Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

Volume 52 Issue 7 15 May 2008 ISSN 1389-1286

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Available online at www.sciencedirect.com

ScienceDirect

Computer Networks 52 (2008) 1343-1364

[Ompu’rer
Networks

www.elsevier.com/locate/comnet

ELSEVIER

Practical large-scale latency estimation

Michal Szymaniak **, David Presotto °, Guillaume Pierre?, Maarten van Steen®

4 Vrije Universiteit Amsterdam, Department of Computer Science, De Boelelaan 1081A4, 1081 HV Amsterdam, The Netherlands
bGoogle Inc., Mountain View, CA, United States

Received 17 July 2006; received in revised form 21 May 2007; accepted 20 November 2007
Available online 29 January 2008

Responsible Editor: I.F. Akyildiz

Abstract

We present the implementation of a large-scale latency estimation system based on GNP and incorporated into the
Google content delivery network. Our implementation employs standard features of contemporary Web clients, and care-
fully controls the overhead incurred by latency measurements using a scalable centralized scheduler. It also requires only a
small number of CDN modifications, which makes it attractive for any CDN interested in large-scale latency estimation.

We investigate the issue of coordinate stability over time and show that coordinates drift away from their initial values
with time, so that 25% of node coordinates become inaccurate by more than 33 ms after one week. However, daily re-com-
putations make 75% of the coordinates stay within 6 ms of their initial values. Furthermore, we demonstrate that using
coordinates to decide on client-to-replica re-direction leads to selecting replicas closest in term of measured latency in
86% of all cases. In another 10% of all cases, clients are re-directed to replicas offering latencies that are at most two times
longer than optimal. Finally, collecting a huge volume of latency data and using clustering techniques enable us to estimate
latencies between globally distributed Internet hosts that have not participated in our measurements at all. The results are
sufficiently promising that Google may offer a public interface to the latency estimates in the future.
© 2008 Elsevier B.V. All rights reserved.

Keywords: Large-scale distributed systems; Network modeling; Latency estimation

1. Introduction between its components are minimized [1-3]. For
example, a content delivery network can place its
hosted data such that its clients are serviced at their

proximal datacenters [4,5]. In addition to improving

Modern large-scale distributed applications can
benefit from information about latencies observed

between their various components. Knowing such
latencies, a distributed application can organize its
operation such that the communication delays

" Corresponding author. Tel.: +31 20 598 7748; fax: +31 20 598
7653.
E-mail address: michal@cs.vu.nl (M. Szymaniak).

the client-experienced latency, reducing the overall
length of client-to-replica network paths allows
one to localize the communication, leading to lower
backbone and inter-ISP link utilization. Analogous
benefits can be achieved for other large-scale distrib-
uted applications such as peer-to-peer overlays or
online gaming platforms.

1389-1286/$ - see front matter © 2008 Elsevier B.V. All rights reserved.

doi:10.1016/j.comnet.2007.11.022

1344 M. Szymaniak et al. | Computer Networks 52 (2008) 1343—1364

The effectiveness of latency-driven techniques in
improving the application performance depends on
the accuracy of the latency information. A simple
solution consists of periodically probing each
latency the application needs to know [6]. However,
such an approach makes sense only in relatively
small systems, as continuous probing of pair-wise
latencies is clearly not feasible when the number of
nodes is very large. For example, re-directing clients
to their nearest datacenters would require Google to
maintain latency information from virtually every
Web client in the Internet to each of its datacenters
[7]. Also, the high dynamics of the Internet causes
recently measured latencies to not always be a good
indication of their current counterparts, as one
latency measurement result is not a good predictor
of a subsequent identical measurement. These two
problems drive the need for scalable and accurate
latency estimation techniques.

A promising approach to the problem of scalable
latency estimation is GNP, which models Internet
latencies in a multi-dimensional geometric space
[8]. Given a small number of “base” latency mea-
surements to a number of dedicated “landmark”
nodes, GNP associates each node with its coordi-
nates in that space. The latency between any pair
of nodes can then be approximated with the Euclid-
ean distance between their corresponding coordi-
nates. What makes GNP scalable is the constant
low number of measurements necessary to position
each machine, which enables GNP to estimate all-
pair latencies between a large number of machines
at low cost.

The attractiveness of GNP has resulted in its var-
ious aspects being investigated for several years.
However, whereas numerous theoretical properties
of GNP have been described in detail [9-14], no
GNP implementation has been demonstrated to
work in a large-scale environment of a commercial
content delivery network.

The common property of existing GNP imple-
mentations that hinders their deployment is active
participation of positioned nodes, which are respon-
sible for measuring and propagating their own base
latencies [15-18]. Such an approach has several dis-
advantages. First, it introduces problems with mali-
cious nodes lying about their base latencies.
Handling such nodes is usually very hard, and typ-
ically comes at the expense of increased system com-
plexity. Second, independent measurements of base
latencies performed by many active nodes might
overload both the network and the landmarks. This,

in turn, might lead to numerous measurement inac-
curacies affecting the GNP performance. Finally,
active participation typically requires that some spe-
cial positioning software is deployed on a significant
fraction of positioned nodes. This condition might
be infeasible to meet, for example, in content deliv-
ery networks, where most nodes are unmodifiable
third-party Web browsers.

This article presents a GNP implementation that
addresses all these issues. Our solution is based on
two key observations. First, instead of relying on
remote nodes to measure and report their base laten-
cies, one can simply trigger some standard applica-
tion-level communication between these nodes and
the landmarks, allowing the latter to measure laten-
cies passively on their side. This eliminates the need
for customizing the remote nodes and ensures the
integrity of measurement results. Second, instead
of allowing remote nodes to independently perform
their measurements, one can trigger measurements
individually using a central, yet scalable, scheduler.
This prevents landmarks from overloads and
reduces the overall network overhead in general, as
the scheduler triggers only the measurements that
are really necessary. We demonstrate the feasibility
of our approach by incorporating GNP into the con-
tent delivery network operated by Google, which
enables us to position millions of Google clients.

Compared to the previous GNP implementa-
tions, our approach has several advantages. First,
it greatly facilitates system deployment, as only
the landmarks and the scheduler need to be instru-
mented. Second, it removes the problem of mali-
cious nodes, as all the instrumented nodes are kept
under full control of Google. Third, it eliminates
the risk of overloading the landmarks, as the sched-
uler effectively adjusts the measurement volume to
the landmark capacity.

Implementing our system at the scale of millions
of clients requires one to address a number of subtle
issues. For example, it is necessary to transparently
and efficiently schedule measurements such that
they do not affect the client-perceived browsing per-
formance. Also, implementing a centralized sched-
uler is far from trivial when millions of Web
clients are serviced by thousands of globally-distrib-
uted Web servers [19]. Finally, producing GNP
coordinates that can remain representative for a
long time requires that some special preprocessing
techniques are applied to base latencies.

Within the first 2 months of operation, our posi-
tioning system performed more than 75 million

M. Szymaniak et al. | Computer Networks 52 (2008) 13431364 1345

latency measurements to more than 22 million
unique Google clients. Using host clustering tech-
niques allowed us to compute the coordinates of
more than 200 million Internet hosts falling into
more than 880,000 of /24 networks. To our best
knowledge, this is the largest experiment involving
network positioning performed so far.

Our study confirms many earlier results, and
adds to them by extensively investigating the issue
of coordinate stability over time. Stability of results
is important from the perspective of maintaining a
large-scale distributed system, in which decisions
based on latency information often have long-last-
ing effects. This is what happens, for example, when
clients are re-directed using DNS, which can cache
and re-use re-directing decisions for a long time.
We show that coordinates drift away from their ini-
tial values with time, making 25% of the coordinates
to be off by more than 33 ms after one week. How-
ever, daily re-computations make 75% of the coor-
dinates stay within 6 ms of their initial values. We
also recommend to derive daily coordinates from
base latencies measured until around 10 pm UTC,
as it results in coordinates remaining representative
throughout the most of the next 24 hours.

Our another contribution to understanding the
practical applicability of GNP in real-life systems
is the performance analysis of coordinate-based cli-
ent re-direction. We demonstrate that using latency
estimates to decide on client-to-replica re-direction
leads to selecting replicas closest in term of mea-
sured latency in 86% of all cases. In another 10%
of all cases, clients are re-directed to replicas offering
latencies that are at most two times longer than
optimal. Also, we show that positioning Google cli-
ents makes it possible to estimate latencies between
globally distributed Internet hosts that have not
participate in our measurements. We treat this
result as an incentive to develop a new publicly
available Google service providing pairwise latency
estimates for Internet hosts.

The remainder of this article is structured as fol-
lows: We discuss a number of related research efforts
in Section 2. Then follows the description of our sys-
tem: Section 3 describes how we integrated GNP
into the Google infrastructure, Section 4 shows
how to compute stable coordinates, and Section 5
discusses our experience with GNP-based client re-
direction. Section 6 evaluates the performance of
our system as an application-independent latency
estimation service. Finally, Section 7 concludes by
summarizing our future development plans.

2. Related work
2.1. Internet node positioning

GNP was the first system to propose modeling
the Internet as an N-dimensional geometric space
[8]. Given such a space, GNP approximates the
latency between any pair of hosts as the Euclidean
distance between their corresponding coordinates
in that space.

The space is determined by the coordinates of
“landmark” hosts that GNP computes first. The
number of landmarks k& must be at least N+ 1 to
unambiguously determine the N-dimensional geo-
metric space. Given the k landmark coordinates,
GNP can compute the coordinates of any host X
based on the measured latencies between X and each
of the k£ landmarks. By treating these latencies as
distances, GNP triangulates the coordinates of X
relative to the landmark coordinates.

