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Abstract. Epidemic protocols have demonstrated remarkable scalability and robust-
ness in disseminating information on internet-scale, dynamic P2P systems. However,
popular instances of such protocols suffer from a number of significant drawbacks,
such as increased message overhead in push-based systems, or low dissemination speed
in pull-based ones.
In this paper we study push-based epidemic dissemination algorithms, in terms of hit
ratio, communication overhead, dissemination speed, and resilience to failures and
node churn. We devise a hybrid push-based dissemination algorithm, combining prob-
abilistic with deterministic properties, which limits message overhead to an order of
magnitude lower than that of the purely probabilistic dissemination model, while re-
taining strong probabilistic guarantees for complete dissemination of messages. Our
extensive experimentation shows that our proposed algorithm outperforms that model
both in static and dynamic network scenarios, as well as in the face of large-scale catas-
trophic failures. Moreover, the proposed algorithm distributes the dissemination load
uniformly on all participating nodes.
Keywords: Epidemic/Gossip protocols, Information Dissemination, Peer-to-Peer

1 Introduction
1.1 Background
Large-scale information dissemination constitutes fundamental functionality for a multitude
of applications, ranging from file-sharing and web-castingto the massive distribution of
software, security patches, and world-wide worm alert notifications. The emergence of new
types of applications for large-scale decentralized systems drives the need for efficient, reli-
able, and scalable information dissemination frameworks.

Early attempts for information dissemination focused on network-layer solutions, lead-
ing to a number of IP Multicast protocols. These protocols rely on functionality embedded
in routers, that enables the dynamic construction of spanning trees that reach all participat-
ing nodes, but generally provide no reliability guarantees. A number of solutions have been
proposed on top of IP Multicast, such as SRM [6] and RMTP [13],to improve its reliability.
Nevertheless, IP Multicast is not widely deployed in the Internet.

Application-layer multicastforms an alternative class of solutions that has emerged in
the recent years. The main advantage of these solutions is that they are very generic, and,
therefore, they can be directly deployed over today’s network infrastructure. There exist
application-layer multicast protocols that provide reliability guarantees [8]. However, many
of them do not scale well to a large number of nodes [17].

A class of application-layer multicast has recently emerged [3, 2, 21], based on the struc-
ture of DHTs such as Chord,Pastry,and Tapestry.What is common in these DHTs is that, in



their respective overlays, each node is the root of a tree spanning the whole network. These
spanning trees are used for message dissemination. Although systems of this class are nearly
optimal with respect to message overhead, a single failure along a spanning tree can result
in a whole branch missing a message. Failures are disregarded as a whole in [3], where the
assumption of reliable communication is made. Scribe [2] provides by default best-effort de-
livery. Reliability is improved to some extent by imposing TCP connections among nodes,
a rather heavy assumption for dynamic, large-scale P2P networks. Finally, Bayeux [21], a
system mainly targeted at data streaming, improves on reliability by redundantly dissemi-
nating messages across different paths of a spanning tree. However, its design is exposed to
scalability problems, as each request to join a group is routed to a single node managing that
group.

Gossip-based protocols, such as Bimodal Multicast (pbcast) [1] and Directional Gos-
sip [14] form an alternative to strongly reliable broadcasting approaches. Each node for-
wards a message to a small random subset of the network, and soon. These protocols gener-
ally provide onlyprobabilisticguarantees for message delivery. However, they are attractive
because they are easy to deploy and resilient to node and linkfailures, due to redundant
message deliveries. On the other hand, scalability can suffer if nodes are required to main-
tain full knowledge of the network, notably when node churn is at stake. Optimizations have
been suggested in [1] to overcome such scalability issues.

Other gossiping protocols, such aslpbcast[4, 5] and [12, 7] provision for membership
management too. In particular, [7] describes a hybrid dissemination system, that multicasts
messages using a tree-based hierarchical structure, and locally switches to gossiping when a
large number of failures is detected. These protocols drop the assumption of full knowledge
of the network. Each node maintains a small view of the network, consisting of a few links
to neighbors, which are used for dissemination. This makes them highly scalable. However,
due to their probabilistic nature, a message may fail to reach the whole network even in a
fail-free environment. To alleviate this, highly redundant message forwarding is employed.

Excessive redundancy of push-based approaches can be reduced while retaining a high
hit ratio, by employing pull-based epidemic techniques: nodes periodically poll other nodes
to pull messages they may have missed. However, the periodicnature of pull-based gossiping
results in relatively long latency of message dissemination, significantly longer than reactive
push-based approaches. We will not consider pull-based techniques in this paper.

1.2 Contributions

The contributions of this paper are three-fold. First, we study the algorithm proposed in
[12] (which we call RANDCAST), we observe and quantify the excessive message overhead
it imposes on the network, and explain why the class of flat,probabilistic dissemination
algorithmsrequires high levels of redundancy to disseminate messagesto the whole node
population.

Second, we reason that imposing some level ofdeterminismon probabilistic dissemina-
tion algorithms can substantially reduce the dependence onmessage redundancy, introducing
the class ofhybrid (probabilistic/deterministic) dissemination algorithms. Protocols of this
class achieve deterministic dissemination to all nodes in fail-free environments. When fail-
ures occur, their reliability degrades gracefully with thenumber of failures.

