
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Broker-placement in latency-aware peer-to-peer networks

Paweł Garbacki a,*, Dick H.J. Epema a, Maarten van Steen b

a Faculty of Electrical Engineering, Mathematics, and Computer Science, Delft University of Technology, P.O. Box 5031,

2600 GA Delft, The Netherlands
b Department of Computer Science, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands

Received 9 April 2007; received in revised form 3 February 2008; accepted 12 February 2008
Available online 19 February 2008

Responsible Editor: Dr. I.F. Akyildiz

Abstract

In large peer-to-peer (P2P) overlay networks, nodes usually share resources to support all kinds of applications. In such
networks, a subset of the nodes may assume the role of broker in order to act as intermediaries for finding the shared
resources. When some notion of distance between nodes such as the internode latency is defined, a brokers may be respon-
sible for maintaining information about resources shared by a group of nodes that are close to each other, with the set of
nodes assigned to a broker being determined by the broker’s location. In this paper, we present a broker-placement algo-
rithm that finds a suitable location for a new broker when some broker is overloaded in such a way that some of the nodes
are reassigned from the overloaded to the new broker. With latency as a metric, an overlay network can be embedded in an
Euclidean space Rd , and our algorithm amounts to an optimization problem of selecting a suitable region in Rd for broker-
placement, where a region represents equivalent broker locations. Our algorithm guarantees that if suitable regions exist,
one of them will be found. The worst-case complexity of the algorithm is Oðndþ1Þ with n the number of nodes that may be
assigned to the new broker, which is optimal up to a linear factor in n. We further show a simple optimization that brings
down the complexity of the algorithm to a linear function of n in most of the cases. The linear complexity of the broker-
placement algorithm is confirmed in a series of experiments on a real dataset. In addition, the performance of our broker-
placement algorithm is compared to the performance of a naive approach, and it turns out that in a system with one mil-
lion servers and one hundred brokers, our broker-placement algorithm is roughly 150 times more efficient.
� 2008 Elsevier B.V. All rights reserved.

Keywords: Peer-to-peer; Resource brokerage; Broker-placement; Content delivery network

1. Introduction

With the advent of peer-to-peer overlay networks,
we are gradually seeing a new generation of fully
decentralized Internet applications that rely on
resources spread across the Internet and owned by
different organizations and users. In principle, these

1389-1286/$ - see front matter � 2008 Elsevier B.V. All rights reserved.

doi:10.1016/j.comnet.2008.02.003

* Corresponding author. Tel.: +31 15 2784571; fax: +31 15
2786632.

E-mail addresses: p.j.garbacki@tudelft.nl (P. Garbacki),
d.h.j.epema@tudelft.nl (D.H.J. Epema), steen@cs.vu.nl (M. van
Steen).

Available online at www.sciencedirect.com

Computer Networks 52 (2008) 1617–1633

www.elsevier.com/locate/comnet

Author's personal copy

networks may consist of tens of thousands to mil-
lions of nodes, and so finding and sharing the
resources that are suitable for a specific application
may turn out to be a formidable task. A standard
solution to this problem is to make use of special
nodes called brokers. A broker collects resource
information from a set of nodes so that it can assist
other nodes in finding and obtaining resources.
Nodes submit resource location queries to their bro-
ker and receive results from it. In this paper, we
assume that resource brokering is just an extra func-
tionality of a set of selected nodes. These nodes, in
addition to their original role as resource providers,
cooperate in sharing resources in a peer-to-peer
overlay network. Any node that satisfies particular
requirements such as high availability or processing
power may become a broker. From this perspective,
brokers may be seen as super-peers [38].

A broker can be viewed as a representative of a
collection of nodes that share resources, and should
therefore be able to handle a certain load of requests
for resources. Clearly, having only a single broker
for an entire overlay network may easily lead to a
performance and availability bottleneck. On the
other hand, if a broker represents only a few nodes,
it can hardly be more effective than when resource
requests are sent to each node individually. In con-
clusion, a broker should represent a group of nodes
that is large enough to be effective, but at the same
time it should be prevented from becoming a bottle-
neck because it is representing too many nodes.

In addition to this size requirement, a broker
should preferably also represent a group of nodes
that are in each other’s proximity. In Internet-scale
systems, network proximity is important for perfor-
mance reasons. Not only should clients be serviced
from nearby nodes to minimize latency, exploiting
proximity is also important for keeping network
traffic as local as possible. This locality, in turn, will
generally lead to reduced link stress, that is, the
number of packets from an overlay network that
cross the same link in the underlying physical net-
work. Achieving low link stress is an important
design objective for many overlay networks.

In this paper, the broker-selection process is per-
formed in two phases. First a node that will act as a
broker is selected. The goal of the second step is to
assign nodes that share resources to the newly
selected broker. In this paper, we concentrate on
the second phase, assuming that the broker node
has already been selected. This paper was inspired
by our work on Globule [25,26], in which brokers

are used for selecting good locations for placing rep-
licas of Web documents.

For the second phase, we take internode latency
as our metric for proximity. The second phase then
essentially reduces to identifying an appropriately
sized group of nodes that are in each others vicinity.
To this end, we place nodes in a d-dimensional
Euclidean space in which the distance between two
nodes is an estimate of the actual latency between
those nodes. The viability and practical applicability
of this approach has been extensively researched
[6,14,15,21,23,33,34]. It has been also shown that
in the Internet environment a value of d equal to 6
is sufficiently large to accurately approximate the
internode latency [33]. Each node is then assigned
to a broker, such that nodes that have been assigned
to the same broker are guaranteed to be close to
each other.

In this paper, we present an algorithm for placing
(selecting a logical location for) a new broker when
some broker gets overloaded. This algorithm is of
worst-case complexity Oðndþ1Þ with n the number
of servers that may be assigned to the new broker,
which we show to be optimal up to a linear factor
in n. However, a simple optimization allows us to
reduce the complexity of the algorithm to a linear
function of n in most of the cases. The main idea
of our algorithm is to identify suitable regions for
placing a new broker by intersecting at most d

spheres in Rd centered at the nodes’ locations. The
radius of such a sphere is the distance between the
server at the center and its current broker.

The rest of this paper is organized as follows.
Section 2 discusses related work. In Section 3, we
present our problem statement, give some defini-
tions, and prove basic facts. Section 4 contains
our broker-placement algorithm, and Section 5 dis-
cusses its complexity and proposes improvements.
The broker-placement algorithm is evaluated in Sec-
tion 6. We conclude in Section 7 with a brief sum-
mary and some remarks on the deployment of our
algorithm in a real environment.

2. Related work

A form of resource brokerage is represented by
super-peer networks [17–19,38]. Super-peers, which
are equivalents of brokers, are selected from among
the higher capacity peers. Each super-peer repre-
sents a group of peers, which are called weak peers
in the context of a super-peer network. The role of a
super-peer depends on the type of the P2P network.

1618 P. Garbacki et al. / Computer Networks 52 (2008) 1617–1633

Author's personal copy

In file-sharing networks such as Kazaa [1], Gnutella
with ultrapeers [31], and Chord with super-peers
[17], super-peers are responsible for locating content
on behalf of their weak peers. Skype [3] and Tribler
[28] select super-peers from high-capacity nodes and
use them as system access points for bootstrapping
new peers. The properties of weak peers can be
exploited while assigning them to the super-peer
nodes. For instance, the self organizing super-peer
network based on two-level caching [7,8] exploits
the semantic similarity between peer interests by
grouping peers with similar interests under the same
super-peer. To the best of our knowledge, none of
the existing super-peer networks use inter-node
latency as criterion for grouping weak peers.

