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ABSTRACT

In this paper we describe and evaluate a fully distribute B\®-
lutionary algorithm (EA) with adaptive autonomous selectiAu-

tonomous selection means that decisions regarding slueanhre-
production are taken by the individuals themselves inddestty,

without any central control. This allows for a fully disttited EA,
where not only reproduction (crossover and mutation) bso ake-
lection is performed at local level. An unwanted conseqaeofc
adding and removing individuals in a non-synchronized neats
that the population size gets out of control too. This probis re-
solved by adding an adaptation mechanism allowing indafislto
regulate their own selection pressure. The key to this issaiging
algorithm that enables individuals to maintain estimatethe size
and the fitness of the population. The algorithm is expertain
evaluated on a test problem to show the viability of the idedta

gain insight into the run-time dynamics of such an algoritfirhe

results convincingly demonstrate the feasibility of ayullecen-
tralized EA in which the population size can be kept stable.

Categories and Subject Descriptors

D.1.3 [Software]: Concurrent Programming — Distributed program-
ming

General Terms

distributed EA, autonomous selection, parameter adaptatjos-
siping, newscast protocol

Keywords
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1. INTRODUCTION

Evolutionary algorithms (EAs) have gained a long-standiisy
tory of successfully solving computationally hard prob&eritheir
popularity can be partly attributed to the principal sinofil of
the structure of evolutionary algorithms, the transfeigbof code
(representations and operators) between applicatiors asea of
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course their good performance [6]. A characteristic elemoéthe
algorithmic structure is that data and computations arariglesep-
arated: a common data space is used to store a populatiodiof in
viduals (genotypes), whereas potentially a large numbérrefds
of computation (selection and variation operators) actoomently
on this data space.

¢From the beginning, efforts have been taken to distrithie
population in such a way that concurrent threads could opers
independently as possible, effectively aiming at maximgzthe
attainable degree of parallelism in the evolutionary pangras a
whole [2, 3, 20]. Key to this approach is constructing groaps-
dividuals such that local decisions, i.e., intra-groupisieas, can
be taken in a fully autonomous fashion, with at the very ewrtre
having only one individual per group. To this end, it is imjamit
that variation operators are local by nature, but seleatjperators
are not. As for variation, mutation and crossover operatusive
only one (two) individual(s), and mutation (crossover) tanexe-
cuted on many individuals independently from each othecoim
trast, selection in an EA (parent selection and survivoec@n)
typically involves a comparison of an individual with allhetrs in
the population, as in fitness proportional and ranked-baséet-
tion. Tournament selection involves only few other indisads, but
its use is still centrally orchestrated in the main evolnéry loop.

For designing fully distributed evolutionary algorithmsection
mechanisms are required that can work in a fully decentsdliz
way such that threads can operate asynchronously and imdepe
dently from each other. This type of evolutionary algoritisbe-
coming increasingly important with the rising need for dwcal-
ized decision-making in fields where an evolutionary appindaas
proven to be successful. Examples include data allocatitarge-
scale (collaborative) content distribution networks [1&83 well as
optimal distributed scheduling in BitTorrent systems (geg., [8]).

In this paper we describe and experimentally evaluate atsahe
method,autonomous selection, that meets this requirement. Our
mechanism is based on:

—

1. Locally available global information. In particularasistical
information about the population’s fitness, available athea
individual (e.g. average fitness).

2. Alocally executable function that determines selecpimb-
abilities for each individual based on its own fitness and the
available global information.

Additionally, we have:

3. An adaptation method regulating the parameters of tteesel
tion mechanism on-the-fly, depending on the course of the
search.



There are two research main challenges that we addresd, Firs
we need to ensure that the population size remains withindgu
By the decentralized reproduction the population can elelof
implode (die out). Controlling this has proven [16] to be &idi
cult problem in distributed evolutionary algorithms. Sedpwe
investigate whether a gossip-based dissemination protacobe
effectively used to allow for local-only decision making bgdes.

In this paper we show a solution for both problems.

Our key contribution is that we demonstrate how fully autmoois
decision making in evolutionary computing can be achieved b
combining standard evolutionary algorithms with decdizea ag-
gregation of global statistics through gossiping. In piples our
approach will allow the development of solutions that caerep
ate on decentralized networks, notably peer-to-peer aysrithus
opening the road to massively, large-scale evolutionampmda-
tions in completely asynchronous environments.

