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Abstract. The deployment of Share Data Spaces in open, possible hos-
tile, environments arises the need of protecting the confidentiality of the
data space content. The approaches that have been proposed focus on
access control mechanisms that protect the data space from untrusted
agents. The basic assumption is that the hosts (and their administrator)
where the data space is deployed have to be trusted. Basic encryption
schemes can be used to protect the data space content from malicious
hosts. However, these schemes do not allow searching on encrypted data.
In this paper we present a novel encryption scheme that allows tuple
matching on completely encrypted tuples. Since the data space does not
need to decrypt tuples to perform the search, tuple confidentiality can
be guaranteed even when the data space is deployed on malicious hosts
(or an adversary gains access to the host). Secondly, our scheme does not
require authorised agents to share keys for inserting and retrieving tu-
ples. Each authorised agent can encrypt, decrypt, and search encrypted
tuples without having to know other agents’ keys. This is a great benefit
inasmuch as relieves the system of the difficult task of key management.
An implementation of an encrypted data space based on this scheme is
described and some preliminary performance results are given.

1 Introduction

Coordination through Shared Data Spaces (SDS) also called generative commu-
nication, forms an attractive model for developing distributed and component-
oriented systems as it supports referential and temporal decoupling of pro-
cesses [9]. Referential decoupling means that components exchange data without
the need to know each other. Temporal decoupling means that those components
do not even have to be online at the same time. This way, components can be
connected to or disconnected from the data space at any time, making it eas-
ier to combine or replace. The SDS model was introduced by the coordination
language Linda [8]. Storage in Linda takes place in a so-called tuple space. In a
tuple space, data is stored as persistent objects, called tuples.

The early implementations of SDSes were closed systems, in the sense that
they were realised by compiling application and SDS code altogether. Once the



system was deployed and executed, it was not possible to add or remove appli-
cation components. In such systems, security was not a issue and the original
Linda model was conceived without addressing security concerns.

In contrast, open systems were introduced where the SDS is not bound to
an application but is an autonomous process with its own resources. The main
advantage of open SDS systems is that persistent data storage can be offered
to applications. In this way, applications could dynamically join and leave the
computational environment. This is clearly a feature suited to distributed ap-
plications. With its small API and the decoupling of communication in space
and time, the SDS model provides an effective coordination layer for distributed
applications.

Distributed applications are deployed in environments that range from small
ad-hoc networks of portable devices (such as Body Area Networks) up to wide
area networks (such as the Internet). In such scenarios applications are faced
with many security threats that the original Linda model does not address.
For instance, denial of service attacks could be performed by malicious agents
inserting a large number of tuples into the data space. Still, a malicious agent
can remove any tuples from the space interfering with the other agents that are
using the space. This can be even more serious when the tuples contain sensitive
information.

Such security deficiencies pose a limitation on the usability of the SDS model
for real-world applications. Early work presented by Wood in [20] discusses the
introduction of access control mechanisms, such as ACLs and capabilities, that
could be used for controlling access to the SDS content. Several other approaches
have proposed access control mechanisms that employ secret information asso-
ciated with SDSes and their content. In [12], an agent must know the password
associated with the space in order to get access to it. In [11, 19] the secret infor-
mation is represented by locks that are associated with tuple instances. To get
access to a tuple, an agent must provide the specific lock associated with the
tuple.

Although access control mechanisms are necessary for allowing authorised
operations on the data space, they are not always adequate to protect data
confidentiality. The common assumption of these approaches is that the host
where the data space is deployed is managed by a trustworthy entity that (1)
correctly enforces access control mechanisms and (2) is oblivious of the data that
is stored in the data space. However, such an assumption does not always hold
when sharing data over a wide area network such the Internet.

A solution to enforce the confidentiality of tuples against malicious hosts is
to encrypt the tuple content as proposed in [2]. However, because the ciphertexts
are not meaningful, it is not possible to perform search operations. A trusted
data space can temporarily decrypt the data, perform the search and return
the results to the agent. Alternatively, if the data space doesn’t have access
to the decryption keys, the encrypted data can be returned to the agent that
decrypts the data locally. The first solution cannot protect data confidentiality
from malicious hosts, while the second one is potentially very inefficient in com-



munications. Moreover, issues related to key management (i.e., key distribution,
key revocation, etc.) are not addressed.