The latency between network nodes determines
the service quality when the P2P overlay provides
an infrastructure for delivery of relatively small con-
tent items such as Web pages. Content Delivery
Networks (CDNs) [25,36] based on P2P architec-
tures such as the Globule network [26] replicate con-
tent over peers hosting mirrored Web servers. The
replicas of Web content are strategically placed clo-
ser (in terms of the latency) to the requesters [9,34].
To alleviate the process of selecting a suitable server
for the Web content replica, the servers as well as
end users issuing the requests for the content are
embedded in an Euclidean space where the distance
between points approximates the latency between
the corresponding nodes [21,24,34]. The abstraction
of the latency space makes it possible to compute
the concentration points of end users and place
replicas on the servers closest to those concentration
points [34]. Resource brokers representing groups
of servers improve the performance and robust-
ness of locating servers for the same reasons why
super-peers improve the performance of locating
content.

In this paper, we assume that a broker represents
a group of peers (e.g., Web servers) located close to
each other in the latency space. Hence, a server sit-
uated in the desired area of the latency space can be
located by consulting the broker responsible for that
area. The concept of dividing the search space into
disjoint areas which are maintained by the nodes
of the overlay network has been addressed in the
design of the content addressable network (CAN)
[29,30]. However, CAN requires that the area main-
tained by a node has a shape of a hyper cuboid
(multi-dimensional box). Therefore, CAN cannot
be used to directly locate a server closest to a desired
point in the Euclidean latency space.

3. The problem of broker-placement

In this section, we formulate the broker-place-
ment problem. First we present the model of the sys-
tem where distributed resources are located through
a brokering layer. Then we introduce the terminol-
ogy and establish some basic facts used in the rest
of the paper. Finally, we formally define the bro-
ker-placement problem with the help of the intro-
duced terminology and present an illustrative
example of a problem instance and a corresponding
solution.

3.1. System model

We consider a network of nodes sharing
resources in a peer-to-peer fashion. Examples of
these resources are disk space, network link band-
width, and CPU cycles. The resources are selected
based on the latency characteristics of the node
where these resources reside. A typical example of
a latency sensitive distributed infrastructures are
content delivery networks [32]. Nodes in such a net-
work are traditionally called servers. Adopting this
naming convention, we shall refer to the nodes in
our resource sharing network also as servers.

Each server is assigned a point in the latency

space, which is a d-dimensional Euclidean space
where distance between any two nodes approximates
the latency between these nodes [34]. Positions in the
latency space are used to identify nodes with certain
latency characteristics. Taking a content delivery
network as an example, it may be required to find
a suitable server to host a replica of a web page close
to the clients that access this web page. A server clos-
est to the positions of the clients in the latency space
can then be selected [34].

As the system size grows to reach millions of
servers, efficient location of resources with certain
characteristics becomes a scalability issue. A com-
mon approach to distributed resource management
introduces a bridge between resource requesters and
resource providers in the form of a brokering layer.
A broker maintains information on the resources
shared by a set of servers.

With server latency as the primary resource selec-
tion criterion, it is reasonable to assume that bro-
kers are assigned servers with similar latency
properties, i.e., located close to each other in the
latency space. We define a simple rule of assigning
servers to brokers (server-to-broker assignment rule):
a server is assigned to the closest broker in terms of

P. Garbacki et al. / Computer Networks 52 (2008) 1617–1633 1619

Author's personal copy

the distance in the latency space. The area of the
latency space composed of the points located closer
to a particular broker than to any other broker in
the system is called the broker’s responsibility region
(see Fig. 1). This way of defining the server-to-bro-
ker assignment has several advantages. First, the
correlation between the latency characteristics of
the broker and its servers leads to an easy solution
of the resource location problem. A resource loca-
tion request can be simply redirected to the broker
closest to the desired location of the resource
[10,4,12]. The target broker will then select a
resource located at one of the available servers
assigned to it. Second, the server-to-broker assign-
ment rule guarantees that each server always has a
well-defined broker also in the presence of broker
node failures. Namely, when a broker unexpectedly
leaves the system, all its servers are automatically
reassigned to their second-closest brokers.

Resource brokers are not dedicated machines, but
instead are selected from the population of servers.
In this respect resource brokerage is just an addi-
tional functionality assigned to servers with addi-
tional capacities such as more processing power,
higher availability, or more bandwidth. The concept
of a broker relates to the notion of a super-peer [38].
Since brokers are not directly involved in the interac-
tion between servers and their clients, the latency
properties of the brokers do not have influence on
the system performance and can thus be ignored in
the broker-selection process. To keep the properties
of the latency-driven server-to-broker assignment
rule while having the flexibility of assigning servers
to brokers based on non-latency factors, we allow
each broker to freely select its logical location in
the latency space. The logical location is independent
of the broker’s latency-based location and is used

exclusively to identify the set of servers assigned to
the broker. The server-to-broker assignment rule
can be redefined using the logical location as follows:
a server is assigned to the broker with the closest log-
ical location in the latency space. The notion of a
broker’s logical location is illustrated in Fig. 1. In
the rest of the paper, unless explicitly stated other-
wise, the term ‘‘broker’s location” refers to a bro-
ker’s logical location.

The responsibility of the brokers is to constantly
monitor the resources shared by their servers. Mon-
itoring includes keeping track of relatively static
information such as available software libraries,
but may also include highly dynamic information
such as the current disk space usage, CPU utiliza-
tion, memory consumption, etc. The server moni-
toring activities combined with the handling of
resource location requests can impose a significant
load on a broker node. To prevent a broker from
becoming overloaded, a mechanism to decrease
the load imposed on a broker reaching its capacity
limit is required. The flexibility in defining a bro-
ker’s location suggests a natural solution to this
problem. In order to offload an overloaded broker,
a new broker can be logically placed in the proxim-
ity of (the logical location of) the overloaded bro-
ker. As a consequence of the server-to-broker
assignment rule, some of the servers currently
assigned to the overloaded broker will be reassigned
to the new broker. The rest of this paper describes
the method of selecting the (logical) location in the
latency space of the new broker.

3.2. Formal background

The broker-placement problem can be translated
into a geometric problem in Euclidean space where

logical broker location

border of the broker’s responsibility region

Fig. 1. Node dependencies in two-dimensional latency space.

1620 P. Garbacki et al. / Computer Networks 52 (2008) 1617–1633

Author's personal copy

the servers and the brokers are represented as
points. Based on the dependencies between those
points, we can identify areas of the space that
represent equivalent broker locations. To formally
define the translation of the broker-placement
problem into a geometric problem, we need to intro-
duce some terminology and establish some basic
facts.

We will consider the d-dimensional Euclidean
space Rd with the distance between two points x; y

given by distðx; yÞ ¼
ffiPd

i¼1ðxi � yiÞ
2

q
. The d-dimen-

sional closed (open) ball BrðpÞ ðBrðpÞÞ with radius
r P 0 and center p is defined as BrðpÞ ¼ fx :
distðx; pÞ 6 rg ðBrðpÞ ¼ fx : distðx; pÞ < rgÞ. In R1,
a closed ball is a closed interval; in R2 it is a circle
with its interior. A k-dimensional ball in Rd with
k < d is defined as a ball in a k-dimensional linear
subspace of Rd . (In this paper, a linear subspace
does not have to include the origin.) When we refer
to a ball without specifying what kind, we assume
that it is a closed ball.

The ðd � 1Þ-sphere SrðpÞ with radius r P 0 and
center p in Rd is defined as SrðpÞ ¼ fx : distðx; pÞ ¼
rg. A k-sphere with k < d � 1 in Rd is a k-sphere
in a ðk þ 1Þ-dimensional linear subspace of Rd . A
2-sphere is an ‘‘ordinary sphere” or a single point,
a 1-sphere is a circle or a single point, and a 0-sphere
is a pair of points or a single point. A ðd � 1Þ-sphere
in Rd is also called a hypersphere.