2. RELATED WORK

The research behind this paper is a new idea in both fields of
evolutionary computing and peer-to-peer (P2P) computiligs
important to note that most of the related research workeefsed
here is based on centralized algorithms.

2.1 Related work in evolutionary computing

Evolutionary computing is mainly used in the form of central
ized algorithms running on single-processor computersielcen-
tralized algorithms, we generally see the members of pdipnis
being spatially organized in the form of graphs [20]. Howeegen
in these cases the execution of the actual algorithm takes ph
a centralized fashion. Parallel versions of evolutiondgpathms
are described in [3, 4, 1, 17]. The main goal in these caseas is t
simply improve efficiency by exploiting parallelism in theodu-
tionary computations. Due to the fact that virtually all @ighms
make use of a shared data space, success has been mairdg limit
to shared-memory parallel processors, although combisiragial
structures and parallelism has also proven to be a promesing
proach [1]. The work described in this paper essentialljofos
this last approach as well.

Local selection algorithms for distributed models of evimnary
algorithms have been given some attention in the last ddéade
19, 20, 17, 7]. Recent work concerns devising a locally etedaa
function to determine selection probabilities for eachiviglial.
Parent selection and survivor selection are separated amdidd
independently, but selection probabilities in both cagesdater-
mined by a sigmoid function. This function has two paranmsgter
m ands, that determine the properties of the selection mechanism.
Using this function an individual first determines if it shduive
or die and if it survives it also checks if it is good enough te-c
ate offspring. If it proves good enough it will mate a randpml
chosen other individual and the new offspring can be addedeto
population without replacing any old individual. Note thmt this
latter property the population can shrink or grow. This poa@ew
challenge to the EA designer, because population explasizh
implosion should be prevented by calibrating the pararseteand
s. Previous work considered a system with perfectly inforrired
dividuals that received the exact population statistiosfian “ora-
cle” and provided proof-of-principle evidence that theagmous
selection idea is viable. However, tuningands required substan-
tial computational efforts.

The work described in this paper exceeds previous research i
two aspects.

acquire global statistics locally.

e We introduce an adaptation mechanism to calibratnds
on-the-fly, depending on how the search proceeds.

In this system an individual can exchange information onithw
its neighbors. The individual can ask a neighbor for itsreations
of the population’s average fitness and the population si¥ih
this information it can make (adjust) its own estimations tlee
population size and average fitness. Then according torifos-i
mation an individual would make decisions for the selectoo-
cess. This method is the main feature of our proposed dedizetl
algorithm.

2.2 Related research in P2P computing

Our research is based on results from gossip algorithmslfd,3,
11, 12, 15] and decentralized peer sampling [10, 12].

Gossip-based (or epidemic based) algorithms have theenher
ability to reliably pass information among a large set o&imbn-
nected nodes. They are robust even if the nodes regularyajuil
leave the system (either purposefully or on account of fagy
or the underlying network suffers from broken or slow linkin
a gossip-based protocol, each node in the system periydeoal
changes information with a subset of its peers. The choidhisf
subset is crucial to the wide dissemination of the gossips &k-
change of information is in the form of either push or pullalpush
methodology a node will inspect to see if one of its peersgmei
bors) has data and if not send (or push) the current data focie
In a pull-based system it is the reverse, where a node wiinjet-
mation from its peers. A combination of push and pull has pdov
to operate best [15].

The gossiping protocol that was used in our research was the
Newscast protocol [14]. Although this is a simple proto¢ds very
efficient in networks where nodes join and leave the network c
tinuously (churn). Using the Newscast protocol the peengding
service has been defined. This fully decentralized serviceiges
a node a uniform randomly selected set of peers, which casédx u
to exchange information with.

In this setting once we have our individuals of the evolugign
algorithm running on nodes of a P2P system, they exchange inf
mation by gossiping. This gossiping is crucial for the exeguof
our algorithm, because it defines a methodology to make astim
tions of the population size and average fithess. An indalidan
also use the peer-sampling service to locate a mate.