In this paper we propose an efficient approach for guaranteing that tuple
confidentiality is protected against malicious hosts. We developed a novel en-
cryption scheme that allows the execution of search operations on encrypted
tuples, without having the data space decrypt the data. Another important
property of our encryption scheme is that it does not require agents to share
secret keys. Each authorised agent can encrypt, decrypt, and search encrypted
tuples without having to know other agents’ keys. This greatly simplifies the
task of key management. In particular, it avoids re-encrypting the tuple content
when a key needs to be revoked. To the best of our knowledge, this is the first
approach that proposes such features for the shared data space model. Finally,
we integrate the encryption scheme in a SDS implementation and carry out some
preliminary performance analysis.

The paper is organized as follows. Section 2 introduces the original SDS
model. Section 3 surveys recent developments aiming at providing security in the
SDS model. In Section 4, we describe on our encryption scheme. In Section 5,
we discuss and evaluate our encrypted SDS implementation. In this paper our
main focus to guarantee data confidentiality in case a host is compromised.
However, the SDS and its content can face other security threats when its host
is compromised. In Section 6, we discuss some of those security threats. We
conclude in Section 7 with some final thoughts and future research directions.

2 The Shared Data Space Model

The shared data space model was introduced by the coordination language Linda
[8]. Linda provides three basic operations: out, in and rd. The out operation
inserts a tuple into the tuple space. The in and rd operations respectively take
(destructive) and read (non-destructive) a tuple from the tuple space, using a
template for matching. The tuple returned must exactly match every value of the
template. Templates may contain wildcards, which match any value. Whereas
putting a tuple inside the tuple space is non-blocking (i.e. the process that puts
the tuple returns immediately from the call to out), reading and taking from the
tuple space is blocking: the call returns only when a matching tuple is found. In
the original model two more operations were introduced: the inp and rdp. These
operations are predicate versions of in and rd: they too try to return a matching
tuple. However, if there is no such tuple they do not block but return a value
indicating failure.

In Linda it is also possible to fork a process inside a tuple space through
so-called live tuples. To insert a live tuple inside a tuple space the eval operation
is used. eval is similar to an out and it is specific for live tuples. Once a live tuple
is inserted in a tuple space it carries out the specified computation. Afterwards,
a live tuple turns into an ordinary data tuple, and it can be used as such. In the
implementation of a SDS presented later on in this paper the inp, rdp, and eval

operations are not supported.



3 Related Work

This section provides a critical overview of exiting approaches providing security
for shared data space.

Secure Lime, described in [12], introduces several security extension to Lime [14].
Since Lime’s primary environment is a network of mobile low-resource hosts, the
main concern of the developers was to introduce security enhancements with
low overhead of the original Lime’s model. Security extensions are implemented
as two levels of access control: at tuple space level and single tuple level. At
the tuple space level, it is possible to protect access to a tuple space by means
of a password. An agent will be considered authorized to access a tuple space
if it knows the password for the given tuple space. At the tuple level, agents
can specify for each tuple that they insert passwords for granting both read
and take accesses. Inter-host communication uses unsecured links. For avoiding
eavesdropping of messages, each serialized tuple is encrypted using the respec-
tive password for accessing the tuple space. It should be noted that it is not a
good practice to use a password as an encryption key.

SecOS [19] introduces the notion of lock for controlling access to a tuple. A
lock is a labeled value that specifies the key that should be used to grant access
to a given tuple. The simplest lock is represented by a symmetric key where
the same label can be used for locking and unlocking a tuple. Also, asymmetric
locks can be used. In this case, two different keys are necessary for locking and
unlocking a tuple. A public key is used for locking a tuple and a private one is
used for unlocking it. SecOS also provides finer grained access control at the level
of single fields in a tuple. Each field in a tuple can be protected by a separate
lock.