A set fBi : i ¼ 1; . . . ; ng of d-dimensional closed
balls in Rd divides the space into regions; a region
is defined as

Tn
i¼1Ai, where Ai is either Bi or Bc

i , with
Bc

i the complement of the open ball Bi. So regions do

include their boundaries. Now let’s assume that
each ball Bi has a weight denoted by W ðBiÞ. We
define the weight of a region as the sum of the
weights of the balls that contain it. That is, for a
region R ¼

Tn
i¼1Ai, its weight W ðRÞ is given by

W ðRÞ ¼
P

Ai¼Bi
W ðAiÞ.

A set P � Rd is a set of characteristic points of a
set of regions R if it contains a point in every region
in R.

An example of a set of regions with weights and
characteristic points is shown in Fig. 2. Four two-
dimensional balls with weights 2, 4, 8 and 16 divide
the space into ten regions denoted by I, II, . . . ,X. The
black dots represent the characteristic points.

In the following sections we make use of some
basic facts derived from the definitions above.

Theorem 1. When the intersection of at least two

different spheres in Rd ðd > 1Þ is not empty, it is a k-

sphere with k < d � 1.

Proof. Direct consequence of [13], Eq. (3.25). h

Theorem 2. If S is the non-empty intersection of d

ðd � 1Þ-spheres, then S is a 0-sphere or we can select

d � 1 out of these spheres such that their intersection

is still S.

Proof. Let S1; . . . ; Sn be a set of ðd � 1Þ-spheres.
According to Theorem 1, the intersection of S1

and S2 is either S1 (if S1 and S2 are the same) or a
sphere S01 of dimension lower than d � 1. In the first
case, we can omit sphere S1 and the theorem holds.
In the second case, consider the intersection of S01
and S3. Reasoning similarly, we can either omit S3

or we end up with a sphere S02 of dimension lower
than the dimension of S01. If we did not omit any
sphere in the first d � 1 steps, then the dimension
of S0d�1 ¼ S is 0. h

Theorem 3. If R is the set of regions defined by a set

of balls, then for every region in R, there exists an

intersection of a number of the spheres corresponding
to those balls that is contained in this region, or that is

a 0-sphere that has a point in this region.

Proof. Let’s denote the set of server balls by B, the
set of spheres of balls in B by U, and the set of inter-
sections of any number of spheres in U by S. Let for
any region r 2 R, sr be a sphere in S of smallest
dimension that has a point in common with r. We
claim that if the dimension of sr is higher than 0,

IV:8

II:2

VI:10

I:0

V:16

III:4

VII:12

X:28
VIII:20

IX:24

symbol of region

characteristic point

weight of region

Fig. 2. An example of the regions, the region weights, and a set
of characteristic points for a set of four balls in R2.

P. Garbacki et al. / Computer Networks 52 (2008) 1617–1633 1621

Author's personal copy

then sr � r. So suppose this claim is not true; then
we can find a region r 2 R such that sr 6� r. Then
sphere sr contains at least one point inside region r

and at least one point outside region r, which means
that sr intersects with the border of r. The border of
region r is defined as the intersection of r with
spheres in U. In other words, the intersection of sr

with one of the spheres in U has a point on the bor-
der of region r. According to Theorem 1, this inter-
section is a sphere of dimension lower than the
dimension of sr, which is in contradiction with the
way sphere sr is selected. h

3.3. Problem statement

We consider a distributed system consisting of
two types of entities: brokers and servers. Each ser-
ver is assigned to exactly one broker, and each bro-
ker is responsible for zero or more servers. Each
entity (server or broker) is placed in Rd , where the
distance between server nodes is an estimate for
the latency. Server locations are actual locations,
they cannot be changed. Broker locations are logical
locations, and they can be chosen freely. Of course,
brokers are nodes so they also have actual locations,
but these are irrelevant to our problem.

The server-to-broker assignment is described by
a simple rule: each server is assigned to the broker
closest to it (taking into account the logical loca-
tions of the brokers). Using terminology from com-
putational geometry, we can rephrase this rule by
stating that a broker is responsible for all servers sit-
uated inside its Voronoi region [22]. The Voronoi
region of a broker is defined as the set of points that
are closer to this broker than to any other broker in
the system.

Each server in the system imposes some demand

on the broker responsible for it due to requests for
resources shared by this server. A broker can handle
only a limited number of such requests in a prede-
fined time interval, which we define as the capacity

of the broker. Server demands and broker capacities
are expressed by positive real numbers. We require
that the sum of the demands of the servers assigned
to a broker does not exceed its capacity.

Now assume that some broker b is overloaded
and that a new broker b̂ is available to take over
the responsibility for some of b’s servers. The
problem that we then need to solve is to compute
coordinates of b̂ such that not too few but also
not too many servers are assigned to it. More

precisely, a solution to this problem has to satisfy
two conditions:

1. the sum of the demands of the servers assigned to
b̂ may not exceed its capacity;

2. the sum of the demands of the servers re-assigned
from b to b̂ must at least be equal to the excess
load of b.

Of course, the new load of b̂ may consist of more
than only the load shifted from b to b̂, as also parts
of the loads of other brokers may be shifted to b̂.
Depending on b̂’s capacity, a solution to this prob-
lem may or may not exist.

In order to state the problem in more detail, we
give the following definitions. The server ball BðsÞ
of server s is the ball centered at the location of s

with radius equal to the distance between s and its
broker, and the server sphere of server s is the
boundary of BðsÞ. The weight of BðsÞ equals the
demand of server s. We define R as the set of regions
defined by all server balls in the system, and RðbÞ
as the set of regions defined by the server balls of
all servers assigned to broker b. Because RðbÞ is
defined by a subset of the balls that define R, every
region in R is entirely contained in exactly one of the
regions in RðbÞ. Each region in R and RðbÞ is
assigned a weight as defined in Section 3.2. Server
s will be re-assigned to b̂ if and only if b̂ is placed
inside BðsÞ. If after placing a new broker a server
is at an equal distance from the new broker as from
its old broker, it is not re-assigned to the new
broker.

A region in R represents equivalent placements
for the new broker b̂ in the sense that the set of serv-
ers assigned to b̂ depends only on the region but not
on the specific location of b̂ in it. If we place broker
b̂ inside some region in R, then the load produced by
the servers assigned to b̂ equals the weight of this
region. Similarly, a region in RðbÞ represents equiv-
alent placements for the new broker b̂ in the sense
that the set of servers re-assigned from b to b̂
depends only on the region but not on the specific
location of b̂ in it. If we place b̂ inside a region in
RðbÞ then the load produced by the servers removed
from b equals the weight of this region. Therefore,
an acceptable location of b̂ is a point that belongs
both to a region in R with a weight at most equal
to b̂’s capacity (which satisfies the first condition
for a solution), and to a region in RðbÞ with a weight
at least equal to b’s excess load (the second condi-
tion is satisfied).

1622 P. Garbacki et al. / Computer Networks 52 (2008) 1617–1633

Author's personal copy

3.4. An example

As an example, Fig. 3 presents a two-dimensional
system that consists of two brokers b and b0 with
capacities 9 and 19, and four servers s1; s2; s3; s4
with demands 2, 4, 8 and 16, respectively. The bro-
ker of s1, s2 and s3 is b while s4 is assigned to b0.
Fig. 3a shows the set of regions R with their weights,
which consists of the ten regions (I to X) comprising
the intersections of balls Bðs1Þ to Bðs4Þ and their
complements. Fig. 3b shows the set RðbÞ of regions
created by the intersections of Bðs1Þ, Bðs2Þ and
Bðs3Þ (the balls of the servers assigned to b). Note
that regions II and VI exist in both R and RðbÞ.

