
GSpace: An Architectural Approach for Self-Managing
Extra-Functional Concerns

Giovanni Russello
Department of Computing
Imperial College London

g.russello@imperial.ac.uk

Naranker Dulay
Department of Computing
Imperial College London

n.dulay@imperial.ac.uk

Michel Chaudron
LIACS

Universiteit Leiden
chaudron@liacs.nl

Maarten van Steen
Dept. of Computer Science

Vrije Universiteit
steen@cs.vu.nl

ABSTRACT
Middleware-based solutions for self-managing systems pro-
vide a degree of separation between the mechanisms that
govern the adaptability of a system and application func-
tionality. Systems become in this way more flexible, de-
pendable and robust to changes. However, it is possible
to achieve another degree of separation by separating from
the application logic the different extra-functional concerns
(such as availability, performance, and security). This sep-
aration, known as Separation of Concerns principle, helps
in generating software artifacts that are more maintainable
and reusable.

In this paper, we propose an architectural model for a
middleware-based solution where the self-managing princi-
ple is applied to extra-functional concerns. Our middleware,
based on the Shared Data Space model, is capable of dynam-
ically adapt extra-functional concerns to the actual needs of
the applications.

1. INTRODUCTION
There is a general consensus in the research community

that self-managing systems enable software engineers gen-
erating applications that are more flexible, dependable and
robust to changes in the environment. A self-managing sys-
tem provides means to adapt the application to changes in
the environments and requirements with minimal human in-
tervention. Several proposed approaches indicate that viable
solutions for achieving self-adaptation are those where self-
managing mechanisms are separated from the application
functionality. In this context, middleware-based solutions
have proven to be suitable for achieving such separation.

Another degree of separation is that suggested by the Sep-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CSTST 2008 October 27-31, 2008, Cergy-Pontoise, France
Copyright 2008 ACM 978-1-60558-046-3/08/0003 ...$5.00.

aration of Concerns (SoC) principle [2, 9]. According to
SoC, the application logic should be separated from con-
cerns that are not directly involved with its basic function-
ality. Performance, availability and security represent typ-
ical extra-functional concerns that should be isolated and
externalised from the application functionality. Applying
the SoC principle positively affects the following properties
of applications:

• Application evolution: because the units of abstraction
match with the different concerns changing one specific
concern does not affect other modules.

• Reusability of concerns: as the code dealing with the
application logic can be reused, the same holds for code
that deals with extra-functional concerns.

• Concern traceability: traceability among different con-
cerns is increased since each concern is clearly sepa-
rated from the others.

As discussed by Filman et al. in [3], the SoC principle
is essential for developing applications that strongly depend
on their environment and that need to continuously evolve
and adapt in the course of time. In this paper, we introduce
an architecture for a middleware-based approach in which
the evolution and adaptation of extra-functional concerns
are self-managed. In particular, in our approach application
components implement the basic functionality of an applica-
tion. Our middleware provides the composition abstraction
for gluing together application components. Moreover, it
provides the necessary mechanisms for self-managing extra-
functional concerns.

In line with the adaptation methodology discussed in [8],
our middleware supports the management of the evolution
and adaptation of extra-functional concerns. Our middle-
ware architecture is based on the shared data space model
introduced with the coordination language Linda [4]. The
main reason for choosing the shared data space model comes
from the fact that this model supports naturally the sepa-
ration of the computational part of an application form its
coordination part. The architecture that we propose in this
paper extends the basic model for supporting several extra-
functional concerns transparently to the applications. Cur-

rently, our middleware supports the separation from the ap-
plication functionality of the following extra-functional con-
cerns: performance, availability and security. For each of
these extra-functional concerns, the middleware is able to
enforce specific strategies and adapt these strategies to the
actual requirements of the applications.

The contributions of this paper are threefold. First, we
propose a specific architecture for separating application
functionality from extra-functional concerns. Each extra-
functional concern is catered by a set of mechanisms that
is available in the framework. New mechanisms can be de-
ployed, extending the life cycle of the framework. Second,
our architecture supports modularisation of concern speci-
fications. Functional and extra-functional concerns can be
specified in complete isolation to each other. This allows
specialists to work on mechanisms specific for a concern
without having to know too many details of other concerns.
As a consequence, such concern specifications are encapsu-
lated in well-defined modules enhancing the reusability of
software artifacts. Not only application code can be reused,
but also the concern mechanisms represent reusable units.
System architects need not to re-invent mechanisms when
the system is deployed in other similar environments. Fi-
nally, by separating application functionality from extra-
functional concerns, it becomes possible to provide a dy-
namic adaptation of the mechanisms that cater for those
concerns during run-time. The architecture offers a feed-
back loop that monitors the application’s behaviour. When-
ever the application’s behaviour changes the feedback loop
adapts the mechanisms to the current needs of the applica-
tion.