Third, we propose RINGCAST, a novel hybrid dissemination algorithm, which achieves
complete dissemination of messages (hit ratio 100%) with anorder of magnitude lower mes-
sage overhead compared to RANDCAST. Our extensive experimentation and side by side



comparison of the two protocols, show that RINGCAST outperforms RANDCAST in terms
of hit ratio, message redundancy, tolerance to node churn, and resilience to (even large-scale)
node failures. Moreover, both algorithms distribute the dissemination load uniformly on all
participating nodes.

2 Evaluating a Dissemination System

A number of issues are of concern when evaluating or comparing information dissemina-
tion systems. It is essential for the rest of this paper to list the metrics used to evaluate the
effectiveness and usefulness of a dissemination system.

Hit ratio This is defined as the ratio of nodes that receive a message over the total node
population. It rates the dissemination reliability. Ideally, a reliable dissemination sys-
tem should always achieve a hit ratio of 100%. In our evaluation (Section 7) we present
graphs of the complementarymiss ratiometric, defined as:MissRatio = 1−HitRatio.

Resilience to failures and churn For a dissemination system to be meaningful in a real-
world dynamic network, it should operate reasonably well inthe presence of node or
link failures, and node churn. The operation under such conditions is evaluated by means
of the hit ratio, described above.

Dissemination speed The time required for the dissemination of a particular message to
complete. The faster a message is disseminated the better. Dissemination speed depends
on two principal factors. First, the delay in forwarding messages (processing delay on
nodes plus network latency). Second, the number of hops a message takes to reach the
last node. In our evaluation we focus on the latter factor.

Message overhead The overall number of times a message is forwarded during itsdissem-
ination. For a message to reachN recipients, it should be forwarded a minimum ofN

times. In practice, however, messages are forwarded a number of redundant additional
times, to sustain churn and failures. Message overhead rates a dissemination system with
respect to preserving or wasting network resources.

Load distribution The distribution of load over nodes, in terms of messages received and
messages forwarded. Ideally, load should be evenly distributed among participating
nodes.

In this paper we are interested in reliable dissemination ofmessages originating atany
node toall participating nodes. We do not focus on optimizing the dissemination of mes-
sages with respect to any proximity metric or by building a spanning tree. Also, we do not
consider positive or negative acknowledgements, or requests for retransmission of lost mes-
sages. Instead, we introduce redundancy in message dissemination and examine its relation
to the level of reliability achieved. We investigate the power of epidemics at disseminating
messages to all nodes, with a high probability.

3 Deterministic Dissemination

Consider a system consisting ofN nodes, and a set of directed links among them. Amessage
can originate at any of the participating nodes, and aims at reaching the whole network. A
node that generates a new message or receives a message for the first time, forwards it across
all its outgoing links. If a node receives a message for the second time, it simply ignores it.
As an optimization, a message is never forwarded back to the node it was just received from.
This basic algorithm is often referred to asflooding. Figure 1(a) shows the pseudocode for
the dissemination algorithm.



when nodeP generates messagem,
or receivesm from nodeQ do

if m not already seenthen
targets← selectGossipTargets(Q)
foreach T ∈ targetsdo send(T , m)

endif
end

function selectGossipTargets(Q)
targets← view-{Q}
return targets

end

(a) (b)
Fig. 1. (a) The generic dissemination algorithm. (b) Gossip targetselection for deterministic dissemi-
nation (flooding).

The distinguishing characteristic of flooding is that one can deterministically control dis-
semination by imposing the appropriate overlay on the nodes. The underlying requirement to
guarantee complete dissemination starting from any participating node, is to form astrongly
connected directed graph3 includingall nodes. A multitude of overlays have been proposed
for information dissemination by means of flooding, each onedemonstrating a different be-
havior with respect to the metrics listed in the previous section.

Spanning treesor simplytreeswere among the first types of overlays proposed for flood-
ing. Their strong point is that they are optimal with respectto the number of links maintained
and, consequently, to the message overhead associated withdissemination. Indeed, in a net-
work consisting ofN nodes, the complete dissemination of a message over a tree involves
exactlyN−1 point-to-point communications. Their main disadvantage,though, is that a sin-
gle failure of any link or any non-leaf node disconnects the tree prohibiting messages from
reaching all nodes. Also, maintaining a valid tree structure, ensuring the graph is connected
and yet acyclic, is not a trivial task in the presence of failures. For these reasons, trees are
not suitable for dynamic environments where failures can happen.

A special type of tree-based overlays for flooding is theserver-basedclass (star graphs),
where all nodes are connected by bidirectional links to a single node acting as a relay server.
In these overlays all but the server node are leaf nodes, therefore their failure has no effect
on the remaining nodes, but the server becomes a single pointof failure. In addition, such
overlays demonstrate the worst possible load distribution, the server node being linearly
loaded by the number of nodes and number of messages being disseminated, rendering it a
non-scalable solution.

On the other end of the spectrum liecliques(complete graphs). In such a setting, ev-
ery node has a complete view of the network. A node broadcastsa message by sending it to
every other node in the network. This provides maximum reliability, at the cost of high main-
tenance costs. Although messages always reach all nodes irrespectively of how many nodes
have failed, maintaining this type of overlay is impractical. Maintaining a fully connected
graph is expensive in networks larger than a few dozen nodes,notably when the membership
changes continuously.