3. SYSTEM DESCRIPTION

The system we propose resembles a staged, layered protecol a
chitecture. This allows us to divide the functionalitiestioé evo-
lutionary algorithm and the P2P networking components. Béxlu
PeerSim [14] as the P2P computing simulator for our expertme

3.1 Layered algorithm approach

Each node of the P2P system runs our algorithm, which is di-
vided into three stages organized in a layered fashion (Eidgi
The core is formed by the evolutionary stage during whiclesel
tion and variation operators (mutation and crossover) reeded
locally. The execution of this algorithm is interrupted ttoa for
the adaptation of selection mechanism (that decides onrtimp
bilities for selecting parents and survivors on this noddlis adap-
tation concerns properly setting the valigsndm of Equation 1.

To this end, the adaptation stage itself is interrupted fgossiping
stage during which (1) estimates of the network size andajlat-
erage fitness are computed, and (2) the neighbor set of eaeh no

e \We remove the central oracle and use a gossiping protocol to is randomized. When the gossiping stage finishes, the adapta



stage can complete its work, in turn allowing the completibthe
evolutionary stage. Execution of these three stages etéeuntil
a solution is found.

Evolutionary stage
Adaptation stage
Gossiping stage

Figure 1: Layered algorithms

3.2 Algorithmic details 0
Our algorithm runs on each node of the P2P system, where each 0
node represents a candidate solution to the given probldmereT
are two. main algorithmic pa}rts: the evolutior.lary. stage ama t Figure 2: Sigmoid curve
adaptation stage, see Algorithm 1. The termination of tlge-al
rithm is managed in a distributed fashion too: each nodeddsci
to terminate when it reaches the optimal fitness value oraafh”
that other nodes have done so.
Algorithm 1 Outline of the adaptive distributed evolutionary algo- '
rithm
initialize
repeat
if a solution is foundhen
inform the neighbors (by gossiping)
end if
if adaptation stagihen
exchange information by gossiping 0

estimate the population size and average fitness
update selection parameters by adaptation
end if
if evolutionary stagéhen
if not able to survivehen
die
end if
if fertile then
get a neighbor and mate and create a new offspring
end if
end if
until stop criteria

3.2.1 Evolutionary algorithm

The core of the evolutionary mechanism is the selectioratian
cycle. Variation operators, mutation and crossover, mivgays
match the problem at hand, that is, the data structure reptieg
an individual. Therefore, we do not specify them in this gane
description. The autonomous selection mechanism is, hewev
generic. As mentioned before, it determines selectionadiities
by a sigmoid function.

1
TTremey @

This sigmoid yields large probabilities when> 0 and small prob-
abilities whenx < 0 as illustrated in Figure 2. If is the aver-
age fitness of the population and we fill in the fitness dewvatio
Af(x) = f(x) — f of an individualx in sig, we get:

S0ms(x)

1

P(x) = sigms(Af(x)) = T e G

@)

Figure 3: For m> 1 the curve becomes step-like

Note that the sigmoid function depends on two parametensd

m. The shift s determines where the transition from low proba-
bilities to high probabilities takes place. Usisg= 0 centers the
transition interval in the middle of the whole region, inasings
will shift it to the right, thus decreasing the number of widu-

als selected. Theultiplier m determines how sharp the transition
is. Low values imply a smooth curve with a broad slope, while
increasingm will make the transition sharper. This effect is illus-
trated in Figure 31> 1, probabilities are more discrete) and Fig-
ure 4 (0O< m< 1, a stretched sigmoid curve making the differences
in probability smaller). Obviously, the choice of thesegraeters
greatly influences the response of the sigmoid and herebyrtpe
erties of the selection mechanisms.

This selection mechanism is used in a fully decentralized-ma
ner. Each node applies survivor selection and parent seteoh
itself with possibly differenim ands values. First a node applies
the sigmoid formula for survivor selection to see whethes ifit
to survive. If not, it simply puts itself in dead state. If the node
survives it applies the sigmoid formula for parent selattio de-
termine if it is fertile (i.e., good enough to mate). When avéting
node is fertile, it selects a random neighbor to mate withn-Ra
dom mate selection is possible as a by-product of gossigiag t
not only exchanges information, but also imposes an overédy
work of neighbors on the population. This network is updaigd
exchanges of neighbors among nodes. This exchange of megyhb
is crucial to operate as a peer-sampling service [10].