This paper is organised as follows. Section 2, we provide
an overview of related research. In Section 3 we list and mo-
tivate the requirements that our multi-concern architecture
has to satisfy. Section 4 describes our architecture for com-
bining and adapting extra-functional concerns. Section 5 fo-
cuses on the interactions that could happen among different
concerns and describes methods to deal with such interac-
tions. We give our conclusions and highlight future research
questions in Section 6

2. RELATED WORK
In this section, we discuss related work focused on provid-

ing the application developer approaches for self-adaptive
systems. In line with our approach, work proposed by other
research efforts facilitate the separation of certain concerns
avoiding that application developers have to entangle their
application code with code for managing extra-functional
concerns and adaptation related concerns.

Our approach can be considered as a reflective system. A
reflective system is one that performs computation about
itself, and that provides inspection and control through its
reflective interfaces [7]. This principle can be applied to mid-
dleware. For example, in the OpenCOM component model
[1], information about structural and behavioural of com-
ponents can be accessed through an API. However, this in-
formation can be gathered only for a running instance of a
component.

In [6], Kramer and Magee propose a general architectural
approach providing a three-layers model of a system that
is used to evaluate and adapt the running system. In line
with this, the Rainbow project [5] introduces an architec-
tural model that extends architecture-based adaptation by

adopting architectural styles. Architectural styles capture
structural and semantic characteristics common to a family
of system. Developers can fine tune architectural styles to
tailor specific needs of a system. The Rainbow infrastructure
does satisfy the goal of separating adaptation related con-
cerns from application code as discussed above to a certain
degree. This approach allows reuse of adaptation proper-
ties, mechanisms and strategies between systems that have
architectural commonalities that can be expressed in shared
architectural styles.

One of the most stringent problems in self-adaptability is
deciding the strategy to adapt a running system to better fit
the current state of the operational environment. There are
several approaches that can be used for different adaptation
policies. As discussed in [14], these approaches can be cat-
egorised in three different types: (i) event-condition-action
(ECA) policies, (ii) goal policies and (iii) utility functions.

ECA policies are adopted in different domains such as
computer networks, active databases and expert systems.
An ECA policy consists of a rule that specifies exactly what
action to take when certain events happened and a condi-
tion is true. Although ECA policies are powerful tools for
controlling the adaptation of a system, the specification of
such rules require a detailed knowledge of the system. Goal
polices are more general inasmuch as allow the specification
of higher-level performance objectives for an adaptive sys-
tem. It is up to the adaptation system or middleware to
determine the strategy to achieve those objectives. For in-
stance, a typical domain where this type of policies is applied
is that of guaranteing promised levels of QoS. Goal policies
provide a binary answer to adaptation alternatives in terms
of “feasible” and “unfeasible” configurations. On the other
hand, utility functions are able to support specifications of
“degree of desirability” of different adaptation alternatives
of an adaptable service. Utilities are often defined as a func-
tion that weighs several metrics of a system in order to select
the “best” alternative from a given set.

This last approach is the one adopted in our system. In
the following section, we present the requirements that our
architecture has to satisfy.

3. REQUIREMENTS FOR A MULTI-CONCERN
ARCHITECTURE

In this section, we list and discuss the requirements that
driven the design of our architecture. The requirements can
be listed as follows:

1. Separation of Concerns: the main goal of our research
is that of separating application functionality from extra-
functional concerns. Applying this principle increases
the modularisation of code and therefore increases the
quality of software.

2. Multi-Concern Adaptability: the middleware architec-
ture must support the adaptation of multiple concerns.
The application developer can set the goals for her
application. The goals specify the level of availabil-
ity, performance and security. The middleware has to
guarantee that such goals are met during runtime even
when the environment conditions changes.

3. Transparency of Interweaving: the complexity of the
interweaving process for dealing with multiple con-
cerns must be shielded from the application level. In

this way, application developers concentrate on the de-
sign of their applications without caring about blend-
ing functionality with other concerns.

