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Abstract. In this paper we present a distributed Evolutionary Algo-
rithm (EA) whose population is structured using newscast, a gossiping
protocol. This algorithm has been designed to deal with computation-
ally expensive problems via massive scalability; therefore, we analyse the
response time of the model using large instances of well-known hard op-
timization problems that require from EAs a (sometimes exponentially)
bigger computational effort as these problems scale. Our approach has
been matched against a sequential Genetic Algorithm (sGA) applied to
the same set of problems, and we found that it needs less computational
effort than the sGA in yielding success. Furthermore, the response time
scale logarithmically with respect to the problem size, which makes it
suitable to tackle large instances.

1 Introduction

Among the range of techniques used to solve hard optimization problems, Soft
Computing population-based methods such as Particle Swarm Optimization, Ant
Colony Systems, or Evolutionary Algorithms have lately become quite popular
[2]. In this paper, we define each individual within the population as an agent
which performs a given task and interacts with the rest of individuals. This
parallel process leads to the optimization of a problem as a consequence of the
iterative convergence of the population to the fittest regions within a search
landscape (see e.g. [3] for a survey). Nevertheless, population based methods have
been widely approached sequentially despite their intuitively parallel nature. The
sequential approach defines by default a panmictic way of interaction between
individuals, which means that any individual is likely to interact with any other
(directly or by means of the environment) sometime. Such an interaction can
be visualized as a graph that defines a population structure whose vertices are
individuals and edges represent relationships between them.



Therefore, the sequential approach is represented as a complete graph whereas
parallel approaches define a richer set of population structures described, for in-
stance, by Tomassini in [15]. The impact of different population structures on the
algorithm performance has been studied in addition for regular lattices [4], and
different graph structures such as a toroid [5] or small-world [7,13]. Giacobini
and coauthors [6] show specifically that a Watts-Strogatz structured population
yields better results than scale-free or complete graphs in the optimization of
four different problems.

Besides, the population size (number of individuals) depends on the popula-
tion structure and scales according to the given optimization problem. This way,
larger instances of a problem require larger populations to be solved and addi-
tionally, the computational cost of evaluating the problem also scales depending
on its computational order. Hence, large problem instances imply an avalanche
effect on the computational cost. Such an effect discourage practitioners since
the sequential approach is computationally expensive and not easily scalable for
running in a distributed environment.

The challenge of tackling these large instances of a problem and the re-
sults regarding small-world structured populations in [6], drove us to analyze in
this work the effects of a self-organized population using the gossiping protocol
newscast [10,9]. Newscast shares some small-world properties with the Watts-
Strogatz model [17], such as a low average path length and a high clustering
coefficient, and has been proved to scale to a large number of nodes [16].

Within the whole set of population based paradigms, we consider in this work
Evolutionary Algorithms (EAs) for discrete optimization problems, our proposal
is described in detail in Section 2. In order to assess our approach, we have used
three discrete optimization problems proposed by Giacobini et al. in [6] and
we have compared the results with a standard Genetic Algorithm (sGA). In
addition, we analyse the adequacy of our algorithm for large problem instances
by scaling the problems from small to large sizes. For each one of the instances,
we fix a lower and upper bound for the population size in which the algorithm
works.

We obtain the lower bound using a method based on bisection, which es-
tablishes the minimum population size able to solve the problem with a 98% of
reliability, such a method is exposed in Section 3.3. Besides, we use an upper
bound of 51200 individuals® which is reasonably very large. For further details,
we describe the experimental methodology in Section 3.

The results show in Section 4 that our proposal yields better algorithmic re-
sults than the sGA. Meanwhile, the population size scales with polynomial order
with respect to the different problem instances as in sequential GAs, whereas the
response time does logarithmically. Finally, these results are discussed in Section
5 in which we expose some conclusions.