In our example of Fig. 3, broker b is overloaded
by an amount of 5 because the total demand of s1,
s2 and s3 is equal to 14. Suppose that the new broker
b̂ has capacity 11. Then because of the first condition
in our problem statement that says that the new load
of b̂ must not exceed its capacity, we see from Fig. 3a
that b̂ should be placed inside one of the regions I, II,
III, IV or VI. In order to satisfy the second condition
that says that enough load should be moved away
from b, we see from Fig. 3b that b̂ should be placed
in one of the regions VI, XIII, or XIV. So the proper
locations for b̂ are all points in regions IV (which is
a subset of XIII) and VI.

4. The broker-placement algorithm

In this section, we present our broker-placement
algorithm. After a short outline of the algorithm
(Section 4.1), we present the algorithm’s pseudo-
code (Section 4.2) and a detailed explanation of
the essential element that significantly reduces the
complexity of the algorithm (Section 4.3).

4.1. Solution outline

The general idea of the algorithm is simple: when
b is the overloaded broker, consider the regions r in
R one by one, find for each such r the region rb in
RðbÞ that contains it, and check whether the weights
of r and rb satisfy the two conditions for a solution.
When the first such pair ðr; rbÞ is found, the algo-
rithm can be terminated, and the new broker b̂
can be located at any point in r. Because for a region
in R it is easy to find the corresponding region in
RðbÞ that contains it, we are going to explain only
the method for finding an element of R with an
appropriate weight.

The main problem that needs to be solved is how
to efficiently enumerate the elements of R. A naive
approach is to consider all possible subsets of serv-
ers and check whether their balls intersect to create
a region. As with n servers there are 2n such subsets,
this approach has exponential complexity, rendering
it infeasible.

Our solution is based on the observation that in
order to enumerate the regions in R, it is sufficient
to find a set of characteristic points for R (see Sec-
tion 3.2). An advantage of representing regions with
points is that for a particular point it is relatively
easy to find the regions that contain this point. Note
that a point located on the boundary of a region
may belong to more than one region. Our algorithm
selects a set of characteristic points by taking suit-
able points on the intersections of at most d server
spheres. Because there is OðndÞ of such intersections
and from each intersection we select at most two
points, the size of the set of characteristic points
found by our algorithm is of order OðndÞ, with n
denoting the number of servers, which will turn

s3

s1 s2

IV:8

II:2

VI:10

I:0

b

a

V:16

b’

III:4

VII:12

s4

X:28
VIII:20

IX:24
s3

s1 s2

II:2

VI:10

b

b’

s4

b

XI:0

XIV:12

XIII:8

XII:4

Fig. 3. Division of the space into regions (a) R and (b) RðbÞ.

P. Garbacki et al. / Computer Networks 52 (2008) 1617–1633 1623

Author's personal copy

out to reduce the worst-case complexity of our algo-
rithm to Oðndþ1Þ.

4.2. The algorithm

The high-level pseudocode of the broker-place-
ment algorithm is presented in Fig. 4. The algorithm
is iterative (line 1). Each iteration starts with select-
ing a subset bU of the set U of all server spheres with

not more than d elements (line 2). If all possible setsbU have already been examined, the algorithm termi-
nates without providing a solution (lines 3–5). In line
6 we compute the intersection ŝ of all spheres in bU .
According to Theorem 1 in Section 3.2, ŝ is either
empty or is a sphere. We continue the current itera-
tion of the algorithm only if ŝ is non-empty (line 7).

In lines 8–10 we construct set bP by selecting some
points from ŝ. Keeping in mind that every 0-sphere

Fig. 4. High-level pseudocode of the broker-placement algorithm.

1624 P. Garbacki et al. / Computer Networks 52 (2008) 1617–1633

Author's personal copy

contains at most two points, the size of set bP equals
either one or two. In line 11 we iterate over the
regions that contain one of the points in bP (a point
in bP is a characteristic point of the regions selected
in line 11). We will show later in this section that
each set in R will be eventually considered in one
of the iterations of the algorithm (the union of the
sets bP across all iterations constitutes a set of char-
acteristic points of the set of regions R). The method
of finding regions in R with a point in bP as well as
computation of the weights of those regions (lines
12 and 13) is described in Section 4.3. The weights
are used to determine if a region is a suitable loca-
tion for the new broker (line 14). If the region satis-
fies the capacity and excess load requirements, then
any point inside that region is a suitable location for
the new broker (line 15).

Different executions of the broker-placement
algorithm with the same input may result in differ-
ent solutions. The nondeterminism is caused by
the freedom of choice of bU in line 2 and the selec-
tion of bP in line 10. We will show that this nondeter-
minism does not affect the correctness and the
completeness of our algorithm.

The correctness of our algorithm – the point p

selected in line 15 is a suitable location for broker
b̂ – is a simple consequence of the conditions in line
14. However, the completeness of our algorithm,
which means that it does find a solution if one
exists, requires explanation. In order to prove com-
pleteness, it is enough to show that if the algorithm
terminates without finding a solution, every region
in R has been considered in lines 12–16. In turn, it
is sufficient to show that the points in the union of
the sets bP selected in all iterations in lines 8–10
forms a set of characteristic points.

Let’s take a region r 2 R. According to Theorem
3 in Section 3.2, there exists an intersection of a
number of spheres in U that is contained in r or that
is a 0-sphere with a point in r. Theorem 2 adds that
we can limit ourselves to the intersections of at most
d spheres, and this is precisely what we do when
selecting bU in line 2. Let’s assume that ŝ computed
in line 6 is the intersection mentioned in Theorem 3.
There are two possibilities: ŝ is either (a) fully con-
tained in r, or (b) is a 0-sphere that has a point in
r. If (a) is the case, then regardless of the point
selected in lines 8–10, the region r is considered in
lines 12–16. On the other hand, if ŝ is a 0-sphere
(case (b)), then in lines 12–16 we consider all regions
that have a point in common with ŝ (r is one of those
regions). Consequently, if the algorithm terminates

without finding a solution we can be sure that all
regions in R have been considered, and so no solu-
tion exists.

4.3. The computation of the region weights

In this section, we describe in detail a method for
finding the weights of the regions in R containing a
specific point p that is on the boundary of all regions
it belongs to. Note that indeed all points in bP in
the algorithm satisfy this condition. The idea pre-
sented here is crucial for the efficient implementa-
tion of line 15 of the broker-placement algorithm
presented in the previous section. The idea amounts
to finding which regions we can enter when going
from p into all possible directions in a neighborhood
of p.

Let’s denote by Rp the set of all regions in R to
which point p belongs. Let B1 be the set of server
balls that contain p in their interior, and let B2 be
the set of server balls that contain p on their bound-
ary. Because a ball in B1 contains an environment of
p, such a ball contains also all regions in Rp. Now
the weight of any r 2 Rp can be expressed as
x1 þ x2, with x1 the sum of the weights of the balls
in B1 and x2 the sum of weights of some of the balls
in B2, respectively. Which balls add to x2 will be
explained below.

To illustrate the meaning of x1 and x2, let in
Fig. 3a p be the point of the intersection of the ser-
ver spheres of s3 and s4 that is located inside Bðs2Þ.
In this case, Rp contains the regions III, VII, VIII and
X, B1 contains only Bðs2Þ, and B2 contains the balls
Bðs3Þ and Bðs4Þ. Therefore, the value of x1 for all
regions in Rp is equal to the weight of ball Bðs2Þ,
which is 4. As both balls in B2 contain region X,
the value of x2 for region X is 24, which is the sum
of the weights of balls Bðs3Þ and Bðs4Þ. The values
of x2 for regions III, VII, and VIII can be found in a
similar way to be 0 (no balls in B2 enter in the com-
putation of x2), and 8 and 16 (only one ball in B2

adds to x2).
In general, the elements of B1 and the value x1,

which is independent of the particular region in
Rp, can of course be determined in a simple way.