If two individuals are coupled for mating, they reproducedixg-
cuting crossover followed by mutation. The resulting ciglddded



Figure 4: For 0 < m < 1the curve resembles a line

to the system as a new nodéhout removing an existing one. This
latter feature implies that the population size becomestmenw-
able, rather than a user parameter. It is important to naié ah
node/individual will never change through the evolutignaper-
ators. More precisely, the candidate solution it represerill re-
main the same, only the status of the node can change from
to dead by survivor selection. The gossiping algorithm, éav,
can change a node: if a node hits upon a solution it will inélaer
nodes through gossiping, thus proliferating a solutiorr ¢ive net-
work.

As mentioned above, the evolutionary algorithm terminétak
nodes become “aware” of a solution, either by being one, or by
being told about one.

aliv

3.2.2 Adaptation algorithm

The adaptation algorithm as part of our layered architediomms
the interface stage between the gossiping stage and thaievalry
stage. The adaptation process is mainly deployed to prevgio-
sion and implosion of the population by adjusting the partenseof
the sigmoid. We do this in each node independently, whichireg
that nodes know whether the population as a whole is growing o
shrinking. However, in our situation there is no meta obsete
provide this information. A node only has its locally comgait
estimations. Therefore, within the adaptation stage thatog al-
gorithm is called that makes estimations about the sizeeP@P
system. Based on that information the parameters for tleeteh
functions (n ands) are adjusted. We use simple heuristic rules to
achieve this. The rules are based on observing how the sijraoi
sponses to various values and experiences with initialrexeats.
For instance, the population grows if parent selection sse<
and shrinks whes > 0.

Recall that the autonomous selection mechanism is use@for p
ent selection and survivor selection as well, so all togethere
are four parametersmS and mF denoting them values for sur-
vival selection and parent selection (F as in fertile) aBéndsF
that stand for thes values for survival and parent selection. The
adaptation heuristic meant to prevent implosion of the petfmn
is based on an absolute boundary rule: If the estimated pepul
tion size is smaller than a user defined implosion thresfiglthen
the selection parameters are increased/decreased bygaldosi-
tive/negatived. The adaptation heuristic meant to prevent explosion
of the population is based on a relative increase rule: Iptlesent
estimation of the population size exceeds the previous pmadre
than a user defined explosion threshdfd then the selection pa-
rameters are increased/decreased by adding a positiatitresd.

Specificd values we use in this study are shown in Table 3 later on.

3.2.3 Counting algorithm

The counting algorithm described in Algorithm 2 is part oéth
gossiping layer. It deploys an aggregation protocol descrin [11].
We have modified the original protocol so that it also progidach
node with an estimate of the global average fitness. It is aftgr
these estimations have been obtained that the the adaypsttige
can complete.

Algorithm 2 Counting algorithm
initially
msgtag :=id /* all nodes have unique identifier */
sizeest := 1 /* initially a node knows that only it exists */
avg est := fitnessvalue /* a node knows its own fitness value */
computeestimates(size_est, avg_est, msg_tag)
repeat
pull estimates(size_estp, avg_estp, msy_tagp) from neighbor p
if (msgtag < msgtag,) then
/* abort own counting process */
msgtag := msgtagy
sizeest:=0
else if(msgtag > msgtag,) then
/* abort other counting process */
sizeesh :=0
end if
sizeest := (sizeest + sizeesy) / 2
avgest := (avgest + avgesyp) / 2
pushestimates(size_est, avg_est, msg_tag) to neighbor p
until desired number of gossiping rounds

Note that although each node starts an estimation processsfo
size and fitness of the system, at the end only one estimatimn p
cess survives, namely the one started by the node with theséig
identifier.

The counting algorithm needs to be executed in several time
steps, or rounds [11]. The required number of rounds groga-lo
rithmically in the size of the P2P system. We executed thaiog
algorithm alone first on the P2P system with the Newscasbprot
col to find out how many rounds are needed to get good (almost
perfect) estimations of the size of the system.

Using Table 1 we computed Equation 3, which gives the reduire
number of gossiping rounds needed to get a good estimatithre of
size of the network. The variabigis the current population size,
is the initial population size an@ is the number of rounds needed
for the initial population size.