3 In this work, we will refer equally to the terms individual and node, since each
individual has its own schedule and could potentially be placed in a different node



2 Overall Model Description

The overall architecture of our approach consists of a population of Evolvable
Agents (EvAg), described in Section 2.1, whose main design objective is to carry
out the main steps of evolutionary computation: selection, variation and evalua-
tion of individuals [3]. Each EvAg is a node within a newscast topology in which
the edges define its neighbourhood.

2.1 Evolvable Agent

We deliberately leave an open definition for agent under the basic feature of
just being an encapsulated processing unit. This way future works could extend
easily the EvAg definition (i.e. behavioral learning between agents, self-adaptive
population size adjustment on runtime [12,18] or load balancing mechanisms
among a real network [1]).

Algorithm 1 shows the pseudo-code of an EvAg where the agent owns an
evolving solution (St).

Algorithm 1 Evolvable Agent

St < Initialize Agent
loop
Sols < Local Selection(Newscast) See algorithm 2
St+1 <= Recombination(Sols, P.)
St+1 < Evaluate(St+1)
if Si4+1 better than S; then
St <= Sty1
end if
end loop

The selection takes place locally into a given neighborhood where each agent
select other agents’ current solutions (S¢). Selected solutions are stored in Sols
ready to be recombined. Within this process a new solution S;; is generated. If
the newly generated solution S;y1 is better than the old one Sy, it replaces the
current solution.

2.2 Population structure

In principle, our method places no restrictions in the choice of population struc-
ture, but this choice will have an impact on the dynamics of the algorithm. In
this paper, we study the newscast protocol as neighbourhood policy and topol-
ogy builder; however, we intend to assess the impact of other topologies in future
works.

Newscast is a gossiping protocol for the maintenance of unstructured P2P
overlay networks. Within this section we do not enter on the dynamics but on its



procedure (see [10, 16] for further details). Algorithm 2 shows the pseudo-code of
the main tasks in the communication process which build the newscast topology.
Each node maintains a cache with one entry per node in the network at most.
Each entry provides the following information about a foreign node: Address
of the node, timestamp of the entry creation (it allows the replacement of old
items), an agent identifier and specific application data.

Algorithm 2 Newscast protocol in node FvAg;

Active Thread
loop
sleep AT
EvAg; <= Random selected node from Cache;
send Cache; to EvAg;
receive Clache; from EvAg;
Cache; < Aggregate (Cache;,Cache;)
end loop

Passive Thread
loop

wait Cache; from EvAg;

send Cache; to EvAg;

Cache; < Aggregate (Cache;,Cache;)
end loop

Local Selection(Newscast)
[EvAgj, EvAgr] <= Random selected nodes from Cache;

There are two different tasks that the algorithm carries out within each node.
The active thread which initiates communications and the passive thread that
waits for the answer. In addition, the local selection procedure provides the EvAg
with other agents’ current solutions (.S).

After AT time each EvAg; initiates a communication process (active thread).
It selects randomly a FvAg; from Cache; with uniform probability. Both EvAg;
and EvAg; exchange their caches and merge them following an aggregation
function. In our case, the aggregation consists of picking up the newest item for
each cache entry in Cache;, Cache; and merging them into a single cache that
EvAg; and EvAg; will share.

The cache size plays an important role in the newscast algorithm. It repre-
sents the maximum number of connections (edges) that a node could have. For
example, a topology with n nodes and a cache size of n, will lead to a complete
graph topology (after the bootstrapping cycles). Therefore, the cache size use
to be smaller than the number of nodes (typically around logarithm of n) in
order to get small-world features. We have fixed the cache size to 20 within the
experimental setup.



3 Methodology and Experimental setup

The focus of the proposed experimentation is to find whether our approach is
able to tackle large problem instances on a set of three discrete optimization
problems presented in Section 3.1.