4. Extendable Set of Strategies per extra-functional con-
cern: adding or modifying strategies for a specific con-
cern must not affect strategies of other concerns.

The first requirement is the foundations of our research.
According to SoC, all relevant concerns of a software system
should be treated as separated modules. Current approaches
provide separation to a certain level, together with decom-
position and composition mechanisms. However, these ap-
proaches provide a single dimension of separation, with a
limited set of tools for decomposition and composition. Ac-
cording to [13], the improvement of quality of software ar-
tifacts, the reduction of software production costs, and fa-
cilitation of software evolution and maintainability can be
fulfilled by realising a full Separation of Concern.

The second requirement focuses on the realisation of a
method that automatically combines different strategies that
satisfy the requirements of each concern and that minimises
the overall costs. Naturally, strategies for different concerns
are going to influence each other during the execution of
operations. For instance, encrypting and decrypting tuples
during communications for security affects the latency for
the execution of an operation, impacting the performance
of a distribution policy. Realising such a method requires a
mechanism for evaluating policies such that:

• it is aware of the interactions between policies for dif-
ferent concerns,

• it should compute a solution in reasonable time.

The third requirement is more concerned about the de-
sign of the architecture. For instance, we could design an
architecture where a single strategy takes care of availabil-
ity, performance, and security at once. The code of such
a policy would be intertwined with details about different
concerns that may turn the writing of such a policy into a
nightmare for the developer. Although such a policy is spec-
ified outside the code of the application, it violates the SoC
principle.

An alternative design choice that is more in line with the
SoC principle would be the following. Each strategy should
deal with a specific concern. However, each supported con-
cern should have in the architecture a specific concern sub-
system. In each specific concern subsystem, a concern man-
ager decides which strategy should be applied. Now a de-
veloper who wants to design a new policy for security, for
instance, does not have to care about performance and avail-
ability concerns.

However, such a design introduces the issue of how to
deal with the interactions between strategies for different
concerns. As we will see later, these interactions can be of
two different natures and need to be addressed in different
ways.

Although we believe that our architecture covers an exten-
sive set of extra-functional concerns for distributed systems,
it might be the case that in the future a new extra-functional
concern must be supported. This would require the intro-
duction of the specific concern-subsystem and possibly some
modifications to accommodate the dependencies introduced
by the new concern. However, the design of the architecture

guarantees that there is no need for changing any of other
concern-subsystems already present in the architecture.

In the next section, we introduce our architecture and
more details on its implementation.

4. GSPACE ARCHITECTURE
GSpace is a prototype implementation of our architecture.

In GSpace, extra-functional concerns can be treated sepa-
rately from the application functionality. In previous work,
we discussed how GSpace architecture was used for dealing
with a single extra-functional concern. In particular, GSpace
was used for separating from the application level concerns
such as performance [10], availability [11] and security[12].
The results that we obtained show that extra-functional con-
cerns can successfully be treated orthogonally with respect
to application functionality. Additionally, applying the SoC
principle allows us to implement an architecture where dy-
namic adaptation is possible. By dynamically adapting a
specific concern to the actual requirements, our middleware
is able to increase the overall performance of the system.
Naturally, the question that arises is: what happens when
multiple extra-functional concerns have to be dealt with at
the same time?

Clearly, when dealing with multiple extra-functional con-
cerns at the same time, interactions between separated con-
cerns may occur. The nature of such interactions may be dif-
ferent depending on which concerns are interacting. In some
cases, these interactions could lead to sub-optimal utilisa-
tions of the resources of the system. In other cases, conflicts
may arise that require a more careful handling.

In this section, we briefly introduce the basic concepts be-
hind the design of GSpace. Following, we describe in more
details GSpace architecture for dealing with multiple con-
cerns.

4.1 Basic Concepts
GSpace is an implementation of a distributed Shared Data

Space (SDS). The SDS concept was introduced in the coor-
dination language Linda [4]. In Linda, applications commu-
nicate by inserting and retrieving data through a data space.
The unit of data in the data space is called tuple. Tuples are
retrieved from the data space by means of templates, using
an associative method. Multiple instances of the same tuple
item can co-exist. An application interacts with the data
space using three simple operations: put, read and take.