The landmark coordinates are computed as fol-
lows: First, GNP instructs the landmarks to mea-
sure their latencies to each other. Based on these
latencies, GNP calculates all the landmark coordi-
nates so that the distance between any pair of these
coordinates is as close as possible to the latency
measured between the corresponding pair of the
landmarks (see Fig. la). The discrepancy between
the distances and their corresponding latencies is
minimized using a popular error-minimization algo-
rithm called Simplex-downhill [20].

Once the landmark coordinates are known, GNP
can determine the coordinates of any host X based
on the measured latencies between that host and
each of the landmarks. The coordinates of X are cal-
culated so that the distance between these coordi-
nates and the coordinates of each landmark is as
close as possible to its corresponding measured
latency (see Fig. 1b). This is again achieved by means
of the Simplex-downhill algorithm. The GNP
authors show that, in 90% of cases, the latency esti-
mations produced by their system are within a rela-
tive error ratio of .53 compared to the real latency.

2.2. Positioning variants

A number of variants has been proposed to the
original GNP concept. The PIC project suggested
that at least some of the landmarks should be
located close to the positioned hosts to improve
the positioning accuracy [15]. When positioning a
global community of Web clients, this suggestion

1346 M. Szymaniak et al. | Computer Networks 52 (2008) 1343—1364

The Internet

O Landmark

“““““ Measured Latency
----- Calculated Distance

2-Dimensional
Euclidean Space

The Internet

O Landmark

“““““ Measured Latency
""" Calculated Distance
O Any CDN Component

2—-Dimensional
Euclidean Space

Fig. 1. GNP: landmark positioning (a), and host positioning (b).

is equivalent to that from another study, which rec-
ommends to globally distribute the landmarks in
order to achieve higher positioning accuracy [10].
We discuss some practical implications of these sug-
gestions in Section 3.1.1.

Another project established that the accuracy
and stability of coordinates can be improved by sta-
tistical filtering of latency samples used for position-
ing [14]. The intuition is that long-term coordinates
should not be affected by temporary and intermit-
tent network conditions such as network conges-
tion. This can be prevented by computing
coordinates based on latencies typical for given
landmark-host pairs. We verify these findings in
our experiments presented in Section 4.2. Compared
to [14], we rely on a much larger and more diverse
trace of latencies. We also investigate the issue of
how to determine typical latencies, and how often
the resulting coordinates need to be re-computed.

The issue of positioning scalability has been
addressed in the Lighthouses project [16]. It demon-
strated that hosts can also be positioned relative to
any previously positioned hosts, which in that case
act as “local” landmarks. This eliminates the need
for measuring latencies to the original landmarks
each time a host is positioned, in turn leading to a
distribution of the measurement effort resulting in
higher positioning scalability. However, as we show
below, one can position a huge community of Web
clients by relying on the original landmarks only, as
long as the measurements performed by the land-
marks are appropriately scheduled. This also
enables us to avoid the loss of accuracy that using
local landmarks inherently incurs.

Following the idea of Lighthouses, our earlier
SCoLE project showed that latencies estimated in
completely different spaces are highly correlated
[21]. Such correlation enables different hosts in a
distributed system to construct their own spaces

and effectively run their private GNP instances. This
improves system scalability, as there is no need for
all the members of the distributed system to negoti-
ate common GNP parameters. However, since our
Google implementation uses only one set of GNP
parameters, it does not benefit from these findings.

Other research efforts replace the Simplex-down-
hill computation used in GNP with simpler optimi-
zation schemes [11,13]. In fact, the selection of a
particular positioning algorithm is orthogonal to
the question of how to measure latencies required
for positioning, as long as all the algorithms require
the same set of latencies to be measured. We chose
to compute all the coordinates using the Simplex-
downhill algorithm recommended in the original
GNP paper, as it has performed well when used in
our other research projects.

The remaining efforts take a completely different
approach and position all hosts simultaneously as a
result of a global optimization process [9,17,22]. In
that case, there is no need to choose landmarks,
since every host is in fact considered to be a land-
mark. The respective authors claim that it leads to
better accuracy. However, Google cannot generally
rely on its clients to measure latencies to each other,
which renders these techniques unattractive in our
case.

2.3. Positioning implementations

A recent study by the authors of the original
GNP paper describes how to implement a global
Network Positioning System (NPS) based on GNP
[18]. The authors identify four key system-building
issues that must by addressed by any GNP imple-
mentation: maintaining a single global space, adapt-
ing to changes in Internet routes, handling
fluctuations in network latencies, and computing
positions as accurately as possible.

M. Szymaniak et al. | Computer Networks 52 (2008) 13431364 1347

NPS addresses the key building issues by orga-
nizing hosts interested in positioning into a distrib-
uted infrastructure in which each host periodically
recalculates its own coordinates. All the coordinates
are calculated in the same geometric space, deter-
mined by a fixed set of global landmarks. NPS pre-
vents these landmarks from becoming performance
bottlenecks by allowing the hosts to position them-
selves relative not only to the landmarks, but also to
any other ‘“reference” hosts whose coordinates are
already known. In that sense, NPS generalizes the
concept of local landmarks introduced by Light-
houses. On top of that, NPS enables each of the
landmarks to compute its coordinates locally by
means of a special scheme for decentralized land-
mark positioning, and exploits some other distrib-
uted algorithms to synchronize positions computed
by different hosts.

The distributed nature of NPS results in improved
scalability. However, it also forces NPS to deal with
a number of problems that result from the distribu-
tion itself, such as preventing malicious hosts from
being used as positioning references, synchronizing
distributed latency probing to prevent reference
hosts from being overloaded, or triggering host re-
positioning to maintain global consistency of coordi-
nates. Solving these problems makes NPS relatively
complex. On the other hand, following our central-
ized approach enables one to avoid all these prob-
lems without limiting the system scalability. As a
result, our solutions to the four key building issues
identified by NPS are much simpler.

3. System architecture

Using GNP to position Google clients seems to
be relatively simple. Essentially, the positioning pro-
cess can be split into three phases (see Fig. 2):
measuring base latencies, collecting the measure-
ment results, and modeling latencies in the form of
GNP coordinates. The coordinates can then be
passed to any latency-driven applications, such as
those responsible for client re-direction or replica
placement.

However, as it turns out, naive implementations
of either phase in a large-scale Internet service will
easily show poor results. This is caused by a number
of subtle problems that arise when deploying GNP
in a real-world setting. The following sections dis-
cuss how we addressed these problems when imple-
menting each phase of the positioning process.

iti ! Modeling ;
Poﬂgg? od Landmarks Subsystem Applications
Latency Measurement .
Measurements Reports Coordinates

Fig. 2. High-level concept of positioning implementation.

3.1. Landmark infrastructure

3.1.1. Landmark deployment

GNP computes the coordinates of each host
based on a number of so-called base latencies to that
host. Base latencies are measured by landmarks,
which must be deployed by the service. Deploying
landmarks essentially consists of three steps: decid-
ing on the number of landmarks, on their approxi-
mate location, and, finally, on the actual hosting
facility where they should be installed.

The first step is to decide on the number of land-
marks to deploy. Although GNP is able to compute
coordinates using any number of landmarks, previ-
ous studies have recommended running at least
seven landmarks to obtain good positioning accu-
racy [11,21]. Although we use that number of land-
marks in our experiments, in practice we also run a
number of redundant landmarks to increase the sys-
tem’s resilience to landmark failures.

The second step is to choose approximate geo-
graphical locations for the landmarks. As mentioned
in Section 2, the landmarks should be globally dis-
tributed. This is because GNP relies on the assump-
tion that vectors of landmark-to-host latencies are
different for hosts located in different parts of the
Internet. Should we fail to meet this assumption, then
the performance of GNP might turn out to be poor.

To confirm that global landmark distribution is
indeed necessary in practice, we evaluated the accu-
racy of GNP offered by various combinations of
landmarks located in different parts of the Internet.
To this end, we chose 20 PlanetLab nodes [23] to act
as candidate landmarks, and connected them to our
positioning system. This allowed us to collect a large
set of latencies between the candidate landmarks
and a small fraction of Google clients.

The clients in the set turned out to originate
from 113 countries, with the number of clients per

1348 M. Szymaniak et al. | Computer Networks 52 (2008) 1343-1364

country varying from 1 to many thousands. To
make the evaluation fair for all the countries, we
randomly picked 10 clients from each country.
For countries represented by less than 10 clients in
our trace, all the clients were included. The resulting
test set consisted of 616 clients.

Having generated the test set of clients, we
iteratively positioned them relative to various combi-
nations of seven landmarks. The subsequent combi-
nations consisted of manually selected landmarks
that were increasingly distributed in a geographical
sense. For each combination, we evaluated its offered
estimation accuracy based on the latencies measured
between the clients and the 13 PlanetLab nodes that
were not used for positioning. To this end, we calcu-
lated the relative estimation error &(-) for each such
latency similar to GNP:

CAJCL - dCL

e(d ,3 = |l
(< CL) min(dCL,dCL)

)

where do; and dg;, respectively, denote the mea-
sured and estimated latencies between client C and
landmark L. The distribution of estimation errors
observed for four example landmark combinations
is depicted in Fig. 3.

As can be observed, estimation accuracy is lowest
when all the landmarks are located in the US. The
combination consisting of four American- and three
European landmarks offers better accuracy, which
improves even further when three of the seven land-
marks are located in Asia (Tokyo, Singapore, and
China). The best accuracy is offered by the fourth
combination, wherein the landmark in Tokyo is
replaced with a Brazilian one. This confirms the
importance of global landmark distribution, and
allows for reaching estimation accuracy close to
those reported in our previous study [21]. Note that
this estimation accuracy might be improved further
by means of applying other embedding algorithms
[9,24].