We describe the method of finding the values x2

for the regions in Rp in two steps:

1. We define a criterion that allows us to decide for
a subset B3 � B2 whether there exists a region in
Rp which is contained in all balls in B3, but not in
any of the balls in B2 which are not in B3. The

P. Garbacki et al. / Computer Networks 52 (2008) 1617–1633 1625

Author's personal copy

value of x2 of this region is then the sum of the
weights of the balls in B3.

2. Rather than having to consider in step 1 all sub-
sets of B3 of B2, we show how to limit the number
of sets B3 that need to be considered.

Ad 1: We claim that for a subset B3 � B2 there
exists a region in Rp which is contained in all balls
in B3, but not in any of the balls in B2 which are
not in B3, if and only if the centers of the balls in
B3 can be separated from the centers of the balls
in B2 n B3 with a hyperplane containing point p. A
point p0 located close to p lies inside a ball in B3 cen-
tered at s if the angle between the vectors ðp; p0Þ and
ðp; sÞ is smaller than p=2. As a consequence, a point
p0 lies inside the intersection of the balls in B3 if and
only if their centers and p0 lie on the same side of the
hyperplane orthogonal to ðp; p0Þ and containing
point p.

As an example, in Fig. 5 we show a detail of
Fig. 3a around the point p, which is the intersection
of the spheres of s3 and s4 that is located inside
Bðs2Þ. Point p0 is located inside Bðs3Þ (respectively
Bðs4Þ) because the angle between vectors ðp; p0Þ and
ðp; s3Þ (respectively ðp; s4Þ) is smaller than p=2. Point
p0 lies inside region X because p0, s3 and s4 lie on the
same side of the hyperplane h0 orthogonal to ðp; p0Þ
and containing point p. Point p00 is located inside
Bðs4Þ and outside Bðs3Þ because the angle between
ðp; p00Þ and ðp; s4Þ is smaller than p=2 and the angle
between ðp; p00Þ and ðp; s3Þ is larger than p=2. Point
p00 lies inside region VIII because p00 and s4 are located
on the same side and s3 on the opposite side of the
hyperplane h00 orthogonal to ðp; p00Þ.

Ad 2: As we have just shown, if C is the set of the
centers of the balls in B2, then finding the regions in

Rp amounts to finding partitioning of C into two
subsets which can be separated by a hyperplane
containing point p. All possible partitions can be
found efficiently in the following way. Let’s assume
that C [fpg contains at least d linearly independent
points and let C1 be any non-empty subset of C. If
needed, we can add to C [fpg a few linearly inde-
pendent points and treat them as the centers of balls
with zero weights. Then, if sets C1 and C n C1 can be
separated with a hyperplane containing point p,
there exists a separating hyperplane that contains
p and at least d � 1 points in C. This fact is a con-
clusion from [37], Corollary 4.2 (the k-set T men-
tioned in this corollary is our set C1 [fpg, and p0

is point p). Now we can consider in step 1 only sub-
sets of B2 of d � 1 elements instead of all possible
subsets in order to compute all regions in Rp.

5. Algorithm analysis and improvements

In this section, we assess the worst-case complex-
ity and propose some optimizations of the basis bro-
ker-placement algorithm.

5.1. Worst-case complexity

In this section we present the worst-case com-
plexity of our broker-placement algorithm as it
depends on the number n of servers. We assume
the dimension d of the space to be constant.

We estimate the execution cost of each line of the
pseudocode separately. Line 2 requires constant
time. We do not specify precisely how to select setbU , but it is not difficult to provide an implementa-
tion that executes in constant time (e.g., by defining
an order on U’s subsets and considering these sub-
sets in increasing order). Line 6 requires computing
the intersection of the spheres in bU , which can be
done in constant time as the size of set bU is limited
by d. The checks performed in lines 7 and 8 can be
implemented as part of the process of computing ŝ.
The operations performed in lines 12–16 require
also constant time. The method of finding the
weights w and wb described in Section 4.3 requires
time proportional to nþ jB2jd , where jB2j is the size
of set B2 or, in other words the number of spheres
that intersect in a point in bP . Here, n is the cost of
computing value x1 and jB2jd the cost of computing
the values x2 of the regions formed by intersections
of balls in B2. When choosing bU in any later itera-
tion, we can skip any subset of the set of the spheres
of B2 because if bU is a subset of the set selected in

s3
s4

VII
h’

X

p’
VIII

p

h"

III

p"

Fig. 5. An illustration of the criterion to determine the set of
balls that contain a particular point.

1626 P. Garbacki et al. / Computer Networks 52 (2008) 1617–1633

Author's personal copy

line 2 in one of the previous iterations, then as set bP
we can take the set selected in lines 8–10 in that pre-
vious iteration. The conclusion is that the (amor-
tized [35]) cost of lines 11–16 is OðnÞ.

We have shown that one iteration of the while
loop costs OðnÞ. The number of iterations is limited
by the number of possible sets bU , which is OðndÞ
(the number of at-most-d-element subsets of an n-
element set). The worst-case complexity of the bro-
ker-placement algorithm is therefore Oðndþ1Þ.

According to [5], page 73, n hyperspheres divide
Rd into OðndÞ regions. Therefore, every algorithm
that considers all regions is not more than OðnÞ
times faster than our solution.

5.2. Optimizations

Assuming that the dimensionality d of the latency
space is a small constant, e.g., equal to 6 [34], the
actual cost of the broker-placement algorithm is
determined by the number n of servers. Now we will
present a method which allows us to limit the num-
ber of servers considered during the execution of the
algorithm.

It is intuitively clear that the new broker has to be
placed in the proximity of the overloaded broker.
Consequently, the servers which are located far
from the overloaded broker will not be affected by
adding the new broker. These servers can be thus
ignored by the broker-placement algorithm. The
precise formulation of criterion which servers can
actually be ignored requires establishing some facts.
Of course, in order for the placement to be effective,
at least one server has to be reassigned from the
overloaded to the new broker. This condition limits
the area of the latency space Rd where the new bro-
ker can potentially be placed in a way described by
the following observation.

Observation 1. At least one of the servers of the

overloaded broker b is reassigned to the new broker b̂
only if distðb; b̂Þ 6 2g, where g is the distance between

b and the farthest of b’s servers.

Proof. Let’s assume that the placement of the new
broker results in reassigning server s1 from b to b̂.
The server-to-broker assignment rule (see Section
3.1) implies that distðs1; b̂Þ 6 distðs1; bÞ. From the
definition of g we get distðs1; bÞ 6 g. Applying the
triangle inequality [2] leads to the following reason-
ing distðb; b̂Þ 6 distðs1; bÞ þ distðs1; b̂Þ 6 2distðs1; bÞ
6 2g. h

Observation 1 implies that a server has to be con-
sidered by the broker-placement algorithm only if it
is closer to the border of the ball with radius g cen-
tered at b than to its current broker. When the ser-
ver and broker locations in the proximity of broker
b are distributed evenly in Rd , then the number of
servers that need to be considered by the broker-
placement algorithm is proportional to the number
of servers assigned to a single broker. Under the
assumption that the number of brokers in the sys-
tem grows proportionably to the number of servers,
the number of relevant servers that need to be con-
sidered in a single execution of the broker-place-
ment algorithm remains constant.

One remaining problem is how to select effi-
ciently the relevant servers. We propose that a ser-
ver that joins the system registers not only at the
closest broker, but also at the brokers that have to
consider this server while placing a new broker.
Having brokers keep information about the servers
that can potentially be affected by a new broker-
placement has the additional advantage that all
the information required to place a new broker is
already available locally at the overloaded broker.

6. Performance evaluation

In this section we assess the efficiency of the bro-
ker-placement algorithm presented in Section 4.2
with the optimizations introduced in Section 5.2
using as input a representative dataset of server
locations. Our results show that the performance
in that case is much better than the worst-case
performance.