A class of flooding overlays deserving more attention is the one based onHarary graphs,
introduced by Harary in [9], further studied by Jenkins and Demers [11], and applied by Lin
et al. [15] in flooding. A Harary graph of connectivityt is a minimal link graph that is guar-
anteed to remain connected when up tot− 1 nodes or links fail. Its minimum cut, therefore,
consists oft links. Moreover, in a Harary graph links are evenly distributed across nodes,
each node having eithert or t + 1 bidirectional links. An example Harary graph of con-
nectivity two is a bidirectional ring, that we will use laterin Section 5.1. Such overlays are

3 a directed graph in which there is a directed path between anyordered pair of nodes



very appealing for information dissemination in the presence of failures, as they are guar-
anteed to sustain up to a certain number of failures while imposing the minimum message
overhead (for the corresponding reliability guarantees),and this overhead is evenly balanced
across all nodes. The maintenance of such graphs, notably ofhigher connectivityt, can be a
complicated and expensive task for large-scale, dynamically changing networks.

4 Probabilistic Dissemination

Acquiring reliability by imposing systematic structure onoverlays is infeasible in dynamic
networks of massive scale. In this section we take a look at anappealing alternative,proba-
bilistic disseminationalgorithms, which trade-in deterministic reliability guarantees in return
of overlay construction and maintenance simplicity.

In these algorithms, dissemination is not guaranteed by means of a strategic topology,
but by increased redundancy in message forwarding. The basic idea is that a node receiving
a message forwards it to a number ofrandomother nodes. It turns out that if that number
is sufficiently high, messages reach all nodes with a high probability [12]. The choice of
random nodes to forward messages to can be easily handled by aPEERSAMPLING SERVICE,
as described in [?]. The main advantage of probabilistic dissemination algorithms is that they
are very simple to implement and inherently tolerant to dynamic environments, at the cost of
increased message overhead.

4.1 The RANDCAST Dissemination Algorithm
We consider a system consisting ofN nodes. Each node runs the PEERSAMPLING SERVICE,
providing it with a small, random, partial view of the network. A messagecan originate at
any of the participating nodes, and aims at reaching the whole network. A node that generates
a new message or receives a message for the first time, forwards it to (up to)F nodes, called
the node’sgossip targets, chosen randomly from its PEER SAMPLING SERVICE view. F is
a system-wide parameter, called thefanout. A message is never forwarded back to the node
it was just received from. Figure 2 shows the pseudocode for the selection of gossip targets
in the RANDCAST dissemination algorithm.

function selectGossipTargets(Q)
targets← F random nodes fromview-{Q}
return targets

end

Fig. 2. Gossip target selection for the RANDCAST dissemination algorithm.

Note that this algorithm is quite efficient at spreading a message to a considerable per-
centage of the nodes in the network very fast, specifically atexponential speed with base
F : A new message progressively reachesF 0 (=1, the message generator),F 1, F 2, . . . other
nodes. Consequently, a message spreads very fast even for small values ofF ≥ 2. As ex-
pected, dissemination slows down when the message is forwarded to nodes that have already
received it. However, if the selection of nodes to forward a message to is uniformly ran-
dom, this slowdown turns out to be negligible until the message has reached a substantial
percentage of the network.

Despite its strength at spreading messages fast, RANDCAST is not as efficient at achiev-
ing complete dissemination, that is, to reach every single node in the network. It is by nature
a probabilistic algorithm. Even in the absence of failures,it provides no hard guarantees that
a message will reachall nodes. It is not hard to see why. By forwarding messages at random,
a node has no guarantees that at least one of its incoming links will be chosen to forward



the disseminated message. To alleviate this, abundant redundance should be introduced by
means of a large fanout. However, this is not desirable, because message overhead increases
proportionally to the fanout, as we will see in the evaluation in Section 7. The RANDCAST

dissemination algorithm has been analyzed and evaluated byKermarrec et al in [12].
In the following section we introduce a novel class of hybriddissemination algorithms,

combining deterministic and probabilistic dissemination. We also present a particular proto-
col of this class. We defer the evaluation of both protocols until Section 7, where they are
compared side by side.

5 Hybrid Dissemination
As we discussed above, although probabilistic protocols are good at spreading messages fast
even for small values ofF , a large value ofF is mandated to reach every single node in the
network. This inefficiency can be tackled by introducing some determinismin the selection
of gossip targets, ensuring any possible dissemination graph is connected and includes all
nodes.

Hybrid dissemination protocols aim at combining probabilistic and deterministic behav-
ior. To that end, they establish two types of links among nodes. Random links (r-links) con-
tribute to their probabilistic behavior, and deterministic links (d-links) bring in determinism.
R-links are simply links randomly selected, just like in purely probabilistic dissemination
protocols. When presented with a message, a node forwards itacross a few r-links. Conse-
quently, messages initially spread to a large portion of thenetwork at close to exponential
speed.

However, a message being disseminated should reach every single node in the network.
That is, it should be forwarded across at least one incoming link of each node. The basic idea
is to establish a set of d-links, and have nodes deterministically forward messages acrossall
their outgoing d-links, in addition to a few of their outgoing r-links. If the set of d-links
forms an overlay compliant to the deterministic dissemination protocols’ requirement, that
is, it forms a strongly connected directed graph including all nodes, complete dissemination
of messages is guaranteed. In such a graph, each node’s indegree is at least 1. Moreover,
if we ensure that each node has at leastt incoming d-links, then complete dissemination is
guaranteed even in the presence of up tot − 1 faulty nodes.