The last step of landmark deployment is to
choose the actual hosting facilities where the land-
marks should be installed. It may seem attractive
to deploy landmarks in existing service datacenters
to benefit from hardware that is already in place.
However, the number or locations of such datacen-
ters may not meet the global landmark distribution
requirement. In that case, we need to decouple the
placement of landmarks from the locations of the
datacenters by constructing an infrastructure of
dedicated landmarks rented from third-party host-

CDF

Only US N
4US +3EU s
2US+2EU+3AP -
2US+2 I%U+2AP+Br:aziI

0.5 1 1.5 2
Relative Estimation Error

Fig. 3. Importance of landmark distribution.

ing facilities worldwide. In our experiments, we used
the best set of PlanetLab nodes as our landmark set.

3.1.2. Latency collector

All the latencies measured by the landmarks must
be collected and passed to some modeling compo-
nent for processing. However, the modeling compo-
nent typically runs in one of the datacenters. Given
that datacenters are normally tightly firewalled, the
landmarks deployed outside the datacenters cannot
contact the modeling component directly.

One solution to that problem would be to recon-
figure the datacenter firewalls to allow incoming
traffic from the landmarks. However, doing so poten-
tially exposes the service to attacks initiated from the
landmarks. The potential problem becomes even
worse when the landmarks are operated by external
organizations such as PlanetLab. This solution
should therefore be avoided unless there are no other
options available.

We therefore decided to follow another approach,
in which latencies are collected using network con-
nections opened from some dedicated component
residing in one of the datacenters o the landmarks.
This component, called a collector, retrieves latencies
from the landmarks and stores them in measurement
logs accessed by the modeling component. The col-
lector-to-landmark connections are protected with
SSL for secure communication.

3.2. Latency measurements

3.2.1. Measurement types

Once the landmark infrastructure has been
deployed, we can start collecting latencies. There
are essentially three kinds of latencies to be mea-

M. Szymaniak et al. | Computer Networks 52 (2008) 13431364 1349

sured. First, the landmarks must measure latencies
between each other, as GNP requires this informa-
tion to construct its geometric space. This can easily
be achieved by means of periodical active probing,
which is the simplest way of discovering latencies
between any two machines under our control.

Second, the landmarks must measure their laten-
cies to each datacenter so that the datacenters can be
positioned as well. Computing the coordinates of
datacenters is necessary to estimate client—datacen-
ter latencies, which can then be used during client
re-direction. Given that datacenters are operated
by the service, the landmarks can discover their
latencies to the datacenters by actively probing them
just like they probe each other.

Third, the landmarks must determine their laten-
cies to Google clients so that the coordinates of these
clients can be computed as well. However, we cannot
use active probing this time, as it is likely to trigger
various intrusion—detection systems deployed on
the client side. This could result in numerous client
complaints affecting the service reputation.

Rather than actively probing clients, the land-
marks can measure their latencies to the clients
without initiating any traffic to these clients. To this
end, the landmarks must rely on passive latency dis-
covery, wherein latency measurements can be
obtained by monitoring the service traffic and deriv-
ing the client latencies from the dynamics of packets
constituting that traffic.

A well-known technique for passive latency dis-
covery is the SYNACK/ACK method [25] It
enables a server to estimate its round-trip time to
a client when the client initiates a TCP connection
to the server. The round-trip time can then be esti-
mated during the TCP hand-shake phase as the
delay between sending the SYNACK packet and
receiving its corresponding ACK packet (see
Fig. 4). We chose this technique for its natural
applicability in Web systems, wherein network traf-
fic is typically carried over TCP connections.

TCP Handshake

Client Server
Syn

y
% }Round—trip Time

Fig. 4. Passive latency discovery with SYNACK/ACK.

3.2.2. Measurement triggering

Using SYNACK/ACK to measure the latency
between a client and a landmark requires that the cli-
ent opens a TCP connection to the landmark. How-
ever, the clients issue requests only to datacenters,
which are separated from the landmark infrastruc-
ture. We must therefore implement a mechanism
causing clients to open additional TCP connections
to the landmarks.

In general, Google clients are regular Web
browsers. A natural way to make them open TCP
connections to the landmarks consists of deploying
Web servers on the landmarks and instructing the
clients to fetch content from these Web servers.

We can easily instruct Web servers to fetch con-
tent from the landmarks by embedding some small
landmark-delivered objects inside Google Web
pages. A classical example of such objects is a tiny
image, which is commonly used by the providers of
Web site statistics to track site accesses [26]. How-
ever, the major drawback with such an approach is
that it makes the client experience dependent on
the landmark performance, as Web pages can be dis-
played in their final shape only after all their parts
have been retrieved. Datacenters are typically tuned
to offer reliable service of high quality to a huge
number of clients, but the landmarks are likely to
be incomparably less reliable and powerful. Should
any landmark face reliability or performance prob-
lems, then these failures may become visible to
users, and in turn compromise the overall service
performance.

Solving this problem requires that the landmark-
delivered objects are embedded in such a way that
the client-perceived service performance does not
depend on the landmarks. In particular, a Web
browser should be able to display complete service
responses even if the embedded objects cannot be
downloaded.

This transparency can be achieved in two ways.
First, the service might rely on JavaScript code
included in a response to retrieve a number of objects
from the landmarks after the response has been dis-
played [27]. This approach is appealing because Java-
Script is supported by most Web browsers. However,
the semantics of retrieval failures varies across differ-
ent JavaScript implementations, which makes it hard
to guarantee that running JavaScript code never
results in unexpected browser behavior [28]. Since
one of our priorities was to keep the user’s perception
of Google untouched, we decided not to risk compro-
mising it by using JavaScript.

1350 M. Szymaniak et al. | Computer Networks 52 (2008) 1343—1364

Another transparent way of embedding objects is
to use server-directed prefetching capabilities of cer-
tain browsers [29]. This technique enables a Web ser-
ver to instruct browsers to retrieve a given object
after the entire response has been displayed. Prefetch-
ing is typically used to accelerate the download of
Web documents that clients are likely to be request-
ing next [30]. However, it can also be used to trigger
the retrieval of landmark-delivered objects.

The service can pass prefetching instructions to
Web browsers in the form of special HTTP headers
or HTML tags embedded inside its responses [31].
Each such instruction contains the URL of an
object that a Web browser should retrieve. In con-
trast to regular object retrieval, however, Web
browsers keep their users unaware of any delays
or failures that might occur during prefetching. This
guarantees that prefetching does not affect client-
perceived service performance.

We decided to employ prefetching to trigger the
retrieval of landmark-delivered objects. To this
end, we modified Google Web servers to embed pre-
fetching instructions inside their responses such that
each tag points at an object hosted by some land-
mark. This causes the clients to open HTTP connec-
tions to the landmarks, which can then perform
passive latency discovery.

A potential limitation of prefetching is that it is
currently supported only by the Mozilla Firefox
Web browser [32]. This means that Google can only
trigger prefetching requests from approximately
13% of its clients [33]. However, prefetching features
are planned to be supported by the future releases of
Internet Explorer browser as well [34]. Also, mea-
suring latencies to a fraction of all the clients might
turn out to be enough to position all Internet hosts,
as we discuss next.

3.3. Measurement scheduling

The above sections have discussed two mecha-
nisms that enable the service to trigger latency mea-
surements: active probing and embedding of
prefetching instructions. Whereas the configuration
of active probing is relatively straightforward,
deciding on how to trigger measurements with pre-
fetching is much harder.

Obviously, the service needs to trigger all the mea-
surements necessary to position its clients. However,
while doing so, it should respect the following three
conditions: First, it should trigger only as many mea-
surements as each of the landmarks can handle, as

overloaded landmarks cannot measure latencies
accurately. Second, it should also keep the total num-
ber of measurements low to reduce client-side over-
head. Third, it should avoid triggering redundant
measurements to minimize network usage.

The following sections describe how our system
meets each of these three requirements using a cen-
tralized scheduling policy. We then propose how
such a policy can be implemented in a large-scale
system in which responses are simultaneously gener-
ated by the thousands of Web servers that constitute
the Google infrastructure [19].

3.3.1. Landmark load

In a naive approach, the service could include
prefetching tags in all its responses to perform as
many measurements as possible. However, doing
so would most likely lead to overloading the net-
work connections to the landmarks, resulting in
latencies being measured with high inaccuracies.

Overloading the landmarks can be avoided by
limiting the number of measurements performed
by each landmark. To this end, the service can
enforce some delay between subsequent measure-
ments scheduled to each landmark such that the
landmark capacity is never exceeded. The distin-
guishing property of this time-sharing scheme is that
it can be easily distributed over multiple scheduling
components, which we benefit from below. It is also
very easy to implement, as it only needs to maintain
a timestamp of the most recent measurement sched-
uled to each landmark.

3.3.2. Client clustering

Scheduling individual measurements should ulti-
mately result in collecting all the latencies necessary
to position all the clients. However, since the clients
might consider measurements to be an unnecessary
burden, the service should strive to minimize that
burden by reducing the number of measurements.

We decided to reduce the number of measure-
ments issued to the clients by means of clustering,
which is a popular technique for reducing the num-
ber of operations performed in a distributed system.
In principle, clustering groups machines into so-
called clusters, and performs the operations on a
per-cluster rather than on a per-machine basis. In
our case, clustering reduces the number of measure-
ments by grouping clients whose latencies to a given
landmark are very similar.

Efficient scheduling requires that clustering is fast,
which limits the selection of clustering schemes to

M. Szymaniak et al. | Computer Networks 52 (2008) 13431364 1351

very simple ones. An example of such a scheme is
clustering of machines whose IP addresses share the
same 24-bit prefix. We call each such cluster a /24 net-
work, and identify each such network with its 24-bit
prefix. Given that each /24 network can contain up to
254 machines, /24 clustering can reduce the number
of measurements by up to two orders of magnitude.

However, relying on /24 clustering when per-
forming latency measurement is possible only if
latencies measured to the clustered machines are
similar. To validate whether this condition is met
in the Internet, we calculated 10-90 percentile
ranges for latencies measured to different clients in
the same /24 networks.