SecSpaces [11] provides a similar approach to that of SecOS. In SecSpaces
labels are used as an access control mechanism to protect tuples and tuple fields.
SecSpace provides two more extensions. The first extension concerns partitioning
the tuple space. The partitioning of a tuple space avoids all agents having the
same view on the data contained in a tuple space. Instead of a physical separation
in different tuple spaces, in SecSpaces the tuple space partitioning is achieved
through the introduction of a partition field in the tuples. A template can match
a tuple in a given partition only if the correct actual value is given in the partition
field. A template with a wildcard value in the partition field is considered not
valid. This means that a process has to know the name of the partition for
accessing the content. The second extension regards the distinction between
consumers that can only execute read operations and consumers that can only
execute take operations. This extension is provided via specified fields in the
tuples, called control fields. To be an authorized read consumer, the process has
to provide in the template issued by the read operation the exact value on the
read control field of a tuple.

Linda with multicapabilities [18] is an approach where the capability concept
is applied to the Linda model. Capabilities are the means by which agents can
access to tuples and SDS. In particular, a multicapability is a special capability
that refers to a group of tuples. A multicapability consists of three parts: u, a



unique identifier which is the reference to a collection of tuples; t, a template
that matches the tuples that the multicapability refers to; p, a set of permit-
ted operations on the matching tuples. To be able to exchange tuples, tow or
more agents have to share the same multicapability that refers to the same set
of tuples. In case a multicapability has to be revoked, the authors adopt the
common solution of introducing indirect multicapability objects. A multicapabil-
ity now refers to the indirection object, which in turn refers to the intended
tuple set. The deletion of the indirection object has the effect of removing the
multicapability.

In all the approaches presented above, tuples are stored in the data space
as plaintext. Indeed, then basic assumption of these approaches is that the data
space host is trusted. However, if an adversary gets access to the host where
the data space is deployed, tuples could still be retrieved and accessed. The only
exception to this is KLAIM [2]. KLAIM provides privacy by means of encryption.
In the framework proposed, a key can be used for encrypting the data value
contained in a field. The model does not provide any access restrictions to the
tuple space. This means that encrypted tuples can be retrieved by agents that
do not have the right key for decrypting the content. If a tuple is withdrawn
from the tuple space by an agent that cannot access it, it is up to that agent to
reintroduce the tuple back to the space. The tuple space API is extended with
two operations that execute the decryption process before returning the tuple
to the application: ink and readk. If the decryption fails, then the ink operation
inserts the tuple back into the space. It should be made clear that the key used
for encrypting the data is not shared between the entities and the data space. The
ink and readk operations perform the decryption locally to the node where the
entity is deployed. This has a negative impact on the communication utilisation.

Although KLAIM is the only approach that encrypts the data when it is
stored in the space, it does not support encrypted search. Therefore it is neces-
sary to have in the tuples cleartext fields. Assuming that there is a secure channel
between the agent and the data space, an attacker can still gain some informa-
tion on the matched tuple if it has access to the data space host. However, if
the data space supports encrypted search then an attacker can not gather any
information about the tuple content by just looking at the ciphertext. Another
common drawback of the above approaches is that agents are required to share a
secret (either a key or a password). The revocation of the secret in the event that
it gets compromised requires the re-distribution of a new secret and the creation
and/or modification of the data space to be protected by the new secret. The
same needs to be done in case that access privileges have to be removed to an
agent.

To protect the confidentiality of shared data spaces from both unauthorised
clients and from the SDS host(s) we introduce a novel encryption scheme that
supports encrypted searches over encrypted shared data spaces. Furthermore,
the scheme does not require agents to share secret keys.



4 Multi-Agent Searchable Encryption Scheme

This section presents our encryption scheme for a multi-agent searchable en-
crypted data space. The aim of this section is to describe the required crypto-
graphic details of the scheme and its properties. For a more detailed description
refer to [4].