A typical setup of GSpace consists of several GSpace ker-
nels instantiated on several networked nodes. Each kernel
provides facilities for storing tuples locally, and for discover-
ing and communicating with other kernels. GSpace kernels
collaborate with each other to provide to the application
components a unified view of the shared data space. Thus
the physical distribution of the shared data space across sev-
eral nodes is transparent to the application components, pre-
serving its simple coordination model. In GSpace tuples are
typed. This allows the system to associate different strate-
gies for extra-functional concerns with different tuple types.

Figure 1 shows a typical GSpace set-up, where several ap-
plication components and a GSpace kernel are deployed on
a networked node. A GSpace kernel consists of two subsys-
tems: the Operation Processing Subsystem (OPS) and the
Adaptation Subsystem (AS).

The OPS provides the core functionality necessary for a
node to participate in a distributed GSpace: handling ap-

Figure 1: Typical deployment of GSpace Kernels in several networked nodes.

Figure 2: Adaptation Submodule for a multi-
concern architecture.

plication component operations; providing mechanisms for
communication with kernels on other nodes; and monitor-
ing connectivity of other GSpace nodes that join and leave
the system; and maintaining the information about other
kernels. Finally, the OPS provides the infrastructure to dif-
ferentiate distribution strategies per tuple type. The inter-
nal structure of the OPS is described in [10]. The AS is
described in the following section.

4.2 Self-Managing Extra-Functional Concerns
Figure 2 sketches the design of the AS architecture for

self-managing multiple concerns. In the following each of

the modules that compose the AS is described.

• Controller. This module receives the requests from
OPS. The requests represent operation for the SDS
that are received from the application level. In order to
fulfill these requests, extra-functional concerns have to
be applied. Requests are dispatched to the managers
of each concern-manager.

• Concern Subsystem. For each concern that our
framework supports there is a dedicated subsystem in
the architecture. Each subsystem contains the follow-
ing modules:

– Concern Manager. A concern manager has to
identify which policy has to be activated in func-
tion of the type of operation and type of tuple
that the request is carrying.

– Policy Repository. A repository contains a set
of policies dedicated to a specific concern. In our
approach, strategies and mechanisms for concerns
are implemented as policies. For each concern,
repositories receive directives from the respective
managers for activating policies. For instance,
for the availability concerns several strategies for
replicating the tuple are embedded in availability
policies.

• Policy Activator. Once the concern managed iden-
tifies which policy should be activated for a request,
the policy is taken from the repository and activated
through the Policy Activator. For each concern, a pol-
icy is activated. This means that the policy activator
combines the output of the different policy passing the
result back to the OPS that completes the application
request.

• Monitors. For each concern, there is a monitor that
collects information on the execution of each policy.
Each monitor has to be considered as an array of sensor
dedicated to the collection of data specific for each
concern. For instance, an availability monitor collects
information about the up-time of a node.

• Adaptation Manager. This module is responsible
for collecting the data from the monitors and com-
bine them to get a quantification of the system perfor-
mance. This quantification is achieved by means of a
general cost function (CFG). More details on the CFG

are given in the next section. Here we can say that such
a function is a linear combination of several metrics
that capture the trade-off between the cost incurred
by the system and its actual performance. Once the
CFG provides the optimal combination of policies for
availability and performance, the Adaptation Manager
has to check whether such combination is in conflict
with the security constrains. After possible conflicts
have been solved, the Adaptation Manager informs the
managers about the new combination that has to be
activated. The managers then switch to the required
policies.

Concluding, the calculation of the CFG is done per tuple
type.

5. CONCERN INTERACTIONS
In this section, we discuss how different concerns interact

with each other. In particular, we want to analyse the dif-
ferent types of interaction and how we can deal with such
interactions in our architecture.

In our architecture, each concern is dealt with in isolation
with respect to the others. From the specification of the
policy that has to be used to the implementation of the
specific mechanism that implements such a policy, concerns
are orthogonal to each others. Ideally, such orthogonality
should be maintained during execution. In reality, when a
policy for one concern is executed it invariably interacts with
the execution of other policies.

In the following, we analyse the possible interactions be-
tween availability, performance, and security. We first con-
centrate on the interactions between availability and perfor-
mance. Afterward, we concentrate on how availability and
security interact.

5.1 Availability and Performance Interactions
Our framework allows the specification of policies for avail-

ability and performance concerns in isolation to each other
(and both in isolation to application functionality). This
has the advantage for developers to be able to modularise
the development of code for availability and for performance
in well-specified and separated units. This allows the devel-
opers to concentrate on problems related to concerns once
at a time, increasing the understandability and efficiency of
their code.