The percentile ranges were calculated based on
the latency trace collected by our system. First, we
extracted latencies measured by the landmark run-
ning at MIT during a two-week period. The dura-
tion of two weeks was chosen to limit the impact
of routing changes on the observed latencies. Sec-
ond, we identified all the /24 networks containing
at least three different clients in the two-week trace.
The number of such networks turned out to be
28,540. Third, we obtained an indication of the
landmark’s latency to each client by calculating a
median for each landmark-client pair. Finally, for
all the clients in each network, we evaluated how
close their median latencies are to each other. To
this end, we calculated the 10-90 percentile range
over the set of medians, and divided that range by
the mean median latency for that network. The
resulting distribution of 10-90 percentile range coef-
ficients is depicted in Fig. 5.

As can be observed, in over 91% of /24 networks,
the coefficient of the 10-90 percentile range is lower
than.2. This means that, in 91% of /24 networks,

0.9 —
08

0rl/
06
05
0.4
03

0.2
0.1

CDF

0 0.2 0.4 0.6 0.8 1
10-90 percentile range (divided by mean)

Fig. 5. Variation of latencies to hosts within a /24 network.

median latencies to 80% of clients differ by at most
20%. Such a low variation enables the landmarks to
measure their latencies to any client in a network,
and treat these latencies as representative for any
other clients in that network. Note that /24 cluster-
ing enables to position all the clients in a given /24
network only if at least one of them supports pre-
fetching. According to our data, this condition is
met by about 85% of /24 networks containing Goo-
gle clients. The remaining clients can be positioned
when a more aggressive clustering scheme is used,
as we discuss in Section 6.

3.3.3. Redundant measurements

Positioning a /24 network requires measuring
latencies between that network and all the land-
marks. This can be achieved by triggering measure-
ments from a given /24 network to the landmarks in
a round-robin fashion. To this end, subsequent ser-
vice responses sent to each network contain pre-
fetching tags pointing at objects hosted by
subsequent landmarks.

A potential problem is that starting all the round-
robin sequences from the same landmark is likely to
cause that landmark to be fully loaded. In that case,
the mechanism responsible for limiting the land-
mark load will prevent many measurements from
being performed. The service can avoid this prob-
lem by using random initial landmarks in round-
robin sequences specific to different /24 networks.

Another problem with round-robin scheduling is
that it keeps triggering measurements from a given
network even after a complete set of landmark
latencies to that network has been collected. The
redundant measurements are of little use to the posi-
tioning system and might prevent the service from
triggering more useful latencies when the landmark
load increases.

We chose to avoid triggering redundant measure-
ments by simply limiting the number of round-robin
sessions to a given network. For example, once a
complete set of latencies has been collected for a
given network, no other measurements are triggered
to that network for some time. The duration of the
interval between sessions generally depends on how
often new coordinates are being computed. In the
current setup, we allow only one round-robin ses-
sion per /24 network every hour.

3.3.4. Scheduling policy
The complete scheduling policy consists of three
steps taking place every time a measurement can

1352 M. Szymaniak et al. | Computer Networks 52 (2008) 1343—1364

be triggered to some client. First, the policy deter-
mines the client’s /24 network by dropping the last
8 bits of the client’s IP address.

Next, the policy inspects the round-robin state
specific to that network and checks whether any
more measurements should be performed to it in
its current round-robin session. If not, then no mea-
surement is triggered. Otherwise, the policy identi-
fies the next landmark that should perform the
measurement.

Finally, the policy verifies the approximate load
of the selected landmark. If that landmark is cur-
rently overloaded, then no measurement is trig-
gered. Otherwise, the policy updates both the
round-robin state and the landmark load informa-
tion, and instructs the service to trigger a measure-
ment between the client and the landmark.

3.3.5. Scheduler separation

Although the scheduling policy is conceptually
simple, it is not obvious how to implement it in a
large-scale Web system. This is because it requires
the service to maintain state for round-robin land-
mark selection and an approximation of landmarks’
load. The service needs this information to decide
which of its generated Web pages should contain
prefetching instructions.

Unfortunately, given the large number and wide-
area distribution of Web servers in a large-scale
Web system, it is unlikely that they can efficiently
share state among them [19]. This is because of fre-
quent updates that make the state difficult to keep
consistent without degrading the scheduling perfor-
mance, even though the state itself is relatively small
(about 8 bytes for round-robin information per
cluster, plus another 8 bytes per landmark for the
load information).

Service Web server — @

Response containing
static prefetching tags

Prefetching request

Scheduling cluster —

/
prad

HTTP redirection

We decided to solve this problem by splitting the
measurement-triggering mechanism into two parts
(see Fig. 6): First, while responding to regular client
requests, the Web servers implementing the service
include static prefetching tags into a small fraction
of their responses. Static prefetching tags do not
point at any particular landmark. Instead, they
point at a dedicated cluster of Web servers taking
care of measurement scheduling.

The second part of the triggering mechanism is
implemented by the scheduling cluster. Each
machine in the cluster maintains its local scheduling
state, and processes an even share of all the requests
triggered by the static prefetching tags. For each
such request, it invokes the scheduling policy to
select the target landmark for the measurement that
the request can potentially trigger.

The scheduling policy might sometimes decide
not to trigger any measurement for a given prefetch-
ing request, for example when all the landmarks are
overloaded. In that case, the prefetching request is
serviced locally by the scheduling cluster. Note that
the scheduling cluster could even exploit the perfor-
mance-neutral nature of prefetching requests and
drop them completely.

Typically, however, the scheduling policy returns
the address of some landmark. The scheduling clus-
ter can then re-direct the prefetching request to that
landmark using an HTTP-302 response [31]. This
causes the clients to re-issue the prefetching request
to the landmark exactly as if the landmark address
was put in the prefetching tag embedded inside the
original service response. Note that although the
content prefetched from the landmarks is never dis-
played to the users, it can still contain some brief
information about the measurements being per-
formed. This helps preventing users from becoming

Regular client request
Cllent Web browser

Prefetchmg request
(redirected)

N— Landmark

Short HTTP response

Fig. 6. Two-phase measurement triggering.

M. Szymaniak et al. | Computer Networks 52 (2008) 13431364 1353

suspicious about the prefetching requests after they
are detected by client-side firewalls.

3.3.6. Web server logic

Embedding static prefetching tags prevents the
regular Web servers from maintaining any schedul-
ing state, as all the prefetching tags always point at
the URL of the scheduling cluster. However, the
Web servers must still be able to decide whether a
given response should carry a static prefetching
tag, or not. For now, we assume that Web servers
insert at most one prefetching tag per response.

One way of enabling the Web servers to decide
on insertion of prefetching tags would be to rely
on client identifiers embedded in service cookies.
In that case, the Web servers would include pre-
fetching tags in responses sent to clients holding
cookies with identifiers meeting the condition that

I])client % X = 07

where X denotes some divisor value, which can be
used to adjust the number of generated prefetching
tags to the capacity of the scheduling cluster. An
attractive property of this approach is that it keeps
triggering measurements from the same clients,
which should intuitively result in quickly collecting
multiple measurements required to position these
clients.

However, triggering measurements from the
same group of clients results in only a small fraction
of all the /24 networks being ultimately positioned.
This can be observed in Fig. 7a (the ‘Cookie’ line),
which indicates that only about 250,000 out of the
total 1.2 millions of client /24 networks were posi-
tioned after 300 hours.

600000

500000

400000

300000

200000

/

100000

Number of Positioned Networks

Cookie

Random -------mmo-

0 b= - L L

0 50 100 150 200 250 300

Time (hours)

The positioning coverage can be improved by
inserting static prefetching tags purely at random.
To this end, the Web servers include prefetching
tags when

random() % X =0,

where X can again be adjusted to the capacity of the
scheduling cluster. As can be observed in Fig. 7a
(the ‘Random’ line), this approach results in a larger
number of /24 networks being positioned in the long
run (500,000 after 300 hours), even though relying
on cookies might initially seem to perform better.

An interesting question is how many static pre-
fetching tags should be embedded in a single service
response once the decision has been made that there
should be any. Clearly, inserting more tags results in
triggering more measurements at the cost of increas-
ing the load at the clients and the landmarks. On the
other hand, collecting more measurements should
also result in a larger number of /24 networks being
positioned the same time, as the seven measure-
ments necessary to position each network are col-
lected faster.

Fig. 7b depicts the dependency between the num-
ber of positioned networks and the number of static
prefetching tags embedded in a single response. As
can be observed, inserting more prefetching tags in
a single response indeed helps to collect measure-
ments faster. For example, inserting four tags per
response allows for positioning more than 800,000
of /24 networks after about 450 hours, instead of
1200 hours necessary to position these networks
when only one prefetching tag is embedded. Inserting
seven tags per response, in turn, allows for reducing
that time to 160 hours, which is less than one week.

(on
-
o
o
+
o
&

- e

800000 e —

600000

400000

1 tag per response
2 tags per response
4 tags per response -
7 tags per response

300 600 900 1200 1500
Time (hours)

Number of Positioned Networks

200000

Fig. 7. Impact of different tag-embedding strategies (a), and different numbers of tags (b).

1354 M. Szymaniak et al. | Computer Networks 52 (2008) 1343—1364

Regular client request

Service Web server—

g

Response containing
static prefetching tags

Prefetching request

Scheduling cluster—

HTTP redirection

Short HTTP response

/ / (redirected)
z Landmark Collector

Client Web browser

Prefetching request

Measurement
log files

6
Measured latencies

@ — Modeler
7

@— Application

Coordinates

Fig. 8. Final system architecture.

3.4. Final architecture

The final system architecture is depicted in Fig. 8.
Latency measurements to the clients are triggered
by service Web servers, which embed static prefetch-
ing tags inside a fraction of their responses.