4.1 Cryptographic Preliminaries

Our multi-user searchable encryption scheme employs RSA public-key encryption

[15] and Discrete Logarithms. RSA involves two asymmetric keys. The key pair
is generated as follows: First choose two random large prime p and q such that
|p| ≈ |q|. Then compute n = pq and φ(n) = (p−1)(q−1). Find a random integer
e < φ(n) and gcd(e, φ(n)) = 1. Compute d such that ed ≡ 1 mod φ(n). (n, e)
is the public key and d is the private key. To encrypt, compute c = me mod n.
To decrypt, compute m = cd mod n. In the rest of the paper, we assume all
arithmetic to be mod n unless stated otherwise. Discrete Logarithms in finite
fields are one-way functions. Namely, given a prime p, a generator g of the multi-
plicative group Z∗

p and gx mod p, it is hard to find x. Discrete Logarithms have
been used in constructing public-key encryption schemes [5], digital signature
schemes and zero-knowledge proof protocols.

Both RSA and Discrete Logarithms use Modular exponentiation as basic
operations and the exponents can be split multiplicatively. In RSA, for example
we can find e1, e2 such that e1e2 ≡ e mod φ(n). The two shares of e can be
given to two parties, then the two parties can collaboratively encrypt a message.
Given a message m, one party encrypts it as me1 mod n and the other party
re-encrypts it as (me1)e2 ≡ me1e2 ≡ me mod n. The decryption key can also be
split in the same way.

This idea is used in proxy cryptography and was first introduced in [3]. In a
proxy encryption scheme, a ciphertext encrypted by one key can be transformed
by a proxy function into the corresponding ciphertext for another key without
revealing any information about the keys and the plaintext. There are many
applications of proxy encryption, e.g. secure email lists [17], access control sys-
tems [18] and attribute based publishing of data [19]. A comprehensive study on
proxy cryptography can be found in [13].

The encryption schema that we use in our system combines the property
of proxy cryptography where each authorised agent has a unique key with the
capability of performing tuple matching on encrypted data.

4.2 Architecture

The system has the following components:

– Client: a client is any agent interacting with the data space.



– Encrypted Shared Data Space(eSDS): is used for storing and retrieving tu-
ples, performing encrypted searching operations, authenticating valid clients,
and safely storing encryption and decryption keys. The eSDS is also capable
of storing and retrieving tuples in plaintext or partially encrypted. The basic
assumption is that we trust the eSDS to perform these operations correctly.
Although conceptually we refer to the eSDS as a single component, it could
be physically distributed across several hosts.

– Key Management Server (KMS): The KMS is a fully trusted server which is
responsible for all the key-related operations, e.g. key generation, distribu-
tion, and revocation. Although requiring a trusted KMS seems at odds with
using a less trusted node where the data space is running, we will show that
the KMS is lightweight, it requires less resources and management. Securing
the KMS is also much easier. Because of this, the KMS can be offline most
of the time.

4.3 System Setup

To initialise the encryption system, the KMS runs the setup algorithm to gen-
erate public and secret parameters which will be used for the whole lifetime of
the system. The algorithm is described as follows:

The algorithm first takes a security parameter k and runs the key generation
algorithm using standard RSA which generates (p, q, n, φ(n), e, d). It then gen-
erates {p′, q′, g, x, h, a, gaha} satisfying the following constraints: p′ and q′ are
two large prime numbers such that q′ divides p′ − 1. g is a generator of Gq′ , the
unique order-q′ subgroup of Z∗

p′ . h ≡ gx mod p′ where x is chosen uniformly
randomly from Zq′ . a is also a random number from zq′ .

n, p′, q′, g, h, gaha are the parameters needed for encryption/decryption and
need to be published system-wide. p, q, φ(n), e, d, x, a are the key material and
must be kept secretly. In particular, the (e, d, a) are called “Master Keys” for
the system.

4.4 Client Key Generation and Revocation

When a new client is enrolled into the system, the KMS must generate a unique
key set for the client. The key set is derived from the key material using the
following algorithm:

For a client i, the KMS generates ei1, ei2, di1, di2, ai1, ai2 such that ei1ei2 ≡
e mod φ(n), di1di2 ≡ d mod φ(n) and ai1ai2 ≡ a mod q′. Key generation can
be efficiently done in the following way. Let us consider the generation of the
ei1, ei2 pair. The KMS randomly chooses ei1 < φ(n), where gcd(ei1, φ(n)) = 1.
Since ei1x ≡ 1 mod φ(n) has always a solution, then ei2 ≡ ex mod φ(n) always
satisfies ei1ei2 ≡ e mod φ(n). The KMS then sends (ei1, di1, ai1) to client i and
(ei2, di2, ai2) to the eSDS through secure channels.