Hybrid protocols effectively decouple the two fundamentalgoals in information dissem-
ination. On one hand, spreading a message to a large percentage of the nodes fast, and on the
other, reaching every single node. The probabilistic component carries out the bulk of the
dissemination task, while the deterministic one takes careof the fine-grained details.

What makes hybrid dissemination protocols attractive, is that the set of d-links does not
need to form a particularly sophisticated and hard-to-maintain structure. The sole require-
ment is that the set of d-links forms a strongly connected directed graph over all nodes. A
simple structure satisfying this requirement is a ring. In the following section we explore
how it can be used as a basis for a practical hybrid dissemination system.

5.1 The RINGCAST Dissemination Algorithm

We introduce RINGCAST, a novelhybrid dissemination algorithmthat—even with a very
low fanout—guarantees complete dissemination in a failure-free environment. In the pres-
ence of failures, its performance degrades gracefully, nevertheless still outperforming RAND-
CAST. Finally, when confronted with continuous churn, RINGCAST proves again more re-
liable than RANDCAST, excluding nodes that joined the system very recently (for which it
performs worse).



Fig. 3. Example of a RINGCAST overlay.
Nodes are organized in a bidirectional ring
(by means of thed-links), and each one has
a number (in this case only one) outgoing
random links (r-links).

Fig. 4. Example of a message dissemination in
a partitioned ring. For clarity, only a few of the
followed r-links are shown.

As discussed above, hybrid dissemination algorithms maintain two types of links be-
tween nodes, namely r-links and d-links. R-links are randomlinks, obtained by a member-
ship management protocols such as the PEER SAMPLING SERVICE [10]. With respect to
d-links, RINGCAST organizes nodes in aglobal bidirectional ringstructure. A bidirectional
ring constitutes a strongly connected graph, as required bydeterministic dissemination pro-
tocols. Figure 3 illustrates an example RINGCAST overlay, where nodes form a bidirectional
ring, and each one has a single outgoing r-link.

function selectGossipTargets(Q)
targets← {}
if ringNeighbor16= Q then targets← targets+ {ringNeighbor1}
if ringNeighbor26= Q then targets← targets+ {ringNeighbor2}
targets← targets+ (F−targets.size) random nodes from (view−{Q})
return targets

end

Fig. 5. Gossip target selection for the RINGCAST dissemination algorithm.

Just like in the dissemination protocols discussed earlier, a node that generates a new
message or receives a message for the first time, forwards it to (up to)F nodes, whereF
is the system-wide fanout parameter. However, in the case ofRINGCAST, a node always
forwards a message to its two ring neighbors (sending it across its two outgoing d-links),
and acrossF − 2 randomly selected r-links. If the message was received through one of the
node’s ring neighbors, the node forwards it to the other ringneighbor, and acrossF − 1
random r-links. Figure 5 shows the pseudocode for the selection of gossip targets in the
RINGCAST dissemination algorithm.



Note that a bidirectional ring is a Harary graph of connectivity two, that is, its minimal
cut is two. Consequently, although no single node failure can break the ring in two disjoined
partitions prohibiting complete dissemination to the remaining nodes, such a situationwill
occur if two non-adjacent nodes fail. In most cases, however, this is not a crucial problem for
dissemination, as d-links are only one facet of the process.R-links can carry the message to
arbitrary nodes, most often bridging the gap between two or more disjoined ring partitions.
Effectively, it suffices if anyonenode of an isolated ring partition receives the message,
as the message will propagate to the whole partition over thed-links. Figure 4 presents a
complete dissemination scenario over a ring split in several partitions. As we will see in
the evaluation in Section 7, RINGCAST achieves a high hit ratio (higher comparatively to
RANDCAST) even in the presence of many failed nodes.

6 Building the RANDCAST and RINGCAST Overlays

The r-links and d-links are built using epidemic protocols too:

Random links (R-links) Several methods may be applied to randomly sample peers in an
unstructured peer-to-peer overlay, e.g. by means of the PEER SAMPLING SERVICE [10].
In RINGCAST we use CYCLON [19], an epidemic protocol that is an instance of the PEER

SAMPLING SERVICE, and that has shown to produce overlays that strongly resemble random
graphs. Omitting certain details, in CYCLON each node maintains a small view ofℓcyc links
to random other nodes. A node periodically gossips with another node, tradingsomeof their
links with each other. As a result, node views are periodically refreshed by links to random
other nodes in the network. At any given moment, the current snapshot of the nodes along
with their links resembles a random graph.

Deterministic ring links (D-links) Such links are maintained using a proximity-based
topology construction epidemic protocol, here we use VICINITY [20]. The basic idea is that
nodes maintain short views of the network of lengthℓvic. They periodically gossip to ran-
dom other nodes, exchanging their views. Upon epidemic viewexchanges, a node keeps the
ℓvic links to the closest peers according to a given proximity metric. This way, the neighbor
set of each node gradually converges to the closest peers outof the whole node population.
Here proximity refers to the distance between—arbitrarilychosen—sequence IDs, which
determine the organization of nodes in a ring structure. Thed-links of a node are the two
peers with just higher and just lower sequence ID. Links to a few more peers with gradually
higher and lower sequence IDs are not involved in the dissemination protocol, but are useful
in maintaining the ring in dynamic conditions.