6.1. Experimental set-up

The basis of the data set used in our experiments
contains 315, 373 node locations in a 6-dimensional
space of Web clients that accessed one of five Web
servers, four in the Netherlands and one in the
USA, collected between June 1 and August 26,
2004. The node coordinates were produced by
SCoLE [33,34], which essentially runs a GNP [21]
instance in cooperation with a number of other
hosts acting as landmarks. SCoLE was configured
to cooperate with landmarks deployed on 19 differ-
ent PlanetLab nodes [27].

Although the number of nodes in this set is con-
siderable, it was not sufficient for a profound anal-
ysis of the broker-placement algorithm. According
to Netcraft [20], an analysis and research company,

P. Garbacki et al. / Computer Networks 52 (2008) 1617–1633 1627

Author's personal copy

the number of Web servers found by its Web Server
Survey in October 2004 exceeded 22 million. Our
aim was to check the behavior of our broker-place-
ment algorithm in a system of comparable size.
Therefore, we employ the following method for
expanding the SCoLE data set to the required size:
we first pick randomly and uniformly a point from
the SCoLE data set, and then draw a new server
location from a normal distribution centered at that
point. Using this method we can generate sets of ser-
ver locations of any size while preserving the charac-
teristics of the latency space such as the cumulation
of points in certain areas and the average distance
between points. The data points were generated
for each experiment independently with different
random seeds.

We have performed three series of experiments
with a simulator that implements several variants
of the broker-placement algorithm. To increase the
reliability of the obtained results, each experiment
has been repeated 10 times with different random
seeds and the presented results show the averages
across the repetitions. The simulator was deployed
on a computer with a Dual-Core AMD processor
running at 2.0 GHz with 16 GB of main memory.

The aim of the first series of experiments was to
test the scalability of our broker-placement algo-
rithm and its response to the system dynamics. In
the scalability test, we start with a system consisting
of 10,000 servers and one broker. Then we perform
a series of 99 steps in each of which we first add to
the system 10,000 servers and then one new broker.
The experiment testing the behavior of the broker-
placement algorithm in a dynamic setting is also
split into 100 steps which are executed in a system
with 1,000,000 brokers and 100 servers. In each
step, we remove one randomly selected broker and
subsequently add a new broker that is placed by
our algorithm. The demands of the servers in all
experiments are selected randomly and uniformly
from the interval [1,10]. The position of the new
broker is determined by our broker-placement algo-
rithm. The new broker is meant to offload the bro-
ker with the highest load among all the brokers
currently in the system. If this highest load is l, we
let the excess load in our broker-placement algo-
rithm ðexcess loadÞ be equal to 0:25l, and we take
the maximal load that we allow to be assigned to
the new broker ðcapacityÞ randomly and uniformly
from the interval ½0:25l; 0:5l�.

The values of the excess load of the overloaded
broker and the maximal load of the new broker

are motivated as follows. The fraction of the load
removed from the overloaded broker should be sig-
nificant. Adding a new broker to the system is usu-
ally expensive, not only because of the cost incurred
by the placement algorithm, but also because of reg-
istering the new broker in the system, which requires
updating routing information. We want to avoid a
situation when a broker gets overloaded over and
over again because the load removed by the place-
ment algorithm is too low. A fraction of 0:25 of
the load removed from the overloaded broker
should be sufficient to prevent it from getting over-
loaded again very fast. On the other hand, the load
produced by the servers assigned to the new broker
should not be too high. Brokers keep some informa-
tion about their servers, and this information has to
be transferred when a server is reassigned to a new
broker. To limit the number of server-to-broker
reassignments, we bound the maximal load of the
new broker by a fraction of 0.5 of the load of the
overloaded broker.

The second series of experiments aims at compar-
ing our broker-placement algorithm with an alter-
native approach, which relies on the observation
that the new broker can usually be placed near the
overloaded broker. In this approach we select
potential new broker locations until an appropriate
point has been found in the following way. A possi-
ble location for a new broker is determined by a
normal distribution centered at the location of the
overloaded broker. The variance of this distribution
is equal to the distance between the overloaded bro-
ker and its furthest server multiplied by a constant
scaling factor. The value of this constant was
selected manually based on the observations of the
algorithm’s behavior on different data sets. This
location-selection method adapts to the characteris-
tics of the environment of the overloaded broker.

We run both algorithms on the same data set. In
order to create an initial broker–server assignment
we could not use any of the evaluated algorithms
because this might give preference to one of them.
Instead, we use a method widely deployed for
load-balancing problems. Servers located close to
each other are grouped together using a basic k-
means clustering algorithm described in [16]. Bro-
kers are positioned in the centers of the k clusters
produced by this algorithm. After the positions of
all brokers were computed in this way, we select
randomly and uniformly one of them and try to off-
load it by placing a new broker. The values of the
excess load of the selected broker and the maximal

1628 P. Garbacki et al. / Computer Networks 52 (2008) 1617–1633

Author's personal copy

load of the new broker are determined in the same
way as in the first series of experiments.

In the third series of experiments we investigate
the sensitivity of the broker-placement algorithm
to the value of the excess load removed from the
overloaded broker ðexcess loadÞ and the maximal
load of the new broker ðcapacityÞ. We modify each
of those values while keeping the other constant at
the level of 0:25l (in the case of the excess load)
and 0:75l (for the capacity), where l is the load of
the overloaded broker.

6.2. Performance results

It is theoretically possible that for a particular
problem instance no suitable position of a new bro-

ker exists. In our experiments however, we did not
observe such a situation.

The system evolution in the course of the first ser-
ies of experiments is visualized in Fig. 6. To enable
visualization in two dimensions, we used the multi-
dimensional scaling (MDS) [11] technique to reduce
the dimensionality of the latency space.

Fig. 7 depicts how the execution time required by
our algorithm to place a new broker varies with the
system size when we add 10,000 servers and one
broker at a time. The presented execution time
includes the overhead imposed by the optimization
described in Section 5.2. The optimization requires
that each server joining the system registers at the
brokers with locations that satisfy the condition
defined in Observation 1. The results of the experi-

Fig. 6. The visualization in two dimensions of the first series of experiments. Brokers are represented with black squares, servers with small
grey dots and borders of broker responsibility regions with lines. Points of intersection of broker responsibility region borders are marked
with black circles. Striped lines indicate the borders of broker responsibility regions that stretch to infinity.

P. Garbacki et al. / Computer Networks 52 (2008) 1617–1633 1629

Author's personal copy

ments show that our broker-placement algorithm
scales well as the system size increases. We observe
a linear correlation between the number of servers
in the system and the time needed to compute the
position of a new broker.

In Fig. 8 we show how the algorithm reacts to the
dynamic changes in a system with 1,000,000 servers
and 100 brokers. In each of the steps of the experi-
ment we remove a randomly selected broker and
subsequently add a new broker. The new broker is
placed to offload the broker with the highest load.
The offloaded broker does not have to be any of
the neighbors of the removed broker, and so the
locations of the removed broker and the new broker
do not have to be in any way related. The execution
time of the broker-placement algorithm varies
between the steps, but the vast majority of the exe-

cution time values fits in the 20-second interval
around the average of 58 s. Note that the average
of 58 s is close to the execution time of step 100 of
the experiment with results presented in Fig. 7, in
which step the number of servers (respectively bro-
kers) grows to 1,000,000 (respectively 100).

The results obtained in the second series of exper-
iments are presented in Figs. 9 and 10. Those figures
show the execution time of the two broker-place-
ment algorithms run in a system with 100 brokers
(note the different ranges of the vertical axes). The
number of nodes varies from 100,000 to 1,000,000.
Both algorithms scale pretty well. However, the ran-
dom algorithm needs 20 min to place a new broker
in a system with 100,000 servers, while our broker-
placement algorithm solves the same problem in less
than 10 s. For 1,000,000 servers the difference in
execution time is measured in hours.