In our system it is possible to authenticate a client and establish a secure
channel between the client and the eSDS using the corresponding key pairs. Be-
cause ei1di1ei2di2 ≡ ed ≡ 1 mod φ(n), k1 = ei1di1 and k2 = ei2di2 form another



RSA key pair. This key pair can be used for public key mutual authentication
and for establishing a secure channel, e.g. SSL.

When a client’s access privilege is revoked, the KMS sends an instruction to
the eSDS to request the removal of the client’s corresponding keys. After the keys
have been removed, the client cannot access the data unless the KMS generates
new keys for it.

4.5 Tuple Encryption

In our system, tuple encryption is performed in two steps. A tuple is first en-
crypted by the client using its own private key. The encrypted tuple is then sent
to the eSDS, where the tuple is re-encrypted using the node’s key that correspond
to that client. Client side encryption prevents the eSDS (and its hosting site)
from knowing the data in the tuple whereas the eSDS side encryption makes
it possible for other authorised clients in the system to retrieve the tuple in
clear text. The encryption process for client i is shown in Fig. 1. For a tuple
t = 〈d1; ...; dn〉, we denote the value of a field at position x by dx.

On the client side, a tuple is first encrypted using a semantically secure sym-
metric encryption algorithm E [10]. For each tuple, client i randomly picks a
key K from the key space of E. Each value of the tuple’s fields dx is encrypted
under the key K which generates a ciphertext cx1 = EK(dx). The symmetric key
K is then encrypted by algorithm CEnc which is identical to the RSA-OAEP
(Optimal Asymmetric Encryption Padding) encryption algorithm [1] and uses
ei1 as the encryption key. RSA-OAEP enhances RSA by using a probabilistic
padding scheme and has been proved to be IND-CCA2 (Indistinguishable Adap-
tive Chosen Ciphertext Attack) secure [7]. The ciphertexts of the symmetric keys
is cK = (Pad(K))ei1 .

During the search for a matching tuple, the data space content is kept en-
crypted. The matching is done using an opportunely modified values of the
tuple field, called keywords. Keywords are computed as follows by the client
using the algorithm CEnc′ and sent together with the tuple to the eSDS. For
each value dx of a tuple field , the client i computes σx = H(dx) using a hash
function H . The client also picks a random number rx ∈ Zq′ and computes
cx2 = (grx+σxhrx)ai1 mod p′, cx3 = H((gaha)rx), where g, h, gaha, p′ are public
parameters in the system and ai1 is the client’s keyword encryption key. The
client then sends the encrypted tuple te = 〈(c11, c12, c13); ...; (cn1, cn2, cn3); cK〉
to the eSDS.

After receiving the encrypted tuple, the eSDS retrieves ei2 and ai2, the cor-
responding encryption keys for the client i. It re-encrypts the symmetric key
by computing c∗K = cei2

K using the SEnc algorithm. The eSDS processes the
keywords information that is contained in the tuple using the SEnc′ algo-
rithm. For each filed x, the eSDS computes c∗x2 = cai2

x2 = (grx+σxhrx)ai1ai2 =
(grx+σxhrx)a mod p′. The final encrypted tuple stored is t∗e = 〈(c11, c

∗

12, c13); ...;
(cn1, c

∗

n2, cn3); c
∗

K)〉.



Fig. 1. Encryption of a tuple on client i and data space.