The prefetching tags cause the clients to issue
prefetching requests to the scheduling cluster, which
re-directs these requests to the landmarks according
to the scheduling policy. This causes the clients to
re-issue the requests to the landmarks, which per-
form latency measurements while delivering a short
system description. All the measured latencies are
reported to the collector.

Once the latencies have been collected, they are
stored in measurement logs. These logs are periodi-
cally retrieved by a special component called mod-
eler, which processes the latencies and computes
new sets of coordinates, as we discuss next.

4. Latency modeling

The modeler essentially performs two types of
tasks: First, it creates a geometric space by comput-
ing the landmark coordinates. Second, it computes
all the other coordinates relative to the landmark

coordinates. Since both these tasks require some
set of latencies as the input, it is tempting to directly
apply the positioning algorithm to the base latencies
stored in the measurement logs.

However, GNP requires its input to contain only
one indication of latency between a given pair of
machines. On the other hand, the measurement logs
produced by the controller are likely to contain mul-
tiple such indications, as each landmark typically
measures its latency to the same /24 network many
times. Since subsequent latency measurements
between the same pair of nodes are likely to return
fluctuating results, the modeler must preprocess the
measurement logs before their contents can be
passed to the GNP implementation.

4.1. Stable latencies

In principle, latencies measured between a given
landmark-node pair can fluctuate for two types of
reasons. The first types are temporary intermittent
conditions that do not affect long-term latencies
between landmarks and nodes, such as network
congestion and high CPU load. The second types
are route changes, which can permanently change
latencies between nodes. The goal of a good latency

M. Szymaniak et al. | Computer Networks 52 (2008) 13431364 1355

preprocessor is to eliminate fluctuations caused by
the intermittent conditions while remaining reactive
to permanent latency changes.

Clearly, network congestion can affect the
observed latencies. If the path between the land-
mark and the node is saturated, the measurement
packets are delayed by routers on the path, causing
the observed latency to be longer. Note that the ser-
vice should strive to reduce the impact of network
congestion by avoiding it on the landmark side. This
can be achieved by deploying the landmarks in host-
ing facilities providing hard bandwidth guarantees.

Apart from network congestion, latencies can
also fluctuate because of high CPU load on either
the node or the landmark. The problem with high
CPU load on the node is that it might prevent the
node from immediately responding to packets sent
by the landmark. This can result in observed laten-
cies being longer than they really are. On the other
hand, since the packets exploited by both ICMP
probing and SYNACK/ACK are handled entirely
by the operating system kernels, the delay caused
by high load of the node’s CPU is likely to be
negligible.

High load on the landmark presents a bigger
problem, as it can prevent the packet sniffer running
on the landmark from timestamping measurement
packets accurately. The resulting inaccuracies
strongly depend on sniffer implementation. We
therefore assume that the observed latencies can
not only be higher, but also lower than they really
are.

Given that temporary intermittent conditions
occur only occasionally, their resulting measure-
ment inaccuracies can be eliminated through statis-
tical filtering. To this end, the modeler could
maintain a history of latencies measured between
each landmark-node pair, and identify the real
latency for that pair as the one occurring most com-
monly in the history. This could be achieved by
means of medians, for example.

However, median latencies can change over time
as well. This is caused by long-lasting conditions,
such as route changes. As the route between the
landmark and the node changes, its corresponding
history of latencies contains more and more groups
of latencies, each measured for a different route. In
that case, medians calculated over complete latency
histories are not guaranteed to indicate current real
latencies.

We decided to detect route changes by applying
the sliding percentile concept to the latency history

[14]. To this end, it keeps only a specific number
of most recent measurements in each history, which
should result in history medians being closer to the
actual observed latencies.

We verified the impact of sliding percentiles on
measurements used for positioning. To this end,
we applied them to the latency trace collected by
our system, and evaluated their performance. The
trace spanned a period of six weeks and contained
latencies to Google clients measured by one of our
PlanetLab landmarks located in MIT. To ensure
fair comparison, we analyzed latencies to only the
10,000 networks that occurred most frequently in
the trace (57 times on average). The performance
of sliding percentiles was evaluated by calculating
the relative error between observed latencies and
their corresponding values after filtering with sliding
percentiles. The resulting error distribution for var-
ious configurations of sliding percentiles in depicted
in Fig. 9.

As can be observed, using sliding percentiles
indeed enables one to identify current latencies more
accurately, although the improvement is not very
high. However, these small improvements result in
significantly higher stability of coordinates, as we
demonstrate next.

4.2. Stable coordinates

Computing the coordinates for a given /24 net-
work enables one to estimate latencies between
hosts in that network and those in any other net-
work whose coordinates are already known. This
allows our request re-director to identify the data-
center that is closest in terms of latency to clients
in a given network, and re-direct these clients
accordingly.

CDF

Last Measurement
Median over 3 Latest Measurements ----------- .
Median overl‘;-) Latest Melasurementls """""""
0 0.1 0.2 0.3 0.4 0.5
Relative Estimation Error

Fig. 9. Stabilization of measured latencies.

1356

However, latency fluctuations cause the coordi-
nates to change over time. The degree of these
changes determines how useful the coordinates are
to make long-term decisions, which are important
for the above applications. For example, when cli-
ent requests are re-directed using DNS, it can cache
the responses produced by the re-directing DNS
servers for several hours, which causes the re-direct-
ing decisions based on coordinates produced by our
system to remain in effect for a relatively long time.

To investigate the influence of latency fluctua-
tions on GNP coordinates, we evaluated the stabil-
ity of coordinates produced by our system. We used
the trace of latencies between the landmarks and the
10,000 most popular /24 networks selected for the
previous experiment. We split the six-week trace
into two parts. The first part was two-weeks long
and was used as a basis to compute the initial coor-
dinates of all the /24 networks. The remaining part
of four weeks was used as a test trace, based on

2—Dimensional Geometric Space

T(n) - Coordinates ‘ Computed

after n hours

\

«_} Approximated

Fig. 10. Approximating missing coordinates.

a 100 T . . i . .
Last Measurement

< %0t Median-9 -------------]

8 80 Median-9 (recomputed) - .
o @
= E 70
8 c

o
% ?) %0 MM/\/‘\M
c o 50
S o
T —
o © 40
= € 30 /

o 20 / e

10 1 _
0 48 96 144 192 240 288 336

Time (hours)

M. Szymaniak et al. | Computer Networks 52 (2008) 1343—1364

which we investigated how the coordinates of /24
networks change over time in terms of distance to
their initial counterparts. To this end, for every test
trace hour, we re-computed the coordinates of all
the /24 networks for which latency measurements
were performed within that hour. This resulted in
re-positioning on average 1271 networks every
hour.

Ideally, at each hour, we would compute the dis-
tance between the current- and initial coordinates of
each /24 network. In many cases, however, due to
the lack of latency measurement within the last
hour, it is impossible to compute the current coordi-
nates directly. However, this does not mean that
these coordinates did not change during that hour,
but just that we did not measure latencies frequently
enough.

Fig. 10 depicts how we approximated the missing
coordinates for each network. Essentially, for each
pair of coordinates computed during subsequent
re-positioning operations, we assume that the miss-
ing coordinates between them change linearly. This
enabled us to calculate the coordinates of all the net-
works for each test trace hour.

We evaluate the changes in coordinates during
subsequent hours by calculating the median dis-
tance between the 10,000 coordinates calculated
for a given hour and their initial counterparts. As
shown in Fig. 11la, the coordinates change signifi-
cantly when computed based on the most recent
measurements (line ‘Last Measurement’). They also
seem to increasingly deviate from their initial values
over time, as the median distance between current
and initial coordinates generally increases with time.
However, this hypothesis was not confirmed by a

b 100 T . . i . .
Last Measurement
%0 ¢ Median-9 -------------]

80 [Median-9 (recomputed) - 1

I A A

AP i
|

60 i ¥
I

v L U

o e, ey

Median distance

ro i
Aty
|8 s ?"r}slﬁ)" k.
Aol
q‘..v.":"f S A
W :

from initial position (msec)
P
o O

96 144 192 240 288 336
Time (hours)

0 48

Fig. 11. Coordinate stability including approximated intermediate coordinates (a) and without them (b).

M. Szymaniak et al. | Computer Networks 52 (2008) 13431364 1357

number of case studies we performed for individual
networks. We therefore believe that the increasing
trend is caused not by large deviation in coordi-
nates, but by changes in the number of relatively
small deviations. This number increases with time,
as latencies to more and more networks become
affected by route changes, leading the coordinates
of these networks to be significantly different. The
result of aggregating such differences calculated
for 10,000 networks is the increasing trend in the
median distance between the current- and initial
coordinates.

Having observed the instability of coordinates
computed based on the most recent latency mea-
surements, we investigated whether the coordinate
stability can be improved by computing coordinates
based on latency measurements stabilized with slid-
ing percentiles. To this end, we performed an exper-
iment that was very similar to the previous one. The
only difference was that the networks were re-posi-
tioned based on latencies filtered using sliding per-
centiles. We used median latencies calculated over
the set of nine most recent measurements, including
the approximated ones. The results are depicted in
Fig. 11a (line ‘Median-9’).

As can be observed, sliding percentiles signifi-
cantly improve the stability of coordinates. How-
ever, they do not eliminate the increasing trend,
which limits the maximum time for which coordi-
nates can be relied upon. To overcome this problem,
each application would need to periodically re-com-
pute coordinates so that they meet its requirements
with respect to positioning accuracy. Line ‘Median-
9 re-computed’ in Fig. 11a shows that daily re-com-
putations can keep current coordinates within 8 ms
of their initial counterparts. Note that we obtained
similar results when performing the above experi-
ments without approximating intermediate node
coordinates (Fig. 11b).