A policy for a concern specifies which mechanism should
be activated per tuple type. For instance, in the case of avail-
ability, mechanisms are distribution strategies that replicate
tuples on several nodes for statistically guaranteing that tu-
ples are still available even in the case that a node crashes.
In the case of performance, distribution strategies are used
for strategically placing tuples to reduce application latency.

Although the framework separates availability and perfor-
mance concerns, both concerns leverage on the same type of
mechanisms, that is, distribution strategies for tuples. To
avoid introducing dependencies between concerns inside the
framework (to meet our requirements 1 and 4), mechanisms
for different concerns are not aware of each others. This iso-

lation could lead to a sub-optimal usage of resources. For
instance, when a put operation is executed a mechanism for
availability and a mechanism for performance are activated.
These mechanisms could request the same set of nodes to
store the same tuple instance twice. It should be noted
that this interaction of mechanisms does not violate the se-
mantics of the SDS operation. When a take operation is
executed, both mechanisms will be activated removing both
tuple instances. As for read operations, the presence of two
instances of the same tuple does not affect the semantics of
the operation.

However, this modus operandi of the mechanisms has an
effect on the resource usage. Inserting the same instance
of a tuple twice on the same nodes requires twice as much
memory and bandwidth usage without any further increas-
ing availability or performance.

One possible way to handle such situations is the follow-
ing. Let us consider a combination of two policies (one for
availability and one for performance) that results in a non-
optimal usage of resources as a sub-optimal combination.
This combination is such that the constraints for availabil-
ity and performance are satisfied without optimisation of
resource usage. Our problem is shifted to finding a combi-
nation of policies such that those constraints are still satis-
fied and the resource usage is minimised. We refer to such
a combination as the optimal combination.

To find the optimal combination we resort to our adap-
tation mechanism based on utility functions, that we called
cost function. By using a cost function that combines rele-
vant metrics, our adaptation mechanism is able to find the
“best” policy among the ones in the repository. In this case,
we are interested in evaluating combinations of availability
and performance policies.

Let c(a, p) be a combination of availability policy a and
performance policy p. To evaluate such a combination we
propose the use of a general cost function, indicated as CFG,
defined as follows:

CFG(c(a, p)) = w1 ∗ CFA(a) + w2 ∗ CFP (p) (1)

where CFA and CFP are the cost functions for availability
and performance, respectively.

The availability cost function CFA is defined using the fol-
lowing metrics: bu represents the network bandwidth usage;
mu represents the memory consumption for storing the tu-
ples in each local data space; and da represents the derived
availability. The latter is calculated as follows:

daa =

100− avail(a) if avail(a) ≥ required avail
MaxV alue if avail(a) < required avail

In this way, if the availability provided by an availability
policy a does not satisfy the availability required by the user
then the value for da is set to MaxV alue (with MaxV alue ≥
100) so that the calculated costs will become very high and
the system will automatically reject this policy. The cost
function is defined as follows:

CFA(a) = w′1 ∗ bua + w′2 ∗mua + w′3 ∗ daa (2)

For the performance cost function CFP , we sued the fol-
lowing metrics: rl and tl represent the latency for the exe-
cution of read and take operations, respectively;

CFP (p) = w′′1 ∗ rlp + w′′2 ∗ tlp + w′′3 ∗ bup + w′′4 ∗mup (3)

where
P

w′i = 1 with w′i ≥ 0, and
P

w′′i = 1 with w′′i ≥ 0.
The weights wi are used for controlling the contribution of

each concern. If the application developer is more interested
in availability, she could increase the value of the respective
weight to drive the decision of the mechanism towards se-
lecting a combination with more emphasis on the availability
policy.

This method minimises resource usage, such as memory
and bandwidth, for both availability and performance poli-
cies. At the same time, availability and performance are
maximised. This method tries to avoid the selection of a
sub-optimal combination. If a better combination exists,
this method guarantees that it will find it. In fact, the im-
pact of duplicating tuples will be measured by the memory
and bandwidth metrics of both CFA and CFP .

What makes this method appealing is that the input from
the application developer is kept to a minimum. The method
autonomously evaluates and selects the best combination re-
quiring from the developer only the choice of the weights.
However, finding the optimal combination requires to evalu-
ate all possible combinations of availability and performance
policies. The complexity of such method is O(n ∗m), where
n is the number of availability policies and m that of per-
formance.