4.6 Encrypted Search

When a client j wants to retrieve a tuple matching the template temp = 〈z1, ..., zn〉,
j first computes the hash value of all non-null fields in the template. For each
non-null field x the client j generates σ∗

x = H(zx). Then j encrypts σ∗

x as
Qx = g−σ

∗

xaj1 . At this point, the encrypted template is tempe = 〈Q1; ...; Qn〉. j

sends tempe to the eSDS.
The eSDS computes for each field of the received template Q′

x = Q
aj2

x mod

p′ = g−σ∗

xa mod p′. During the search, for each encrypted tuple, the data space
computes the following two values for each x-th non-null field in the template:

yx1 = c∗x2Q
′

x = (grx+σxhrx)ag−σ∗

xa = (garx+aσxharx)g−aσ∗

x mod p′

yx2 = H((y1)

We can see that if dx = zx then aσx − aσ∗

x = 0, and therefore yx1 =
(garxharx) = (gaha)rx mod p′. From this follows that the value in the x-th



field of the template matches the value of the x-th filed in a tuple if and only if
yx2 = cx3 (because yx2 = H((gaha)rx) = cx3).

4.7 Tuple Decryption

When a matching tuple is found, the eSDS computes the following before sending
the tuple to the client j. For each field x in the matching tuple t∗e = 〈(c11, c

∗

12, c13)
; ...; (cn1, c

∗

n2, cn3); c
∗

K)〉 the eSDS computes c′K = (c∗K)dj2 and sends to j the
following tuple t′e = 〈c11; ...; cn1; c

′

K)〉. j retrieves the key for encrypting the data
items by computing (c′K)dj1 = (c∗K)d = (K)ed = K. j can decrypt the value of
each field by computing dx = E−1

K (cx1).

Fig. 2. Overview of the architecture of the our eSDS prototype.

5 Implementation and Performance

In this section, we discuss the implementation and performance of the eSDS
based on the encryption scheme. The prototype is an extension of our imple-
mentation of a distributed SDS, called GSpace [16].

Figure 2 provides an overview of the modules that are part of our architec-
ture. Clients and the eSDS are different processes that reside in different hosts.
A client Ci communicates with the eSDS by means of a proxy, called eSD-
SProxy. The eSDSProxy takes care of hiding from the client all the details for
the communication with the eSDS and deals with the cryptographic operations.
To connect to an eSDS, a client creates a new eSDSProxy as follows:

eSDSProxy p = new eSDSProxy ("SpaceName");

The argument is used by the proxy to load in its KeyStore (KS) the appro-
priate key pair for tuple encryption and decryption and for establishing a secure
connection with the eSDS. The proxy performs tuple encryption and decryption
using the Proxy Encryption Module (PEM).

Tuples and templates are subclasses of the Tuple class. A tuple can be defined
in such a way that when it is stored in the eSDS it can contain both cleartext and
encrypted fields. A field in a tuple will be stored encrypted only when its type



is one of the following: eInt, eChar, eDouble, and eString. These are classes
that we define to represent the encrypted form of the corresponding Java classes.
Therefore, if a tuple is defined as follows:

MyTuple(eString name, eInt age, Integer weight)

when such a tuple is stored in the eSDS, only the first two fields will be
encrypted. Field weight will be stored in cleartext.

A client (by means of its proxy) establishes a secure communication with the
eSDS. The eSDS authenticates the client and the corresponding key is loaded
into the KS of the eSDS. The eSDS performs tuple encryption, decryption and
encrypted search by means of its Space Encryption Module (SEM). Tuples
are stored in the Tuple Repository (TR).

In the implementation, a put operation is used to insert a tuple in the space.
read and take operations are used for retrieving tuples; the former returns a
copy of a matching tuple whether the latter destructively removes the matching
tuple. When these operations are executed, tuples and templates are transformed
according to our encryption scheme. Figure 3 shows the cryptographic operations
executed in the PEM and SEM on tuples and templates for a put and a read (or
take) operation.

Fig. 3. Encryption steps executed for storing and retrieving a tuple using our scheme.