Note that both these protocols have a periodic nature. Each node initiates an epidemic view
exchange (per protocol) once everyT time units (nodes have independent, non-synchronized
timers). We refer toT as thecycleof the protocol. This will be relevant in Section 7.3, where
the churn rate is defined relative to the cycle length.

7 Evaluation

We evaluate the two protocols side by side in three scenarios. First, in a static and failure-free
network. Second, in a static network right after a catastrophic failure, that is, after the sudden



failure of a large number of nodes. Finally, in a dynamic network under continuous node
churn. Evaluation was done with respect to the following criteria, as discussed in Section 2:

1. Hit ratio
2. Dissemination speed
3. Message overhead

We do not explicitly address load balancing, because both protocols are by nature distributing
the load across all nodes evenly. A node receiving a message forwards it toF others, just
like any other node.

Experiments were carried out using the PeerSim simulator [16]. We tested all scenarios
by instantiating a network of 10,000 nodes. Each node was running CYCLON and, in the case
of RINGCAST, V ICINITY too, as described above, with view length 20 for each protocol
(ℓcyc = ℓvic = 20. Nodes were initially supplied with a certain single contact in their
CYCLON views, forming a star topology. VICINITY views were initially empty. After letting
the network self-organize for 100 cycles, we started disseminating messages from various
nodes picked at random.

We assume a very simple dissemination model, that allows us to study the evolution of
disseminations in terms of discrete rounds, that we callhops. The generation of a message
is marked hop 0. At hop 1, the message reachesF neighbors of the origin node. At hop 2, it
further reaches the neighbors’ neighbors, and so on. This way, we can evaluate the progress
of a dissemination by counting the number of messages sent and the number of new nodes
notified per hop.

An implicit assumption underlying our dissemination modelis that the processing delay
and network latency between all pairs of nodes are the same. Although latencies vary in a
real wide-area network, our assumption does not have an effect on the macroscopic behav-
ior of dissemination with respect to the hit ratio. Dissemination relies on nodes forwarding
the messages they receive. A node that receives a message forthe first time, forwards it to
the same number of neighbors picked with the same logic, irrespectively of the time this
happens. Consider for instance two scenarios of RANDCAST, executing over the same static
overlay (assume gossiping is currently stalled), startingfrom the same origin and each node
picking the same gossip targets in both cases. If pair-wise latencies are different in the two
scenarios, the order in which nodes are notified may change, but the exact same set of nodes
will have been eventually notified. In the case of RINGCAST, the set of nodes notified may
change, but the same macroscopic behavior is maintained.

7.1 Evaluation in a Static Failure-free Environment

We first evaluate and compare the two protocols side by side byconsidering a failure-free
static environment.

We instantiated a network of 10,000 nodes in PeerSim. Each node was running CY-
CLON and, in the case of RINGCAST, V ICINITY too as described above, with view length
20 for each protocol. Nodes were initially supplied with a given single contact in their CY-
CLON views, forming a star topology. VICINITY views were initially empty. After letting
the network self-organize for 100 cycles, we started posting messages and observing their
dissemination.

We ran a number of experiments—not presented here—to investigate the effect of gossip-
ing speed on dissemination. More precisely, we explored therelation between the gossiping
period and message forwarding time, that is, the time is takes a node to process a message



and forward it to a neighbor. We varied the message forwarding time from zero to several
times the gossiping period. We recorded no effect whatsoever on the macroscopic behavior
of disseminations. That is, although changing the message forwarding time results in differ-
ent experiments, with different nodes being reached each time and in a different order, all
macroscopic properties, such as the hit ratio, dissemination speed, and message overhead,
are preserved. It is not hard to see why. With respect to VICINITY -managed d-links, they are
not even altered by gossip exchanges once the optimal sets have been obtained. With respect
to CYCLON-managed r-links, these are random links anyway, irrespectively of whether they
are being updated fast or are currently fixed. Consequently,forwarding a message along a
few of them has an equivalent effect regardless of whether gossiping runs at a high rate or is
currently stalled.

Having verified this, we chose to disseminate messages overfixedoverlays in all experi-
ments presented in this section. This choice was primarily made to limit simulation execution
to a reasonable time, considering the large number of experiments we carried out. So, in each
experiment, after self-organizing for 100 cycles, the overlay was frozen and only then did
disseminations start.
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Fig. 6. Dissemination effectiveness as a function of the fanout, for a failure-free static network of 10K
nodes. (a) Miss ratio averaged over 100 experiments; (b) Percentage of 100 experiments that resulted
in complete dissemination.

For each value ofF ranging from 1 to 20, we posted 100 messages from various nodes
picked at random, resulting in a total of 2000 experiments for each protocol. Since the hit
ratio approaches 100% even for small values ofF , it is more meaningful to present the miss
ratio instead, in logarithmic scale. Figure 6(a) presents the dissemination miss ratio averaged
over 100 experiments for each value ofF . RANDCAST and RINGCAST are represented by
light and dark bars, respectively. The miss ratio for RANDCAST appears to be dropping
exponentially as a function of the fanoutF . Note that no dark bars appear in this graph,
as the miss ratio for RINGCAST is zero for any choice ofF . This comes as no surprise, as
RINGCAST’s operation guarantees complete dissemination in failure-free static networks.