How often coordinates should be re-computed
depends on a trade-off between the positioning
accuracy and the cost of computing and propagat-
ing the coordinates to the applications. To investi-
gate this trade-off, we ran the above experiment
with initial coordinates re-computed every X days,
for X between 1 and 7. For each of the resulting
seven simulations, we computed both the median-
and the 75th percentile of distances between current
coordinates and their most recently computed ““ini-
tial” counterparts.

The results in presented in Fig. 12. They indicate
that daily re-positioning reduces the median dis-

50
45
40
35
30
25
20 e
15 P

Median ———
75-percentile ------ Xemneas

Distance from
initial coordinates (msec)

10 o —

5 g e
,x"/' /
0% 1 > 3 4 5 6 7

Re-computation period (days)

Fig. 12. Impact of different re-computation periods.

tance between current- and initial coordinates to
only 1.53 ms, whereas re-computing coordinates
every week results in that distance being 11.94 ms.
However, the corresponding 75th percentiles of dis-
tances to initial coordinates are already 7.33 ms and
33.56 ms, respectively. In our experiments, we
decided to re-compute all the coordinates on a daily
basis, which, apart from offering very good stability,
also makes the system very responsive to changes in
network conditions.

When re-computing coordinates every day, an
interesting question is whether the coordinate stabil-
ity depends on the actual time of day when re-com-
putations take place. To answer this question, we
performed 24 simulations of daily re-positioning
based on our 4-weeks-long test trace. Each simula-
tion was configured to re-compute coordinates at
a different trace hour. We evaluated the resulting
stability by computing the 75 percentile of distances
between current- and initial coordinates observed
throughout the 24 trace hours after each re-posi-
tioning. The results are depicted in Fig. 13a.

As can be observed, the coordinates are most sta-
ble when re-computed around 10 pm UTC. In that
case, the coordinates are computed based on mea-
surements collected during busy Internet hours,
which account for day time in the US and evening
in Europe — the two continents where most of the
10,000 test networks are located. Our results indi-
cate that such coordinates remain representative
for the most of the 24 hours following the re-com-
putation, which results in 30%, or 2.5 ms, improve-
ment compared to re-computing at 10 am UTC,
when the stability is the worst. We believe that this
is because Internet latencies are most of the time
affected by network congestion commonly observed
during busy network hours.

1358

Y
N

75-Percentile ———

e

—_
o

W

7

Distance from
initial coordinates (msec)
D

0 6 12 18
Re-computation hour (0 means noon UTC)

24

Distance from
initial coordinates (msec)

M. Szymaniak et al. | Computer Networks 52 (2008) 1343—1364

50
45
40
35
30
25
20
15
10
5

o0 1 2 3 4 5 6 7

Re-computation period (days)

75-percentile, 10pm UTC
75-percentile, 10am UTC ------ Xemoees

Fig. 13. Impact of re-positioning hour on daily coordinate stability (a), and on coordinate stability in general (b).

For the sake of completeness, we also checked
how different re-positioning hours influence the sta-
bility of coordinates re-computed every 2 days or
more. To this end, we again simulated coordinate
re-computations every N days (for N from 1 to 7)
based on our test trace. We performed two simula-
tions, each configured to re-compute positions at a
different hour: 10 pm UTC and 10 am UTC. The
results are presented in Fig. 13b. As can be
observed, the improvement of 2.5ms remains
roughly constant irrespective of how often coordi-
nates are re-computed, which reduces its impact to
approximately 10% when re-computing coordinates
every 4 days or more.

5. Coordinate-based client re-direction

Deploying the positioning system enables Google
to implement various latency-driven applications
that shall improve access latency for its clients.
One of such applications is client re-direction: based
on the coordinates produced by GNP, we can re-
direct each client to a replica that is closest to that
client in terms of latency. To this end, we calculate
the distance between the coordinates of the client
and the coordinates of each replica, and select the
replica with the shortest distance to the client.

5.1. Absolute performance

We verified the efficiency of coordinate-based re-
direction. To this end, we positioned the 10,000 /24
networks based on the median latencies measured
between these networks and 20 candidate land-
marks deployed on PlanetLab nodes over a period

of six weeks. Each network was positioned relative
to the best set of seven landmarks identified in Sec-
tion 3.1.1. We chose 10 of the 13 remaining candi-
date landmarks to form a globally distributed set
of replicas. Next, for each replica, we calculated
its median measured latency to each network.
Finally, for each network, we determined its closest
replica based on the median measured latencies, and
matched that choice against that made based on
latencies estimated with coordinates. The results
are depicted in Fig. 14 (line ‘Popular’).

As can be observed, clients from 86% of /24 net-
works are re-directed to the replica closest to them
in terms of median measured latency. Also, clients
from another 10% of networks are re-directed to
replicas offering latencies at most two times longer
than the closest ones. Finally, only about 2% of net-
works are re-directed to replicas further than three
times than the closest ones. Note that the results

0.9
0.8
0.7 b
0.6
0.5
0.4
0.3
0.2

Popular (10,000)

Global (616) -----------

1 1.5 2 2.5 3
Ratio to optimal latency

CDF

Fig. 14. Efficiency of GNP-based replica selection.

M. Szymaniak et al. | Computer Networks 52 (2008) 13431364

presented in [24] indicate that employing alternative
embedding schemes might further improve the per-
formance of coordinate-based client re-direction.

We have also performed the above experiment
for the set of 616 globally-distributed clients that
we constructed in Section 3.1.1. The results are also
depicted in Fig. 14 (line ‘Global’). It shows that
coordinate-based re-direction selects the closest rep-
lica for clients in about 67% of globally-distributed
/24 networks, and replicas offering latencies at most
two times higher than optimal in for clients in
another 24% of such networks. We believe that
the suboptimal replica selection in the remaining
cases is caused by node mispositioning. Nodes are
typically mispositioned when they have long laten-
cies to all the landmarks, or when the latencies of
their network paths to the landmarks are self-incon-
sistent from the perspective of GNP, for example,
because of multi-homing [35]. Another reason for
suboptimal client re-direction decisions might be
short latencies between the client and more than
one replica. As discussed in Section 6.2, GNP posi-
tioning has a lower accuracy for low-latency estima-
tions. However, for such clients located close to the
replicas, one may consider that any re-direction
decision is acceptable.

5.2. Relative performance

Although GNP-based re-direction seems to per-
form well in terms of absolute latency values, it
has recently been suggested that absolute metrics
are not enough to completely evaluate re-direction
efficiency [36]. This is because re-directed clients
sometimes care more about relative dependencies

a 1
0.9

o7l [
0.6 |
05 /
0.4 |
0.3 /

/:

0.2 fifi
0.1t /

0 0.2

CDF

Popular (10,000)
Global (616) ----------

0.4 0.6
Relative Rank Loss

0.8 1

b

CDF

1359

between latencies to different replicas, rather than
about their absolute values. Such situations might
occur when relative ordering of nodes influences
the application behavior in terms of, for example,
data propagation strategy (e.g., gossiping order or
multi-cast tree structure).

The relative performance of GNP-based re-direc-
tion can be measured by means of another metric,
called Relative Rank Loss (rrl). For each client, it
creates two replica rankings: one calculated based
on measured client-to-replica latencies, and another
based on latency estimates provided by GNP. Given
the two rankings, the rrl of each client C can be
computed according to the following formula:

{(x,»)|x # y and swapped (x,y)}

meR = RIRI= 1) |

where R is the set of replicas, (x,y) are elements of
R x R, and swapped(x, y) is true when the relative
ordering of x and y is different in the two rankings
created for client C. rrl can also be interpreted as
the probability that swapped(x,y) is true for any
two different replicas.

We have computed rr/ values based the client
latencies from the test sets used to evaluate the
absolute performance of client re-direction. The
results are presented in Fig. 15a.

As can be observed, rr/ is lower than.2 for about
92% of frequent clients, and for about 65% of glob-
ally-distributed clients. For these clients, any pair of
replicas has only 20% chance to be re-ordered when
client-to-replica latencies are estimated with GNP.
Furthermore, according to our data, misordering
happens mostly when two replicas have very similar
latencies to the client. This can be observed in

o; —
ol

0.7

0.6 /

os |
0.4 /
0.3 /
0.2 fofes
0Ab g Popular (10,000)
.0 Global (616) ------------
0 25 50 75 100 125 150

Latency Loss upon Mis-Ordering (msec)

Fig. 15. Relative performance of client re-direction in terms of rrl (a), and latency (b).

1360 M. Szymaniak et al. | Computer Networks 52 (2008) 1343—1364

Fig. 15b, which depicts the distribution of differ-
ences in client-to-replica latencies when a misorder-
ing occurs. It shows that loss in client-to-replica
latency resulting from misordering is less than
50 ms for 95% of frequent- and 73% of globally-dis-
tributed clients.

5.3. DNS considerations

A potential problem when using client coordi-
nates for request re-direction is that large-scale
Internet services typically re-direct their clients using
DNS. In that case, the re-directing decisions are
made based on the addresses of client-side DNS
servers rather than on these of end clients themselves
[37]. Meanwhile, our positioning system can com-
pute coordinates only for /24 networks that contain
at least one Web client, which is relatively uncom-
mon for networks used by client-side DNS servers.
This means that the service might be unable to deter-
mine the coordinates of a DNS server, which in turn
makes it impossible to select the best replica for the
service clients which access that server.

We solve this problem by associating networks
containing Google clients with networks containing
DNS servers these clients use. To this end, one
could rely on network-aware clustering, which iden-
tifies co-located /24 networks as those falling within
the same BGP prefix [38]. However, this solution
implicitly assumes that clients typically use DNS
servers that belong to the same BGP prefix, which
has been shown to be false in most cases [39]. We
therefore exploit a proprietary mechanism that pre-
cisely discovers which DNS server is used by each
Google client. The details of this mechanism are
out of scope of this article.