Let us assume that a tuple t has to be stored encrypted (i.e., all of its fields
must be encrypted). Figure 3-(a) shows the steps executed for a put operation.
The fields of tuple t are encrypted in the PEM using the submodule Ep

4.
The encrypted tuple te is sent to the eSDS where it is re-encrypted by SEM’s
submodule Es

5. The tuple t
′

e is stored in the TR.
Figure 3-(b) shows the case of a read operation. For a read operation a tem-

plate temp is used for finding a matching tuple. The non-null fields in the tem-
plate are encrypted by the submodule Ep that produces the encrypted template

4 This submodule implements the algorithms CEnc and CEnc
′ that we described in

Section 4
5 This submodule implements the algorithms SEnc and SEnc

′ that we described in
Section 4



Execution Step Execution Time (ms)

Client Encryption 53

eSDS Encryption 37

eSDS Decryption 37

Client Decryption 37
Table 1. Performance of Encryption and Decryption Operations

tempe. tempe is sent to the eSDS where it is re-encrypted in temp
′

e. This is used
for performing the encrypted search. When an encrypted tuple t

′

e matches the
template temp

′

e, the tuple must be decrypted before it is returned to the client.
First, t

′

e is decrypted in the SEM using the Ds submodule and it is transformed
in te. te is returned to the client’s proxy that decrypts it using Dp, returning the
tuple in cleartext t to the client.

5.1 Evaluation

The eSDS prototype is implemented in Java using the packages provided in the
standard Java 1.5 distribution. We chose AES as the symmetric cipher which
encrypts the actual data and SHA-1 as the hash function. For the RSA-based
proxy encryption scheme, we used 1024-bit keys. For the keyword encryption
scheme, q′ was 160-bit and p′ was 1024-bit. The tests were executed on a Intel
Pentium IV 3.2 GHz (dual core) with 1 GB of RAM.

The first evaluation consisted of measuring the execution time for the en-
cryption and decryption submodules. In particular, we measured the execution
time for:

– Client Encryption: consists in the execution of Ep, that is encrypting tu-
ple fields using the symmetric cipher, encrypting the symmetric key and
encrypting the keywords.

– eSDS Encryption: consists in the execution of Es, that is the re-encryption
of the symmetric key and the keywords using the eSDS keys.

– eSDS Decryption: pre-decryption of the symmetric key by executing Ds.
– Client Decryption: decryption of the symmetric key and the tuple fields by

executing Dp.

Table 1 provides the results of our test for the execution of the encryption and
decryption operations. The time is given in milliseconds for a single execution of
each operation calculated on the average time for 10,000 executions. The tuple
and template used for the experiments consisted in a single field of type eString
with 4 chars.

We also measured the time for finding a matching tuple using our encrypted
search. In the data space, 10000 encrypted tuple were stored and only one was a
match for the template used in the search. We ensured that the matching tuple
was the last tuple to be evaluated (worst case scenario). Tuples and template
consisted of a single eString filed with 4 chars. Under these conditions, the time



required for finding the matching tuple is around 600 milliseconds. Basically, each
matching test takes around 0.06 milliseconds.

Given the results of this performance analysis, we can say that the use of our
scheme is well suited for cases where a large number of tuples need to be searched.
The search is performed entirely within the data space and the result that is
returned is a tuple matching the given template. In contrast, when executing
the same experiment using an approach as in KLAIM, executing cycles and
bandwidth would be wasted. In fact, the result that is given back to a client is
a partial match to the given template (only the fields not encrypted are used
for the matching). The client has to decrypt the tuple and if the values of the
encrypted fields are not the intended ones then the client has to re-encrypt the
tuple and send it back to the space.

6 Host Attack Models

In this section, we discuss some of the attack models that can be performed by
malicious hosts.

Previous research has been focusing on protecting the data space from attacks
performed by malicious clients. The assumption is that hosts where the data
space is deployed are fully trusted while clients are not to be trusted. As discussed
in [6], previous approaches can protect the data space against malicious clients
that:

1. would remove and/or forge tuples from a data space to disrupt the collabo-
ration between genuine clients, and

2. would insert into a data space a large number of tuples to consume all
resources.

Because hosts are fully trusted, there are no mechanisms in place that can
guarantee the confidentiality of data stored in the data space against the hosts
other than encrypting non-searchable data.

In our attack model, we assume that a host is honest-but-curious. We trust
the host to correctly authenticate the clients and to perform the operations
as requested by the clients. The confidentiality of the data is protected from
the host while supporting search on the protected data. However, in deploying
the data space on untrusted hosts other concerns need to be addressed. In the
following, we list some of these concerns and the threats to which the data space
is exposed to. Our aim is not to provide a concrete solution to each of them, but
to highlight possible future research directions aimed to protect the data space
from malicious hosts.