Figure 6(b) shows the percentage of experiments that resulted in a complete dissemi-
nation, for each value ofF . With respect to RANDCAST, it is interesting to see that the



transit from 0% to 100% follows a rather steep curve. For instance, even with a fanout of
6, although the overall hit ratio was above 99.9% (Fig. 6(a)), none of the 100 experiments
resulted in a complete dissemination. With a fanout of 8, more than half of the dissemi-
nations were complete, while by further increasing the fanout to 11 or higher we get only
complete disseminations. As far as RINGCAST is concerned, this graph validates once again
that disseminations are always complete, irrespectively of the chosen fanout.
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Fig. 7. Dissemination progress in a static failure-free network of10K nodes. 100 experiments of each
protocol are shown.

Having seen to what extent messages eventually spread, we now take a closer look at the
evolution of dissemination hop by hop. Figure 7 shows the progress of all 100 dissemination
for each protocols, for four different fanouts. More specifically, it shows the number of nodes
that have not yet been notified, as a function of the hops taken.

Four main observations can be made by examining these graphs. First, for a given fanout,
all experiments of a protocol demonstrate very small variations in their progress with respect
to the hit ratio and dissemination latency. This is important as it shows that by selecting the
appropriate fanout value, we can tune a system’s dissemination behavior to a good level of
accuracy. Second, we notice a clear—expected—influence of the fanout on dissemination
latency. The higher the fanout, the shorter a dissemination’s duration. Third, we observe that
the progress of disseminations for the two protocols is alike for a few initial hops, when
the message has not yet reached a significant portion of the network. The protocols differ-



entiate only after a substantial percentage of the nodes (i.e., at least 80%-90%) have been
notified. This is a direct effect of the two protocols’ operation. By forwarding messages at
random, RANDCAST hardly reaches any more non-notified nodes, in an already saturated
network. On the contrary, by also forwarding messages alongthe ring, RINGCAST exhaus-
tively reaches out to every single node. Finally, we see thatthe higher the fanout the more
similarly the two protocols disseminate messages. However, in all cases RINGCAST reaches
the last node in fewer hops, demonstrating a lower dissemination latency.
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Fig. 8. Total number of messages sent, divided in messages sent to not-yet-notified and already notified
nodes.

The third metric we are interested in is message overhead. Aswe already mentioned in
Section 4.1, message overhead increases proportionally tothe fanout. Indeed, if a node for-
wards a newly received message toF other nodes andNhit nodes are reached in a dissemi-
nation, the total number of messages sent isF×Nhit. Figure 8 confirms this assessment. The
shaded segments represent the number of messages reaching nodes for the first time (noted
as “virgin” nodes). The striped segments represent the number of redundant messages, that
is, messages reaching already notified nodes, and thereforeconstitute a waste of network
resources. As the network consists of10K nodes, for a given fanoutF a complete dissemi-
nation involvesF × 10K total messages, out of which10K are messages to “virgin” nodes,
and the rest(F − 1) × 10K are redundant. The two graphs are practically identical except
for low fanouts, for which RANDCAST disseminations do not reach all nodes. These graphs
are illustrative with respect to the reason the fanout should be kept as low as possible.

7.2 Evaluation after Catastrophic Failure

For a system to be usable in a realistic environment, it has tocope with failures. In this
section we explore the behavior of the two protocols in the face of catastrophic failures, that
is, when a number of nodes suddenly break down.

We set up the experiments like the ones in the previous section, but before starting the
disseminations we kill a randomly chosen portion of the nodes. That is to say, for each
experiment we simulate a network of 10,000 nodes, let it self-organize for 100 cycles, and



stall gossiping. We subsequently remove a randomly chosen set of the nodes and examine
dissemination over the remaining ones.

Unlike failure-free static networks where ongoing gossiping has no influence on dissem-
ination after some point (see Section 7.1), in the face of failures gossipingdoeshave an
effect, namely a positive one. Following a catastrophic failure, gossiping allows the network
reorganize itself, removing links to dead nodes and reestablishing valid ring links. In our ex-
periments gossiping wasnot allowed following the catastrophic failure, exploring theability
of a partially damaged overlay to disseminate messages without giving it the chance to self-
heal. This was our deliberate choice, aiming at testing a catastrophic failure’s worst-case
influence on dissemination.

Figure 9 presents the dissemination effectiveness for bothprotocols after catastrophic
failures killing 1%, 2%, 5%, and 10% of the nodes. Similarly to Figure 6 in the previous
section, the graphs on the left show the miss ratio, and the ones on the right the percentage
of disseminations that reached all nodes, as a function of the fanoutF . One can clearly see
that RINGCAST is more effective at disseminating messages in all experiments. A closer
look at these graphs shows that as the volume of the catastrophic failure grows larger, the
difference between the two protocols’ effectiveness decreases. However, even when 10% of
the nodes are killed at once, RINGCAST demonstrates an order of magnitude lower miss ratio
than RANDCAST. The lower miss ratio of RINGCAST reflects on the significantly higher
percentage of complete disseminations for small fanouts.