6. Generic latency estimation service

Given that our system collects latency informa-
tion about millions of Internet hosts, it can poten-
tially be used to predict latencies between arbitrary
machines in the Internet, which are not necessarily
Google clients. Such a generic latency estimation
service could be useful for any application that
needs to estimate end-to-end latencies between
Internet hosts, such as a peer-to-peer overlay or a
third-party content delivery network.

In this section, we investigate to what extent our
system succeeds in predicting such latencies. To this
end, we evaluate the accuracy of latency estimates
predicted for hosts that have never been involved

in any operation performed by our system. Such a
non-involvement means that these hosts have never
been instrumented by our system, and that we have
never measured their base latencies in any way.
Instead, we determine the coordinates of these hosts
by simply taking the coordinates of their co-located
Google clients.

A potential problem at this stage is that our sys-
tem can estimate latencies only between /24 net-
works containing Google clients. However, while
using /24 clustering allows us to position a huge
number of Internet hosts, there are also many hosts
that cannot be positioned when such an approach is
followed. This is true for network servers, for exam-
ple, which are typically deployed in different net-
works than user machines. We circumvent this
problem by clustering Google clients into BGP pre-
fixes, and not into /24 networks. Such coarse-grain
clustering enables us to position more hosts at the
expense of potential loss in estimation accuracy, as
latencies to machines located in the same BGP pre-
fixes are likely to be more diverse than those to
machines located in the same /24 networks.

Fair accuracy evaluation requires that latency esti-
mates produced by our system are compared against
their corresponding measured latencies. We use two
datasets of measured latencies derived from third-
party latency traces, called PlanetLab and RIPE.
Both these datasets contain matrices of all-pair laten-
cies measured between a number of machines during
subsequent hours in November 2006. Each matrix is
specific to a different hour and contains minimum
latencies observed for given pairs of machines
throughout that hour. We chose to use minimum
latency values because they correspond to the “empty
path” latencies that our system is striving to estimate.

The estimation accuracy is evaluated by measur-
ing the relative difference between latencies found in
each dataset against their estimated counterparts.
To ensure the fairness of comparison, all the esti-
mates are computed based on the data collected
before their corresponding measurements were
performed.

6.1. PlanetLab latencies

The PlanetLab dataset contains latencies mea-
sured between 489 PlanetLab nodes. It was derived
from the latency trace collected by Jeremy Stribling
for his ““all-pair pings” project [40]. To this end, we
aggregated the original latencies (measured every
15 min) into hourly all-pair matrices.

M. Szymaniak et al. | Computer Networks 52 (2008) 13431364

We compare the dataset latencies against their
estimates provided for 327 (out of 489) PlanetLab
nodes whose coordinates we were able to derive
from base latencies measured to Google clients.
The total number of latencies analyzed is 39.6 mil-
lion (more than 50,000 per hourly matrix). For each
such latency, we calculate the relative latency esti-
mation error according to the formula introduced
in Section 3.1.1. The resulting distribution of error
values is depicted in Fig. 16a.

As can be observed, relative estimation error is
lower than.5 in approximately 83% of the cases,
which comes close to that reported in the original
GNP paper for hosts instrumented with GNP soft-
ware. More importantly, the high estimation accu-
racy is preserved over time. This can be observed
in Fig. 16b, which shows how the fraction of good
estimates (with error lower than .5) changes over
time.

Although the overall system performance for the
PlanetLab dataset is very good, a further investiga-
tion of error values reveals that the estimation accu-
racy varies depending on latency magnitude. This
can be observed in Fig. 16c, which depicts the distri-
butions of estimation errors for four different inter-
vals of measured latencies. The differences between
these distributions indicate that precise estimation
of very short latencies (25 ms or less) is very hard,
as opposed to predicting long latencies (100 ms or
more). These results make us believe that the high
estimation accuracy achieved for PlanetLab laten-
cies is partially caused by their favorable distribu-
tion, as more than 65% of them are longer than
100 ms. Another reason for such good results might
be that academic networks are generally less
dynamic than their commercial counterparts, which
makes latency estimation in academic networks
easier.

1361

6.2. RIPE latencies

The favorable properties of PlanetLab latencies
are not present in our second dataset. It contains
latencies measured by the infrastructure of 70 diag-
nostic stations deployed for the RIPE Test Traffic
Measurements project (TTM) [41]. The diagnostic
stations, called test-boxes, are deployed on the
backbones of various Internet Service Providers,
and used for evaluating and streamlining the com-
munication between these backbones. Given that
most of TTM ISPs are located in Europe, most of
the latencies between test-boxes are very short,
which makes them very hard to estimate accurately.

We evaluate the performance of our system
based on the RIPE dataset just as we did with
PlanetLab. First, we use BGP clustering to position
the test-boxes, which ultimately led to determining
GNP coordinates for 47 of them. Given these coor-
dinates, we calculate relative estimation errors for
latencies measured between these stations, which
leads to analyzing more than 1100 measurements
per hourly matrix. The resulting distribution is error
values depicted in Fig. 17a and c.

As can be observed, short latencies are indeed
very hard to estimate accurately. This severely
affects the overall performance, as 61.8% of RIPE
latencies are shorter than 50 ms. However, the accu-
racy of long latency estimates is far better: 70% of
them are off by less than .5. Also, similar as in the
case of PlanetLab, the estimation accuracy for
RIPE latencies is preserved over time (see Fig. 17b).

Based on the analysis performed with our two
datasets, we conclude that our system could be used
as a generic latency estimation service. It performs
very good when estimating long latencies, which
makes it particularly suitable for predicting latencies
between globally distributed hosts. As for short

a | b o 1 c
0.9 3 c 0.9 F
0.8 © S 0.8 0.8
07f £z 07}
w 06 / 3206 w 0.6
Qos f 59 g o0s
0.4 / c5 04 0.4
0.3 | 25 0.3 >100 msec (65.5%)
02 Sc 02 0.2 H 50-100 msec (17.3%) -
0.1 LE 01l 25-50 msec (10.6%) -
o = 0 ol <25 msec (6.6%) -
0 0.5 1 1.5 2 0 5 10 15 20 25 30 0 0.5 1 1.5 2
Relative Estimation Error Time (days) Relative Estimation Error

Fig. 16. PlanetLab latency estimation: relative error (a), accuracy over time (b), and accuracy for different latency intervals (c).

1362 M. Szymaniak et al. | Computer Networks 52 (2008) 1343—1364

a b c
1 o 1 1
0.9 8 < 0.9 [
0.8 T 308 0.8
0.7 E= 0.7
w 0.6 8 206 w 0.6
o “— T
o 05 5 2 R RPN | 8 0.5
0.4 c 5 04 0.4
0.3 o qt) 3t >100-msec (20.5%)
0.2 & = 02 50-100 msec (17.7%) -~
0.1 r = "25-50 msec (32.1%) -
o = 0 _ <25 msec (29.7%).
0 0.5 1 1.5 2 0 5 15 20 25 30 0 0.5 1 1.5 2

Relative Estimation Error

Time (days)

Relative Estimation Error

Fig. 17. RIPE latency estimation: relative error (a), accuracy over time (b), and accuracy for different latency intervals (c).

latencies, such as those found in the RIPE dataset,
they are very hard to estimate precisely, which is
an inherent problem with positioning-based latency
estimation. However, our system can still estimate
at least some of them with a reasonable degree of
accuracy.

7. Conclusions and future work

We have presented an implementation of GNP
incorporated into the Google content delivery net-
work. In contrast to all its previous counterparts,
our implementation does not rely on active partici-
pation of Web clients, as all the latency measure-
ments are performed passively by the landmarks.
The overhead incurred by latency measurements is
carefully controlled by a scalable centralized sched-
uler, which prevents both the landmarks and the net-
work from becoming overloaded. Deploying our
solution requires only a small number of CDN mod-
ifications, which makes it attractive for any CDN
interested in large-scale latency estimation.

Our system has been collecting latency informa-
tion about millions of Google clients for several
months. The analysis of these data enabled us to
confirm many of the results presented in earlier
research on GNP, and add to these results by inves-
tigating the issue of coordinate stability over time.
We have shown that coordinates drift away from
their initial values with time, making 25% of the
coordinates to become inaccurate by more than
33 ms after one week. However, daily re-computa-
tions make 75% of the coordinates stay within
6 ms of their initial values.

Apart from analyzing the behavior of GNP coor-
dinates over time, we have also discussed our expe-
rience with their practical applicability. We have
demonstrated that using coordinates to decide on

client-to-replica re-direction leads to selecting repli-
cas closest in term of measured latency in 86% of all
cases. In another 10% of all cases, clients are re-
directed to replicas offering latencies at most two
times longer than optimal.

Collecting a huge volume of latency data has
enabled us to estimate latencies between globally
distributed Internet hosts that have not participated
in our measurements. We have been able to deter-
mine the coordinates of such hosts by applying net-
work-aware clustering. The results are sufficiently
promising that Google may offer a public interface
to the latency estimates in the future. Such an inter-
face could be useful for any large-scale distributed
applications, including peer-to-peer overlays and
other content delivery networks. We plan on devel-
oping our system further by improving its scalability
using multiple schedulers, and by reducing the delay
between measuring base latencies and converting
them into fresh coordinates.

Acknowledgements

We would like to express our gratitude to all the
people who have made conducting this research
possible. In particular, Sean Knapp and James
Morrison, both from Google, helped us modify
the code of Google Web Search servers. Marius A.
Eriksen, another Google engineer, pointed us to
the prefetching functionality of Firefox. Larry L.
Peterson from the PlanetLab Consortium enabled
us to deploy our landmarks on port 81 of PlanetLab
nodes. Henk Uijterwaal from the RIPE Network
Coordination Centre provided us with the latency
data from the Test-Traffic Measurement project. Fi-
nally, we would like to thank all the anonymous
reviewers for their useful comments that have
helped us improve this article.