Integrity With integrity we refer to the property of the data space to operate as
expected by its clients. An attacker that has access to the data space hosts could
threaten the integrity of the data space in several ways. For one, the attacker
could alter the authorisation process allowing not authorised clients to access
the tuples (even if the clients would not be able to decrypt them) or it could



deny access to authorised clients. An attacker can alter the semantics of the data
space operations. For instance, a client can be blocked in executing a retriev-
ing operation while the matching tuple is in the space; the attacker can re-send
back to a client a tuple that was the result of another operation (replay attack);
additionally, the attacker can discard tuples inserted by legitimate clients mod-
ifying in this way the results of retrieval operations. Although no mechanisms
could prevent the attacker form performing such attacks, methods developed for
database systems could help in detecting and mitigating some of those attacks.
For example, methods based on cryptographic techniques and hash functions
allow a client to determine whether the returned result corresponds to the real
content of the database. These methods could be extended to include the notion
of time with the encrypted representation of the actual content of the data space.
In this way, a client would be able to detect whether the blocking for a removal
operation was caused maliciously by a host or just because the tuple was not
present at the time the request was made. To make sure that tuples inserted
by genuine clients are not discarded by malicious hosts some global encrypted
indexing could be used. Finally, the integrity of tuples can also be compromised.
For instance, an attacker can change or reordered tuple fields (reordering attack).

Availability Clients that try to connect to the SDS hosts may experience some
disruptions. For instance, the data space host is not reachable or it requires a long
time for replying. These disruptions may be caused maliciously by the attacker.
In order to mitigate such attacks mechanisms that ensure accountability can be
used. Accountability is the property that allows the participants of a system to
determine and expose misbehavior. In this way, clients can determine whether
hosts are behaving correctly. Accountable mechanisms have been proposed for
network storage as in [21].

Traffic Analysis By monitoring the timing and frequency of the communication
between hosts and clients, an attacker can gather useful information. By moni-
toring the execution time of encryption and decryption operations on tuple an
attacker can gather enough information to efficiently recover the client key. For
instance, in [17] Song shows that it is possible to use such an attack to recover
a password exchanged in the SSH protocol 50 times faster than using a brute
force attack. The attacker can also built a statistical attack by comparing the
templates with the matching tuples.

Collusion One of the major concerns in proxy encryption schemes comes from
a collusion attack. If a client colludes with an attacker that has access to all the
EDS side keys, then it is possible to easily recover the master keys by combin-
ing their keys. Collusion-resistant proxy encryption schemes is an open problem.
However, we can lower the risk of collusion to an acceptable level by implement-
ing other mechanisms. For example, we can limit the access to the keys by using
tamper-proof devices. We can also split the master keys into multiple shares and
introduce additional servers, making collusion more difficult. Monitoring and
auditing to detect collusion can also help to mitigate the risk.



7 Conclusions and Future Work

In this paper, we presented a novel encryption scheme that ensure tuples confi-
dentiality even in the case that the data space is deployed on malicious hosts.

The scheme supports encrypted search for a matching tuple over encrypted
data space. In this way, the data space never has access to tuples in cleartext
protecting the confidentiality of the its content from nosy hosts. Moreover, the
scheme does not require the clients to share secret keys. Each client has its own
key that can be used for retrieving tuples encrypted by other clients’ keys. This
greatly reduces the burden of key management. for instance, when a key of a
client is revoked it is not necessary to invalidate all the other clients’ keys and
re-encrypt the entire data space content.

We provided an implementation of an encrypted SDS using the presented
scheme and perform some performance analysis.

Finally, we discussed several security threats that can be faced when the
data space is deployed in untrusted hosts. This threat analysis can be seen
as a starting point for some future work. We are currently looking at Private
Information Retrieval (PIR) schemes that would allow a user to retrieve tuples
from a data space without revealing to its host which items were searched.

As concluding thought, we would like to point out that although this scheme
has been presented in the context of the SDS model, it could be applicable to
any other system where the confidentiality of data shared among several entities
must be protected, i.e. databases, publish subscribe systems, email servers, etc.
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