 0

 10

 20

 30

 40

 50

 60

 1 10 20 30 40 50 60 70 80 90 100

E
xe

cu
tio

n
tim

e
(s

ec
)

Step

Fig. 7. The execution time of our broker-placement algorithm
when adding 10,000 servers and one broker in every step.

 0

 20

 40

 60

 80

 100

 1 10 20 30 40 50 60 70 80 90 100

E
xe

cu
tio

n
tim

e
(s

ec
)

Step

Fig. 8. The execution time of our broker-placement algorithm
when one broker is removed and a new broker is added in every
step.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 100 200 300 400 500 600 700 800 900 1000

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of servers (x 1000)

Fig. 9. The execution time of our broker-placement algorithm.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 100 200 300 400 500 600 700 800 900 1000

E
xe

cu
tio

n
tim

e
(s

ec
)

Number of servers (x 1000)

Fig. 10. The execution time of the random broker-placement
algorithm.

1630 P. Garbacki et al. / Computer Networks 52 (2008) 1617–1633

Author's personal copy

In both series of experiments, our broker-place-
ment algorithm proved to scale linearly with the sys-
tem size. This observation is not completely
unexpected. In each iteration of our broker-place-
ment algorithm we select randomly a set of spheres
and check whether any region that contains a point
of their intersection is suitable for broker-place-
ment. The algorithm stops after it finds the first
solution. The number of iterations is thus deter-
mined by the ratio between the number of suitable
regions and the number of all regions. Adding
new servers produces new regions, but some of these
are also appropriate for broker placement. Appar-
ently, in the neighborhood of the overloaded broker
the fraction of regions suitable for broker-place-
ment is more or less constant regardless of the sys-
tem size. To support this claim we analyze the
results obtained for the random algorithm. The ran-
dom approach selects a point and checks if it is suit-
able as a location for a new broker. This test costs
time proportional to the number of servers in the
system. So, because the execution time of the ran-
dom algorithm grows linearly with the number of
servers, the number of points probed by this algo-
rithm is more or less constant. This means that
the size of the area of suitable broker locations does
not change very much as the system grows.

The results obtained in the third series of experi-
ments are presented in Figs. 11 and 12. The results
in these figures show the impact of the excess load
and the capacity parameter values on the algorithm
execution time and the fraction of algorithm execu-
tions that do not lead to a solution (a location of the
new broker that satisfies the constraints imposed by

the excess load and the capacity values). Note that
the completeness property of our broker-placement
algorithm proven in Section 4.2 implies that if the
algorithm finished its execution without finding a
solution, then no solution exists. The results in
Fig. 11 have been obtained by running the algo-
rithm for a value of the new broker’s capacity fixed
at 0.75 of the overloaded broker’s load, and for a
value of the excess load parameter varying from a
fraction of 0–0.7 of the overloaded broker’s load.
The results in Fig. 12 correspond to a symmetric
experiment where the excess load is fixed at 0.25
of the overloaded broker’s load and the capacity

ranges from a fraction of 0.3–1 of the overloaded
brokers’s load. The results presented in Figs. 11
and 12 suggest that both the algorithm performance
and the existence of a solution is highly sensitive to
the parameter settings. The algorithm execution
time as well as the probability of finding a solution
can be improved by decreasing the value of the
excess load of the overloaded broker or increasing
the value of the capacity of the new broker.

7. Conclusions and discussion

In this paper we have proposed a solution for a
load-balancing problem in P2P overlay networks
that amounts to finding a suitable location for a
new broker in Rd . Our broker-placement algorithm
has worst-case complexity Oðndþ1Þ, with n the num-
ber of servers in the system, which we prove to be
optimal up to a linear factor in n. With a simple
optimization we have reduced the complexity of
the algorithm to a linear function of n in most of

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

E
xe

cu
tio

n
tim

e
(s

ec
)

Fa
il

ra
te

Excess load of the overloaded broker

Execution time
Fail rate

Fig. 11. The execution time and the fraction of problem instances
without a solution (fail rate) as a function of the excess load of
the overloaded broker. The capacity of the new broker is fixed at
0.75 of the overloaded broker’s load.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

E
xe

cu
tio

n
tim

e
(s

ec
)

Fa
il

ra
te

Capacity of the new broker

Execution time
Fail rate

Fig. 12. The execution time and the fraction of problem instances
without a solution (fail rate) as a function of the new broker’s
capacity. The excess load of the overloaded broker is fixed at 0.25
of the overloaded broker’s load.

P. Garbacki et al. / Computer Networks 52 (2008) 1617–1633 1631

Author's personal copy

the cases. The results of our experiments performed
on a representative dataset show that the worst-case
complexity is practically never achieved. The time
needed to place a broker in a system consisting of
1,000,000 nodes is less than 2 min. Furthermore,
by relaxing the values of the algorithm parameters
specifying the excess load removed from the over-
loaded broker and the capacity of the new broker,
the execution time can be significantly reduced at
the cost of the placement accuracy. Hence, our algo-
rithm can be used for time-efficient approximation
of the desired solution. If the original broker load-
related objectives are not satisfied as a result of
the inaccuracies in the approximated placement,
more than one broker can be added to the system
in a sequence of consecutive executions of our
algorithm.

We did not specify precisely which node executes
the broker-placement algorithm. Because the over-
loaded broker has the data needed by the algorithm,
it seems to be logical that it is the one that finds the
location for the new broker. On the other hand,
assigning computationally intensive tasks to a bro-
ker machine reaching its maximal throughput is
not acceptable. Instead of waiting till the very last
moment, we can start the offloading procedure
much earlier, e.g., when the broker’s load reaches
a constant fraction of its maximal value. Another
option is to send all the data needed by the algo-
rithm (a compressed file with the positions of
1,000,000 servers has a size of 7 MB) to another bro-
ker and let it find the location of the new broker.
The broker-placement algorithm in the form
described in Section 4.2 uses a centralized approach.
The iterations of the main loop are however inde-
pendent of each other, so they can be executed in
parallel on different nodes.

References

[1] Kazaa Project home page, <http://www.kazaa.com>.
[2] M. Abramowitz, I.A. Stegun (Eds.), Handbook of Mathe-

matical Functions: with Formulas, Graphs, and Mathemat-
ical Tables, Dover Publications, 1965.

[3] S.A. Baset, H. Schulzrinne, An analysis of the skype peer-to-
peer internet telephony protocol, in: INFOCOM’06, Barce-
lona, Spain, 2006.

[4] P. Bose, P. Morin, A. Brodnik, S. Carlsson, E.D. Demaine,
R. Fleischer, J.I. Munro, A. Lopez-Ortiz, Online routing in
convex subdivisions, in: International Symposium on Algo-
rithms and Computation, 2000.

[5] L. Comtet, Advanced Combinatorics: The Art of Finite and
Infinite Expansions, Reidel, Dordrecht, 1974.

[6] F. Dabek, R. Cox, F. Kaashoek, R. Morris, Vivaldi: a
decentralized network coordinate system, in: ACM SIG-
COMM 2004, Portland, OR, 2004.

[7] P. Garbacki, D.H.J. Epema, M. Van Steen, Two-level
semantic caching scheme for super-peer networks, in: Tenth
IEEE International Workshop on Web Caching and Content
Distribution (WCW2005), Sophia Antipolis, France, 2005.

[8] P. Garbacki, D.H.J. Epema, M. Van Steen, Optimizing peer
relationships in a super-peer network, in: 27th International
Conference on Distributed Computing Systems (ICDCS
2007), Toronto, Canada, 2007.