It is possible to do better with the use of some heuris-
tics. A very simple one could be the following. Availability
and performance policies are evaluated separately by the re-
spective cost functions. Each cost function will output the
optimal policy for the respective concern, indicated as aopt

for availability and popt for performance. The optimal com-
bination then would be c(aopt, popt). The complexity of this
heuristic is O(n + m). We suspect that this heuristic will
select optimal combinations as long as the interactions be-
tween performance and availability are at a minimum. As a
matter of fact, this heuristic selects the optimal policies for
each concern separately. Thus, if there are interactions be-
tween these concerns this heuristic is not able to take them
into account.

A variant of the previous heuristic could be the following.
The heuristic uses a concern as a pivot. Let us assume that
the pivot concern is availability. Using the cost function of
availability, the heuristic selects the optimal policy for avail-
ability, aopt. Using the general cost function, the heuristic
evaluates all combinations in the form of c(aopt, p), where
aopt is fixed and p is one of the performance policies. The
complexity of this heuristic is O(n+m): O(n) for finding the
optimal policy for the pivot concern and O(m) for finding
the optimal combination. This heuristic has the same com-
plexity as the previous. However, this heuristic is able to
take into account the interaction between concerns. Thus,
in some cases it could be more precise than the previous
heuristic.

Another heuristic could be the following. The policies of
each concern are ranked by using the respective cost func-
tions. After the ranking, the general cost function is used
for combining the first x best policies of both concerns. The
complexity of this heuristics is O(n + m + x2): O(n) for
ranking the policies for availability; O(m) for ranking the
policies for performance; finally O(x2) for finding the opti-
mal combination.

A CB

High
Availability

High
Vulnerability

Low
Availability

Low
Availability

Low
Vulnerability

Low
Vulnerability

Figure 3: Environment where nodes have conflicting
characteristics for different concerns.

These are just a few examples of heuristics. A heuris-
tic offers the advantage of having a lower complexity with
respect to a complete evaluation of all combinations. How-
ever, this lower complexity could compromise the precision
of the selection. The higher the precision is, the closer the
selection is to the optimal combination. By comparing the
selection of a heuristic with that of the complete method,
we can quantify the precision of that heuristic. Thus the
problem is shifted to finding a heuristic that balances a high
precision with a low complexity.

5.2 Availability and Security Interactions
In this section, we analyse the interaction of availability

and security concerns. In particular, we are interested in
how mechanisms used for availability could interact with
security mechanisms. Since performance uses the same type
of mechanisms as availability, the following analysis holds
also for the interaction of performance and security.

Availability uses a different type of mechanism than se-
curity. Mechanisms in availability are distribution strate-
gies that decide where to place tuples for providing a given
availability. At the same time, the cost of maintaining such
availability level should be kept at minimum.

Security is a more pervasive concern. Making a system
secure (with respect to a threat model) requires taking sev-
eral precautions scattered across the entire system. For our
framework, security mechanisms are concerned with:

• authenticating entities that should perform operations
on tuples

• authorizing the operations on tuples

• enforcing privacy of tuples and their content.

The type of interaction between security and availabil-
ity mechanisms can be explained by the following example.
Let us assume that the system is deployed in the environ-
ment depicted in Figure 3. In the environment, 3 nodes are
provided with different characteristics regarding availability
and security. Node A provides a high availability but it is
rated as not being secure. On the other hand, nodes B and
C together provide a lower availability but higher security.
The optimal policy for availability would be to store tuples
on node A. However, for security constraints such a node
cannot be selected.

This type of conflicts can be handled in two ways: fully au-
tomated or with user intervention. In fully automated mode,
the system is in charge of taking the decision whether or not
an operation that violates security constraints should be ex-
ecuted. For instance, per default no security constraints can
be violated. In this case, the system has to resort to another
distribution strategy that is sub-optimal but that does not
violate security. Although this method is fully autonomous,
it could lead to a sub-optimal usage of resources.

When the user is involved in the loop, whenever a conflict
arises the user is asked to provide guidance for solving the
conflict. The user, based on some knowledge, could tem-
porarily allow the violations of security constraints for the
sake of optimal resource usage.

Finally, although availability and security concerns are
dealt with by different types of mechanisms, during exe-
cution these mechanisms can influence each others. For in-
stance, the encryption of a tuple during the execution of
an operation influences the overall latency of the operation.
However, this is the price to pay for all policies when security
is taken into account.