Figure 10 shows the evolution of disseminations after a catastrophic failure of 5% of the
nodes, in accordance to Figure 7 in the previous section. Once again, the relation between
the chosen fanout and dissemination latency is verified. We also see that the evolution of
disseminations exhibits small variations for a given configuration, like in the case of a failure-
free static network.

Finally, Figure 11 illustrates the message overhead for dissemination in the presence of a
catastrophic failure of 10% of the nodes. Again, the total number of messages is proportional
to the chosen fanout. The lightly shaded segments show the number of messages reaching
nodes for the first time. The striped ones represent messagesreaching already notified nodes.
Finally, the darkly shaded segments show the number of messages sent to dead nodes (and
therefore lost). We see that the number of messages sent to dead nodes increases linearly for
both protocols.

7.3 Evaluation under Churn

Apart from catastrophic failures, a system should also be able to deal with node churn, that
is, continuous node arrivals and departures. In this section, we examine the behavior of the
two protocols under churn.

We evaluate the two protocols against the artificial churn model introduced in Section??.
In that model, in each cycle a given percentage (known as the churn rate) of randomly se-
lected nodes are removed, and the same number of new ones jointhe network. Recall that this
constitutes a worst case churn scenario, as removed nodes never come back, so dead links
never become valid again, and new nodes have to join from scratch. We tested both protocols
with a churn rate of 0.2%, which, given a gossiping period of 10 seconds, corresponds to the
churn rate observed in the Gnutella traces by Saroiu et al [18].

Unlike experiments on static networks where a small number of cycles sufficed to warm
up the respective overlays (Sections 7.1 and 7.2), experiments on dynamic networks required
significantly more warm-up cycles. A network of 10,000 nodeswas let gossip in the presence
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Fig. 9. Dissemination effectiveness as a function of the fanout forstatic network of 10K nodes, after
catastrophic failures of 1%, 2%, 5%, and 10% of the nodes.
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Fig. 10. Dissemination progress in a static network of 10K nodes, after catastrophic failure killing 500
nodes (5%). 100 experiments of each protocol are shown.
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of continuous artificial churn, until every node had been removed and reinserted at least
once. For all experiments this took several thousand cycles. Then the respective network
was frozen, and the resulted overlay was tested with respectto dissemination effectiveness.
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Fig. 12. Dissemination effectiveness as a function of the fanout, inthe presence of node churn. In each
cycle, a randomly selected 0.2% of the nodes was removed, andreplaced by an equal number of newly
joined nodes.

Figure 12 shows the miss ratio and the percentage of completedisseminations as a func-
tion of the fanout. Although RINGCAST results in a lower miss ratio than RANDCAST for
low fanouts (2 to 5), it performs slightly worse for fanouts 6or higher. Also, none of the pro-
tocols achieves any complete disseminations, except when maximizing the fanout, in which
case RANDCAST appears to be performing better again.

By looking at these quantitative graphs alone, one could come to the conclusion that
RINGCAST is not any better—if not worse—than RANDCAST when node churn is at stake.
A closer, qualitative examination ofwhichgroups of nodes contribute to each protocol’s miss
ratio will prove otherwise. As we will see, RINGCAST’s miss ratio is almost entirely due to
its poor performance at reaching newly joined nodes, while it provides good dissemination
guarantees to all older nodes.

Along these lines, we now investigate the relation between anode’slifetime, that is, the
number of cycles since it joined the network, and its chance of receiving a disseminated
message. Figure 13 presents the distribution of node lifetimes after the execution of several
thousand cycles, when every node has been removed and reinserted at least once. In fact,
Figure 13 plots the exact count of nodes having a given lifetime, aggregated over 100 exper-
iments, in log-log scale. Given that the network consists of10,000 nodes and the churn rate
is 0.2%, at each cycle 20 random nodes are evicted and 20 new are added. Therefore, the
number of nodes having a given lifetime cannot exceed 20. Forall 100 experiments together,
the number of nodes of a given lifetime ranges from 0 to 2000, hence the range of the vertical
axis.

The distribution of lifetimes of nodes thatwere not notifiedduring dissemination, is pre-
sented in Figure 14. The distributions for two fanouts are shown, 3 (top) and 6 (bottom).
It is clear that in all cases newly joined nodes (i.e., ones that joined up to 20 or 30 cycles
ago) experience significantly higher miss ratio than other,older nodes. RINGCAST, in par-
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Fig. 13. Distribution of node lifetimes, summed over 100 experiments.

ticular, results in quite more misses (notice the log scale)than RANDCAST for these nodes.
Nevertheless, for nodes that have been in the network for at least 20 or 30 cycles, it demon-
strates a substantially lower miss ratio, almost negligible compared to that of RANDCAST.
For instance, let us take a look at dissemination with fanout6. Although RINGCAST appears
to have a higher overall miss ratio than RANDCAST (Fig. 12), it hardly suffers any misses
for nodes that joined at least 20-30 cycles earlier, contrary to RANDCAST. Its miss ratio is
entirely attributed to misses in newly joined nodes.