[9] B.J. Ko, D. Rubenstein, A greedy approach to replicated
content placement using graph coloring, in: SPIE ITCom
Conference on Scalability and Traffic Control in IP Net-
works II, Boston, MA, 2002.

[10] E. Kranakis, H. Singh, J. Urrutia, Compass routing on
geometric networks, in: 11th Canadian Conference on
Computational Geometry, Vancouver, 1999.

[11] J.B. Kruskal, M. Wish, Multidimensional Scaling, Sage
Publications, 1977.

[12] F. Kuhn, R. Wattenhofer, Y. Zhang, A. Zollinger, Geomet-
ric ad-hoc routing: of theory and practice, in: 22nd ACM
Symposium on Principles of Distributed Computing
(PODC’03), Boston, 2003.

[13] H. Li, D. Hestenes, A. Rockwood, Spherical conformal
geometry with geometric algebra, in: G. Sommer (Ed.),
Geometric Computing with Clifford Algebras, Springer-
Verlag Telos, 2001.

[14] H. Lim, J.C. Hou, Chong-Ho Choi, Constructing internet
coordinate system based on delay measurement, IEEE/ACM
Transactions on Networking 13 (3) (2005) 513–525.

[15] E.K. Lua, T. Griffin, M. Pias, H. Zheng, J. Crowcroft, On
the accuracy of embeddings for internet coordinate systems,
in: Internet Measurement Conference (IMC’05), Berkeley,
CA, 2005.

[16] J. MacQueen, Some methods for classification and analysis
of multivariate observations, in: L.M.L. Cam, J. Neyman
(Eds.), Proceedings of the Fifth Berkeley Symposium on
Mathematical Statistics and Probability, vol. 1, University of
California Press, Berkeley, California, 1967.

[17] A.T. Mizrak, Y.-C. Cheng, V. Kumar, S. Savage, Structured
superpeers: Leveraging heterogeneity to provide constant-
time lookup, in: IEEE Workshop on Internet Applications,
San Jose, CA, 2003.

[18] W. Nejdl, W. Siberski, M. Wolpers, C. Schmitz, Routing and
clustering in schema-based super peer networks, Technical
Report, Learning Lab Lower Saxony, University of Han-
nover, Hannover, Germany (November 2002).

[19] W. Nejdl, M. Wolpers, W. Siberski, C. Schmitz, M.
Schlosser, I. Brunkhorst, A. Löser, Super-peer-based routing
strategies for rdf-based peer-to-peer networks, Web Seman-
tics 1 (2) (2004).

[20] The Netcraft Project, <http://www.netcraft.com>.
[21] T.E. Ng, H. Zhang, Predicting internet network distance

with coordinates-based approaches, in: INFOCOM’02, New
York, NY, 2002.

[22] A. Okabe, B. Boots, K. Sugihara, S.N. Chi, Spatial
Tessellations: Concepts and Applications of Voronoi Dia-
grams, second ed., Wiley, Chichester, 2000.

[23] M. Pias, J. Crowcroft, S. Wilbur, T. Harris, S. Bhatti,
Lighthouses for scalable distributed location, in: Second

1632 P. Garbacki et al. / Computer Networks 52 (2008) 1617–1633

Author's personal copy

International Workshop on Peer-to-Peer Systems, Springer-
Verlag, Berlin, 2003.

[24] M. Pias, J. Crowcroft, S.R. Wilbur, T. Harris, S.N. Bhatti,
Lighthouses for scalable distributed location, in: Second
International Workshop on Peer-to-Peer Systems
(IPTPS’03), Berkeley, CA, 2003.

[25] G. Pierre, M. Van Steen, Design and implementation of a
user-centered content delivery network, in: Third IEEE
Workshop on Internet Applications, San Jose, CA, 2003.

[26] G. Pierre, M. van Steen, Globule: a collaborative content
delivery network, IEEE Communications Magazine 44 (8)
(2006).

[27] The Planet Lab Project, <http://www.planet-lab.org>.
[28] J. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang, A.

Iosup, D.H.J. Epema, M. Reinders, M. Van Steen, H. Sips,
Tribler: a social-based peer-to-peer system, Concurrency and
Computation: Practice and Experience 20 (2008) 127–138.

[29] S. Ratnasamy, P. Francis, M. Handley, R. Karp, A scalable
content-addressable network, in: ACM SIGCOMM, San
Diego, CA, 2001.

[30] S. Ratnasamy, M. Handley, R. Karp, S. Shenker, Topolog-
ically-aware overlay construction and server selection, in:
INFOCOM’02, New York, NY, 2002.

[31] A. Singla, C. Rohrs, Ultrapeers: Another step towards
gnutella scalability, <http://www.limewire.com/developer/
Ultrapeers.html>.

[32] S. Sivasubramanian, M. Szymaniak, G. Pierre, M. van Steen,
Replication for web hosting systems, ACM Computing
Surveys 36 (3) (2004) 291–334.

[33] M. Szymaniak, G. Pierre, M. van Steen, Scalable cooperative
latency estimation, in: Tenth International Conference Par-
allel and Distributed Systems, IEEE Computer Society Press,
Los Alamitos, CA, 2004.

[34] M. Szymaniak, G. Pierre, M. van Steen, Latency-driven
replica placement, IPSJ Journal 47 (8) (2006).

[35] R.E. Tarjan, Amortized computational complexity, SIAM
Journal on Algebraic Discrete Methods 6 (1985) 306–318.

[36] A. Vakali, G. Pallis, Content delivery networks: status and
trends, IEEE Internet Computing 7 (6) (2003).

[37] U. Wagner, On the number of corner cuts, Advances in
Applied Mathematics 29 (2002) 152–161.

[38] B. Yang, H. Garcia-Molina, Designing a super-peer net-
work, in: 19th International Conference on Data Engineer-
ing (ICDE’03), Bangalore, India, 2003.

Pawel Garbacki is a Ph.D. candidate at
Delft University of Technology, Delft,
The Netherlands. He holds two MSc
titles in Computer Science from Vrije
Universiteit Amsterdam and Warsaw
University, both obtained in 2003, and a
BSc title in Mathematics from Warsaw
University obtained in 2001. In the
summer of 2005 and 2006 he pursued
research internships at IBM T.J. Watson
Research Center, Yorktown Heights,

NY, and during the summer of 2007 he worked at Google in

Zurich, Switzerland. His research interests include data distri-
bution protocols for peer-to-peer networks and resource man-
agement in grid environments.

Dick H.J. Epema received the MSc and
Ph.D. degrees in mathematics from Lei-
den University, Leiden, The Nether-
lands, in 1979 and 1983, respectively.
From 1983 to 1984, he was with the
Computer Science Department, Leiden
University. Since 1984, he has been with
the Department of Computer Science,
Delft University of Technology, where
he is currently an Associate Professor in
the Parallel and Distributed Systems

group. During the academic year 1987–1988, the fall of 1991, and
the summer of 1998, he was also a visiting scientist at the IBM
T.J. Watson Research Center, Yorktown Heights, NY. In the fall
of 1992 he was a visiting professor at the Catholic University of
Leuven, Belgium. His research interests are in the areas of per-
formance analysis, distributed systems, peer-to-peer systems, and
grids.

Maarten van Steen received a Masters
degree in Applied Mathematics from
Twente University, and a Ph.D. in
Computer Science from Leiden Univer-
sity. He is currently a full professor at
VU University in Amsterdam where he
teaches systems-oriented courses and
conducts research on large-scale distrib-
uted systems, with an emphasis on sys-
tems where nodes can take decisions on
only locally available information. These

include wireless systems (notably large-scale sensonets) and wir-
eline systems (such as decentralized grid infrastructures and tra-
ditional peer-to-peer systems).

P. Garbacki et al. / Computer Networks 52 (2008) 1617–1633 1633