6. SUMMARY
In this paper, we propose an architecture for a multi-

concerns self-managing architecture, where availability, per-
formance and security concerns can be dealt with at the
same time. The architecture is such that each concern is
isolated from other concerns. We also analysed interactions
among the concerns that are currently supported. We dif-
ferentiated two types of interactions: those that lead to sub-
optimal solutions and those that lead to conflicts. For each
type, we proposed methods that could be used for dealing
with them.

Our previous results showed to certain extend the feasibil-
ity of our our approach. To further substantiate our findings,
we realise that the work presented in this paper needs more
experimental proof. We consider this as the main topic of
our future research.

Acknowledgments
This research was supported by the UK’s EPSRC research
grant EP/C537181/1 and forms part of the CareGrid, a col-
laborative project with the University of Cambridge. The
authors would like to thank the members of the Policy Re-
search Group at Imperial College for their support.

7. REFERENCES
[1] G. Coulson, G. Blair, P. Grace, A. Joolia, K.Lee, and J.

Ueyama. “A Component Model For Building Systems
Software.” In Proceedings of Software Engineering and
Applications, 2004.

[2] E. W. Dijkstra. “Selected Writings on Computing: A
Personal Perspective”, pp. 60–66, Springer-Verlag, 1982.

[3] R. Filman, S. Barrettt, D. Lee, and T. Linden.
“Inserting Ilities by Controlling Communications.” In
Communications of the ACM, 45(1):116–122, Jan. 2002.

[4] D. Gelernter. “Generative Communication in Linda.”
ACM Trans. Prog. Lang. Syst., 7(1):80–112, 1985.

[5] D. Garlan, S. Cheng, A. Huang, B. Schmerl, and P.
Steenkiste. “Rainbow: Architecture-Based
Self-Adaptation with Reusable Infrastructure.”In IEEE
Computer, 37(10):46–54, 2004.

[6] J. Kramer and J. Magee. “Self-Managed Systems: an
Architectural Challenge.” In Proc of IEEE Future of
Software Engineering 2007 (FOSE’07), pp. 259–268,
May, 2007.

[7] P. Maes. “Concepts and experiments in computational
reflection.” In OOPSLA Š87: Conference proceedings on
Object-oriented programming systems, languages and
applications, pp. 147–155, New York, NY, USA, 1987.
ACM Press.

[8] P. Oreizy, M. M. Gorlick, R. N. Taylor, D. Heimbigner,
G. Johnson, N. Medvidovic, A. Quilici, D. S.
Rosenblum, and A. L. Wolf. “An architecture-based
approach to self-adaptive software.” In IEEE Intelligent
Systems, 14(3):54–62, 1999.

[9] D. L. Parnas. “On the criteria to be used in
decomposing systems into modules.” Communications
of the ACM, 15(12):1053–1058, December 1972.

[10] G. Russello, M. Chaudron, M. van Steen. “Dynamic
Adaptation of Data Distribution Policies in a Shared
Data Space System.” In Proc. Int’l Symp. On
Distributed Objects and Applications (DOA’04), volume
3291 of Lecture Notes in Computer Science,
Springer-Verlag, pages 1225–1242, Larnaca, Cyprus,
October 2004.

[11] G. Russello, M. Chaudron, M. van Steen.
“Dynamically Adapting Tuple Replication for High
Availability in a Shared Data Space.” In Proc. 7th Int’l
Conf. on Coordination Models and Languages
(Coordination 2005), volume 3454 of Lecture Notes in
Computer Science, Springer-Verlag, pages 109–124,
Namur, Belgium, April 2005.

[12] G. Russello, M. Chaudron, M. van Steen, W. Stut,
and M. Petkovic. “A Personal Health Care System
using Secure GSpace.” Philips Technical Notes PR-TN
2006/00226, Philips Research Laboratories, Eindhoven,
The Netherlands, May 2006.

[13] P. Tarr, H. Ossher, W. Harrison, and S. Sutton. “N
degrees of separation: multidimensional separation of
concerns.” In Proc. 21st Int’l Conf. on Software
Engineering, ACM, pp. 107–119, NY, 1999.

[14] W. E. Walsh, G. Tesauro, J. O. Kephart, and R. Das.
“Utility Functions in Autonomic Computing.” In First
International Conference on Autonomic Computing
(ICACŠ04), 2004.