The implication behind this observation is worth noting. RINGCAST proves to be a better
dissemination tool, except for the first few cycles after a node’s join. Once a warm-up period
of a few cycles has elapsed, a node receives all disseminatedmessages with very high proba-
bility. For a gossiping period of 10 seconds and a view lengthℓcyc = 20, the warm-up phase
amounts to a bit over 3 minutes. In applications where fasternode joins is vital, new nodes
can gossip at an arbitrarily higher rate for the first few cycles, to complete their warm-up
phase correspondingly fast. However, this is a mere optimization and will not be considered
further in this paper.
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At this point, it is interesting to understand why new nodes experience more misses,
and why this phenomenon is more intense in RINGCAST. Nodes are notified through their
incoming links. Their probability of being notified is tightly related to how well they are
known by other nodes. A new node joins the network with zero indegree, and gradually
increases it. Until a node’s indegree reaches the average indegree of the network, it has less
chance to receive a message than older, better connected nodes. This shows clearly in the
aforementioned graphs (Fig. 14).

More specifically, a new node’s r-link indegree increases byone in each of its first few
cycles, and takes approximatelyℓcyc (hereℓcyc = 20) cycles to stabilize to the average
indegree of the network (which isℓcyc too). This is a property of CYCLON, which manages r-
links. So, for RANDCAST, which depends solely on CYCLON, we observe a steep decrease in
misses for nodes of lifetimes 1 through 20, followed by an immediate stabilization thereafter.
This is a direct effect of the join process in CYCLON, which takes approximatelyℓcyc cycles
to establish the average number of incoming links.

On the other hand, RINGCAST also depends on VICINITY to form the d-links (i.e., the
edges of the ring). However, a node does not benefit from incoming VICINITY links until
the appropriate incoming d-links are formed, that is, untilit eventually becomes known by
its two direct ring neighbors. Generally this does not happen instantly, but may require an
undefined—yet small—number of cycles. Until then, a newly joined node relies only on its
incoming r-links to receive messages. During that phase, itis clear that newly joined nodes
have better chances to receive messages in RANDCAST, where messages are forwarded to
F r-links, as opposed to onlyF − 2 r-links in RINGCAST. This explains why RINGCAST

exhibits more misses than RANDCAST for nodes that joined roughly in the last 20 cycles
(Fig. 14).

Note that the further curve in misses for lifetimes greater than 100 simply follows the
lifetime distribution of the general node population (Fig.13).

8 Conclusions and Discussion

We explored push-based epidemics for information dissemination in very large-scale sys-
tems, focusing on limiting redundant messages while retaining strong probabilistic deliv-
ery guarantees. We introduced a new class of push-based epidemic dissemination protocols,
which combine probabilistic with deterministic features.The probabilistic component con-
tributes in the exponential spreading of messages, while the deterministic component takes
care of the “fine-grained job”, making sure that a message reaches every single node. We
proposed RINGCAST, a new protocol of this hybrid class, and by extensive experimentation
in static, dynamic, and catastrophic failure scenarios performed better than RANDCAST, and
at a significantly lower communication cost (message overhead).

Some applications may require higher reliability in dynamic environments. Recall from
Section 3 that a bidirectional ring is a Harary graph of minimal cut two. One way to in-
crease reliability, would be to design gossiping protocolsthat form Harary graphs of higher
connectivity. Another, simpler way, is to organize nodes inmultiple rings, assigning them
a different random ID per ring. In both cases, reliability would be improved at the cost of
increased gossip traffic.

Another potential optimization is proximity-based dissemination. Proximity can have
many faces, e.g., geographic distance, domain name, network hops, etc. In the protocols ex-
amined in this paper, proximity is not taken into consideration. For instance, a message orig-



inating in the Netherlands could follow a path such as Netherlands→ Australia→ Switzer-
land→ Canada→ Greece→ Uruguay→ New Zealand. Obviously, such a path is far from
optimal.

A straightforward way to partially deal with domain name proximity in RINGCAST, is
to incorporate domain names in the VICINITY similarity function. In this version of RING-
CAST, a node forms its ID by reversing its domain name (country domain first) and append-
ing a randomly chosen number. I.e., the ID of a node at the.cs.vu.nl domain of the Vrije
Universiteit in Amsterdam could benl.vu.cs.1234. Without any additional modifica-
tions, nodes naturally organize themselves in a ring sortedby domain name, and domains
sorted by country. An example can be seen in Figure 15.

nl.vu.cs_1234

nl.vu.cs_7831

nl.vu.few_0235

gr.upatras.ceid_8230

edu.umich.eecs_6223

gr.upatras.ceid_1050

nl.surfnet_3166

edu.umich.eecs_1011

*

Fig. 15. Nodes organized in a ring based on domain name proximity.

Finally, it should be noted that the protocols discussed in this paper are perfectly suitable
for topic-based publish/subscribetoo. In topic-based pub/sub, a number oftopicsare defined,
and each event is associated with one of them. All events associated with a topic should be
delivered to all nodes subscribed to that topic. The usage ofdissemination protocols such
as RANDCAST and RINGCAST for event dissemination is straightforward. Each topic forms
its own, separate dissemination overlay. Subscribers jointhe overlay(s) of the topics of their
interest. Finally, events are multicast by disseminating them in the appropriate dissemination
overlay.

In this research we have explicitly not consideredpull-baseddissemination. We expect it
to significantly improve the efficiency of the protocol in terms of reliability. However, addi-
tional issues have to be taken into account, such as the pull frequency, the duration for which
nodes maintain old messages, the size of buffers on nodes, etc. Pull-based dissemination is
left as future work, as it constitutes a natural extension ofour current research.
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