Firstly, we compare the EvAg model with a standard GA used as a baseline.
To this end, we use a method based on bisection (Section 3.3) to establish the
population size in both cases. Such a method guarantees a 98% of Success Rate
(SR) on the results. Once the SR is fixed, we consider the Average Evaluations
to Solution (AES) metric as a measure of the computational effort to reach
success on the problems. Therefore, the more efficient algorithm is the one that
guarantees a 98% SR using less computation.

Secondly, we tackle the scalability of the EvAg. We study how the population
size and the computational effort (e.g. AES) increase as the problem size scales.
Therefore, the response time of the approach will show the algorithm scalability
since the computational effort is distributed among the nodes.

3.1 The benchmark

In this section we present the benchmark problems that we have used to eval-
uate our proposal. It consists of three discrete optimization problems presented
in [6]: The massively multimodal deceptive problem (MMDP), the problem gen-
erator P-PEAKS and the deceptive version wP-PEAKS. They represent a set of
difficult problems to be solved by an EA with different features such as multi-
modality, deceptiveness and problem generators.

Massively Multimodal Deceptive Problem (MMDZP) The MMDP [§]
is a deceptive problem compose of k subproblems of 6 bits each one (s;). De-
pending of the number of ones (unitation) s; takes the values depicted depicted
in Table 1.

Unitation|Subfunction value||Unitation|Subfunction value
0 1.000000 4 0.360384
1 0.000000 5 0.000000
2 0.360384 6 1.000000
3 0.640576

Table 1. Basic deceptive bipolar function (s;) for MMDP

The fitness value is defined as the summatory of the s; subproblems with
an optimum of k (equation 1). The number of local optima is quite large (22%),
while there are only 2* global solutions. We consider several instances from low
to high difficulty using k = 2,4,6,8, 10,16, 32,64, 128.

k
funpp(s) =) fitness,, (1)
i=1



Multimodal Problem Generator (P-PEAKS and wP-PEAKS)

The wP-PEAKS and P-PEAKS problems are two multimodal problem gen-
erators. The wP-PEAKS is the modified version proposed in [6] of the problem
generator P-PEAKS [11]. The idea is to generate P random N — bit strings
where the fitness value of a string @ is the number of bits that & has in common
with the nearest peak divided by N. The modified version consists in adding
weights w; with only w; = 1.0 and wpp, p; < 1.0. Hence, despite P optima so-
lutions as in the P-PEAKS, there is just one optima and P — 1 attractors. In
P-PEAKS we consider P = 100 and P = 10 in wP-PEAKS with w; = 1.0
and wp, p; = 0.99 where the optimum fitness is 1.0. We consider an instance
of P =10 with w; = 1.0 and w[2..P] = 0.99 where the optimum fitness is 1.0
(equations 2 and 3).

1
fr—prEAKs(x) = — max {N — HammingDistance(x, Peak;)} (2)
N 1<i<p

1
fwr—pPEAKS(T) = — max {w;N — HammingDistance(x, Peak;)}  (3)
N 1<i<p
In wP-PEAKS we scale the instances by sizing « to 2,4, 6, 8,10, 16, 32, 64, 128.
Meanwhile in P-PEAKS the values are 12,24, 36, 48, 60, 96, 192.

3.2 Experimental Setup

We have used for the experimentation two similar parametrized algorithms:
EvAg with newscast neighborhood and a sGA. The recombination operator is
DPX with p. = 1.0 and for the selection of parents we use binary tournament [3].
All results are averaged over 50 independent runs. Finally, we have conducted
the experiments in PeerSim Simulator?

3.3 A method for estimating the population size

The Algorithm 3 depicts the method based on bisection [14]. The method begins
with a small population size which is doubled until the algorithm ensures a
reliable convergence. We define the reliability criterion as the convergence of the
algorithm to the optimum 49 out of 50 times (98% of Success Rate). After that,
the interval (min, max) is halved several times and the population size adjusted
within such a range.