M. Szymaniak et al. | Computer Networks 52 (2008) 13431364 1363

References

[1] M. Zari, H. Saiedian, M. Naecem, Understanding and
reducing Web delays, IEEE Computer 34 (12) (2001)
30-37.

[2] F. Dabek, J. Li, E. Sit, J. Robertson, F. Kaashoek, R.
Morris, Designing a DHT for low latency and high
throughput, in: Proceedings of the Ist Symposium on
Networked Systems Design and Implementation, USENIX,
March 2004.

(3] J. Pereira, L. Rodrigues, A. Pinto, R. Oliveira, Low latency
probabilistic broadcast in wide area networks, in: Proceed-
ings of the 23rd International Symposium on Reliable
Distributed Systems, IEEE Computer Society, New York,
October 2004.

[4] M. Szymaniak, G. Pierre, M. van Steen, Latency-driven
replica placement, in: Proceedings of the 2005 International
Symposium on Applications and the Internet, IEEE Com-
puter Society, New York, February 2005.

[S] L. Amini, H. Schulzrinne, Client clustering for traffic and
location estimation, in: Proceedings of the 24th International
Conference on Distributed Computing Systems, IEEE
Computer Society, New York, March 2004.

[6] R. Wolski, N. Spring, J. Hayes, The network weather
service: a distributed resource performance forecasting
service for metacomputing, Future Generation Computer
Systems 15 (5-6) (1999) 757-768.

[7]1 S. Brin, L. Page, The anatomy of a large-scale hypertextual
Web search engine, Computer Networks and ISDN Systems
30 (1-7) (1998) 107-117.

[8] T.S. Eugene Ng, H. Zhang, Predicting Internet network
distance with coordinates-based approaches, in: Proceedings
of the 21st INFOCOM Conference, IEEE Computer Soci-
ety, New York, June 2002.

[9] Y. Shavitt, T. Tankel, Big-bang simulation for embedding
network distances in Euclidean space, in: Proceedings of the
22nd INFOCOM Conference, IEEE Computer Society, New
York, April 2003.

[10] S. Srinivasan, E. Zegura, An empirical evaluation of
landmark placement on Internet coordinate schemes, in:
Proceedings of the International Conference on Computer
Communications and Networks, IEEE Computer Society,
New York, October 2004.

[11] L. Tang, M. Crovella, Virtual landmarks for the Internet, in:
Proceedings of the Internet Measurement Conference, ACM,
New York, October 2003.

[12] R. Cox, F. Dabek, F. Kaashoek, J. Li, R. Morris, Practical,
distributed network coordinates, in: Proceedings of the 2nd
Workshop on Hot Topics in Networks, ACM, New York,
November 2003.

[13] H. Lim, J. Hou, C. Choi, Constructing Internet coordinate
system based on delay measurements, in: Proceedings of the
Internet Measurement Conference, ACM, New York, Octo-
ber 2003.

[14] P. Pietzuch, J. Ledlie, M. Seltzer, Supporting network
coordinates on PlanetLab, in: Proceedings of the 2nd
Workshop on Real, Large Distributed Systems, USENIX,
December 2005.

[15] M. Castro, M. Costa, P. Key, A. Rowstron, PIC: Practical
Internet coordinates for distance estimation, Technical
Report MSR-TR-2003-53, Microsoft Research, September
2003.

[16] M. Pias, J. Crowcroft, S. Wilbur, T. Harris, S. Bhatti,
Lighthouses for scalable distributed location, in: Proceedings
of the 2nd International Workshop on Peer-to-Peer Systems,
February 2003.

[17]1 F. Dabek, R. Cox, F. Kaashoek, R. Morris, Vivaldi: a
decentralized network coordinate system, in: Proceedings of
the SIGCOMM Conference, ACM, New York, August
2004.

[18] T.S. Eugene Ng, H. Zhang, A network positioning system
for the Internet, in: Proceedings of the 4th Symposium on
Internet Technologies and Systems, USENIX, June
2004.

[19] L. Barroso, J. Dean, U. Holzle, Architecture, Web search for
a planet: the Google cluster, IEEE Micro 23 (2) (2003) 22—
28.

[20]J. Nelder, R. Mead, A simplex method for function
minimization, The Computer Journal 4 (7) (1965)
308.

[21] M. Szymaniak, G. Pierre, M. van Steen, Scalable cooperative
latency estimation, in: Proceedings of the 10th International
Conference on Parallel and Distributed Systems, IEEE
Computer Society, New York, July 2004.

[22] M. Waldvogel, R. Rinaldi, Efficient topology-aware overlay
network, in: Proceedings of the 1st Workshop on Hot Topics
in Networks, ACM, New York, October 2002.

[23] The PlanetLab Project Web page, <http://www.planet-
lab.org/> (accessed: 21.05.07).

[24] Y. Shavitt, T. Tankel, The curvature of the Internet and its
usage for overlay construction and distance estimation, in:
Proceedings of the 23rd INFOCOM Conference, IEEE
Computer Society, New York, April 2004.

[25] M. Andrews, B. Shepherd, A. Srinivasan, P. Winkler, F.
Zane, Clustering and server selection using passive monitor-
ing, in: Proceedings of the 21st INFOCOM Conference,
IEEE Computer Society, New York, June 2002.

[26] The Site Meter Web page, <http://www.sitemeter.com/>
(accessed: 21.05.07).

[27] R. Kokku, P. Yalagandula, A. Venkataramani, M. Dahlin,
NPS: A non-interfering deployable Web prefetching system,
in: Proceedings of the 4th Symposium on Internet Technol-
ogies and Systems, USENIX, March 2003.

[28] C. Wootton, JavaScript Weirdness, Web Developer’s Jour-
nal, 1999, <http://www.webdevelopersjournal.com/>.

[29] D. Fisher, G. Saksena, SYNOPSIS: Link prefetching in
Mozilla: a server-driven approach, in: Proceedings of the 8th
International Workshop on Web Content Caching and
Distribution, IBM Research, September 2003.

[30] D. Duchamp, Prefetching hyperlinks, in: Proceedings of the
2nd Symposium on Internet Technologies and Systems,
USENIX, October 1999.

[31] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P.
Leach, T. Berners-Lee, Hypertext transfer protocol - HTTP/
1.1. RFC 2616, IETF, June 1999.

[32] The Mozilla Firefox Web page, <http://www.mozilla.com/
firefox/> (accessed: 21.05.07).

[33] N. Brinkman, Mozilla’s browsers global usage share is still
growing, Onestat.com, July 2006.

[34] V. Kudallur, IE7 networking improvements in content
caching and decompression, MSDN Blog, October
2005.

[35] H. Zheng, E. Keong Lua, M. Pias, T. Griffin, Internet
routing policies and round-trip times, in: Proceedings of the

1364 M. Szymaniak et al. | Computer Networks 52 (2008) 1343-1364

Passive and Active Measurement Workshop, Springer, New
York, March 2005.

[36] E. Keong Lua, T. Griffin, M. Pias, H. Zheng, J. Crowcroft,
On the accuracy of embeddings for Internet coordinate
systems, in: Proceedings of the Internet Measurement
Conference, ACM, New York, October 2005.

[37] A. Shaikh, R. Tewari, M. Agrawal, On the effectiveness of
DNS-based server selection, in: Proceedings of the 20th
INFOCOM Conference, IEEE Computer Society, New
York, April 2001.

[38] B. Krishnamurthy, J. Wang, On network-aware clustering of
Web clients, in: Proceedings of the SIGCOMM Conference,
ACM, New York, August 2000.

[39] Z. Morley Mao, C. Cranor, F. Douglis, M. Rabinovich, O.
Spatscheck, J.A. Wang, Precise and efficient evaluation of
the proximity between Web clients and their local DNS
servers, in: Proceedings of the Annual Technical Conference,
USENIX, June 2002.

[40] J. Stribling, All-pairs Ping Data for PlanetLab, <http://
pdos.csail.mit.edu/~strib/pl_app/> January 2006.

[41] F. Georgatos, F. Gruber, D. Karrenberg, M. Santcroos, A.
Susanj, H. Uijterwaal, R. Wilhelm, Providing active mea-
surements as a regular service for ISP’s, in: Proceedings of
the Passive and Active Measurements Workshop, RIPE,
April 2001.

Michal Szymaniak is a Ph.D., candidate
in the Computer Systems group at the
Vrije Universiteit Amsterdam. His
research focuses on large-scale distrib-
uted systems for content delivery in the
Internet. He is a student member of the
IEEE and the ACM. He holds a double
MSc in Computer Science from Warsaw
University (Poland) and from the Vrije
Universiteit Amsterdam.

Dr David Presotto holds the title of
Fashion Icon at Google. He is head
wrangler for the Google flamingo herd
and in his spare time is responsible for
Google’s load balancing, DNS, and
CDN. He obtained a high school
diploma from The Boston Latin School.
David has the twin distinction of being
deported from both Switzerland and
Yugoslavia (pre break up).

Guillaume Pierre is an assistant professor
in the Computer Systems group at the
Vrije Universiteit Amsterdam. He has
been working in the field of Web-based
systems for many years. He is a member
of the IEEE and an editorial board
member of IEEE DSonline. He holds an
MSc and a Ph.D., in Computer Science
from the University of d’Evry-val
d’Essonne (France).

Maarten van Steen is a full professor in the
Computer Systems group at the Vrije
Universiteit Amsterdam. He is head of a
research team developing large-scale dis-
tributed systems. Besides Web-based sys-
tems, his research interests include peer-
to-peer and gossip-based distributed sys-
tems. He is senior member of the IEEE
and member of the ACM. He holds an
MSc in Applied Mathematics from
Twente University and a Ph.D., in Com-
puter Science from Leiden University.

