that some property is not as it should be, and take
autonomous action to bring the system back to a workable
state. Thus, for a healthy system it must only be ensured
that the majority of the nodes are at a healthy state.

4. CONCLUSION
Most implementation complexity of large-scale distributed

overlays is due to algorithms that aim at repairing the over-
lay in the presence of many adversary events, such as node
churn and partial failures. Instead of devising ad-hoc repair
algorithms to take care of each possible issue, we propose an
approach where the programmer simply specifies the
non-functional invariants to be maintained, while a
simple probabilistic background task is in charge of main-
taining the invariant.

We have successfully applied this technique to a few sim-
ple examples such as building and maintaining Chord rout-
ing tables over time. This encourages us to envisage more
ambitious uses of the same technique, for example to bal-
ance the load of an overlay under (ever-changing) skewed
load distribution, or even to repair the effects of firewalls on
the connectivity between nodes.

Pushing the approach to its extreme, we imagine that we
could use similar techniques to handle a range of possible
attacks. We however remain extremely careful about that
last claim: attackers should be expected to deploy the best
available strategy to defeat the sloppy management system.
We therefore consider that any contribution, no matter how
modest, of sloppy management towards improving the secu-
rity of peer-to-peer overlays, would constitute a convincing
proof of their power to handle conventional issues such as
churn, load balancing, and partial network failures.

Acknowledgements
This work was funded by the XtreemOS E.U. FP6 project.

5. REFERENCES
[1] Castro, M., Costa, M., and Rowstron, A. Debunking

some myths about structured and unstructured overlays. In
Proc. NSDI (2005).

[2] Costa, P., Pierre, G., and van Steen, M. Autonomous
resource selection for large-scale grid systems. Submitted for
publication, 2008.

[3] Drost, N., Ogston, E., van Nieuwpoort, R. V., and
Bal, H. E. ARRG: Real-world gossiping. In Proc. HPDC
(July 2007).

[4] Gupta, A., et al. Meghdoot: content-based
publish/subscribe over P2P networks. In Proc. Middleware
(2004).

[5] Jelasity, M., and Babaoglu, O. T-man: Gossip-based
overlay topology management. In Proc. Intl. Workshop on
Engineering Self-Organizing Applications (Hakodate, Japan,
may 2006).

[6] Killian, C., Anderson, J. W., Jhala, R., and Vahdat, A.
Life, death, and the critical transition: Finding liveness bugs
in systems code. In Proc. NSDI (Apr. 2007), pp. 243–256.

[7] Schutt, T., Schintke, F., and Reinefeld, A. Structured
overlay without consistent hashing: Empirical results. In
Proc. CCGrid (2006).

[8] Voulgaris, S., and van Steen, M. An epidemic protocol
for managing routing tables in very large peer-to-peer
networks. In Proc. DSOM (Oct. 2003).