4 http://peersim.sourceforge.net/. Accessed on January 2008. All source code
for the experiments is available from our Subversion repository at https://forja.
rediris.es/projects/geneura/



Algorithm 3 Method based on Bisection
P = Initial Population Size
while Algorithm reliability < 98% do
min = P ; max, P = Double (P)
end while
while Zef—min > L do

min .
P __ maz+min

2
(Algorithm reliability < 98%) ? min = P : max = P
end while

4 Results

Results of the first experiment are shown in Table 2, which shows at first glance
that our approach needs less computational effort than the sGA to reach success
in any of the problems as they scale. Therefore, our algorithm converges faster to
a solution than the sGA which is significant in the algorithmic sense. However,
such a result provides just an estimation on the algorithm performance since the
EvAg is distributed whereas the sGA is not.

[ MMDP T wWPPEAKS 1 PPEAKS ]
Problem Size||sGA (AES)[EvAg (AES)[|P. Size[[sGA (AES)|EvAg (AES)[|P. Size[[sGA (AES)|EvAg (AES)
2 1167.3 604.5 2 20 100 12 55.2 128
4 4634.6 1833 4 31.6 120 24 1847.1 669.3
8 12029 6243.8 8 316.2 378 36 9429.8 2838.7
10 17933 8779.5 10 783 551 48 9806.1 5160
16 45186 28796 16 10403 2015 60 21669 10584
32 128310 106290 32 3604480 23037 96 42539 30286
64 562640 518010 64 - 452740 192 131200 125030
128 - 2517300 128 - 2099200 - - -

Table 2. Computational effort for the different problem instances: sGA vs. EvAg

More interesting are the results concerning the scalability of our approach.
The analysis of the response time and population size are depicted in Figure 1
for the three problems under study. In any of them, the figures show that the
estimated population size scales with polynomial order as the problems scale.
Meanwhile, the response time (measured in simulator cycles) scales with log-
arithmic order showing a good adequacy of the algorithm for large problem
instances. Therefore, the necessity of a huge amount of nodes for tackling large
problem instances justifies the use of a P2P system in which such an amount
would be available.

Finally, we have performed experiments with a network of 51200 nodes in-
dependently of the population size estimation. This way, we explore how the
redundancy of nodes (individuals) affects on the algorithm dynamics. The re-
sults show that the response time decreases for small instances and gets closer
to the one estimated with the bisection method for large instances. Such a result
shows that the algorithm is robust concerning population size. Hence, we will
explore the redundancy of nodes as a mechanism for fault tolerance.
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Fig. 1. Scalability analysis for the minimum population size (estimated) and an upper
bound of 51200 individuals-nodes (left) and the estimated size (right) for a 98% of
success rate using the method based on bisection



5 Conclusions

In this paper we have presented a P2P Evolutionary Algorithm and proved its
adequacy for tackling large problem instances. Specifically, we have studied three
discrete optimization problems which have been designed to be difficult for EAs.
Our approach is designed to deal with some P2P features such as decentralization
and large-scalability. To this end, the population structure is managed by the
gossiping protocol newscast. Through the experimental results we conclude that
large instances of hard optimization problems can be tackled in P2P systems
using the Evolvable Agent (EvAg) method. In this paper we have thus proved
that:

Our approach needs less computational effort than a standard GA to reach
the same degree of success on the problems under study. Additionally, such
a computational effort is distributed whereas in the sGA is not.

The population size scales with polynomial order which demands for a big
amount of resources.

The expected response time of the algorithm scales logarithmically with
respect to the problem size which makes it efficient despite large problem
instances.

— The algorithm is robust with respect to the population size. Once we estimate
the minimum population size that yields success, adding more nodes does
not damage the response time.

As future lines of work, we intend to assess the impact of other population
structures on the algorithm performance. Additionally, we will study the redun-
dancy of individuals as a fault tolerance mechanism in Peer-to-Peer Evolutionary
Algorithms.
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