#rounds = (logio(y) —l0g1o(a)) *54-B (3)

During our experiments we found that for our initial popidatsize
of 200 we required about 13 rounds to accurately computeghe n
work size. This finally led to the following simpler approxtion:

#rounds~ (logio(y) —2) *5+ 15 (4)

This equation gives more than the minimum number of rounds
needed to estimate the network size. It is robust enoughhfor t
growth of the network also since the network can never growemo
than a factor 2 during the execution of the evolutionary atag
which every node can at best create one offspring.



Table 1: Minimum number of rounds for a good estimate

Population size | Minimum rounds | Average estimation | Standard deviation
10 6 9.6 0.5163977794943321
100 12 99.48 0.9043106644159661
1,000 18 999.477 0.7266353961777479
10,000 23 9,999.4976 0.779008927214715%
100,000 29 99,999.50162 0.6690605610882638

3.3  Workflow of the algorithm

Our solution is deployed on a P2P system, with no centralized
components, in contrast to a traditional evolutionary catimy
setup. Each individual corresponds to a node in our P2P rayste
and like cellular evolutionary algorithms, will have a aaition of
neighbors. An individual can only mate with one of its neigtsh
As we mentioned, the set of neighbors of a given node changss o
time.

neds = individual

Figure 5: A simple 1-1 mapping of a cellular EA to a P2P net-
work

In our setup the nodes can be in one of two states: alive or.dead
A live node participates in the algorithm, while a dead nodesd
not. A node is set tdead if the evolutionary algorithm finds that it
is not fit for survival. Initially, we start with a number o/ nodes,
while all others are declared dead.

Live nodes are initialized with candidate solutions as isally
done in any evolutionary algorithm (here: randomly). Afiatial-
ization, each live node gossips with its neighbors (somelathv
may be dead) in order to estimate the current network (pdioula
size and the global average fitness. With these estimatese n
can then adapt the parameter values of the sigmoid functems
take subsequent decisions on its viability and fertility.

Newly created offspring (i.e., a node that becomes alivgpis
sitioned close to its parents, which is done by assigninghtmirs
from those of its parents. This proximal placement turnectobe
important for the efficient dissemination of information.

Every (live) node in the system is able to choose a mate if it
is fertile. As a consequence, there are two ways in which a&nod
can become a parent: by selecting a mate, or by being selasted
mate by another node. After mating, a node resets its estimat
network size and fithess value to the default values. Howeher
previously known estimated size of the network is used tadgec
on the next number of gossiping rounds. The number of rounds
chosen is good enough even if the population has changedgduri
the evolutionary stage.

If a node finds a solution it will piggyback it while gossipifay
estimating the population size and overall fithess. The fiettds
that the solution will spread across all nodes, allowindhezdthem
to take the correct termination decision.

This brings us to a complete single iteration of our alganith

Each iteration consists af+ 3 steps, as shown in Algorithm 3.
Note thatn may change as the algorithm iterates. The bulk of an
iteration consists of gossiping rounds, normally in the order of
a few tens. Gossiping is done for disseminating informatiod
computing estimates. Stept 1 consists of adapting the selection

function, while stem+ 2 constitutes an evolutionary step in which

the population is adjusted. Finally, step- 3 consists of resetting
estimates and determining the next number of steps for ff@fo
ing iteration.

Algorithm 3 Outline of an iteration of the distributed algorithm

1to ntime steps: Gossiping rounds
Exchange information with neighbors
If there is a solution inform the neighbors
Perform the counting algorithm
n+ 1 time step: Adaptation
Call the adaptation process
Update the parameters for selection
n+ 2 time step: Evolution
Call selection process
Either die or mate or do nothing accordingly
n+ 3 time step: Resetting
Reset the values for the counting algorithm
Calculate steps needeq) for next iteration

4. EXPERIMENTAL SETUP

For an empirical study of our distributed EA with adaptive au
tonomous selection we perform experiments on the N Queets pr
lem with different problem sizes (values bf). We represent a
board setting as an array of integers that form a permutafitre
valuex; € {1,...,N} on thei-th position denotes the row of the
gueen standing in thieth column. This representation ensures that
each column and each row contains only one queen, thus we only
need to resolve the constraints on diagonals. Such periongat
form then the individuals (nodes). The fitness value of aivide
ual is the number of queens who attack each other in the board
setting it represents. The optimal fitness value is 0 meathiagno
queens are attacking each other. As for the variation opesatve
used the Partially Mapped Crossover (PMX) and swap mutation
to ensure that all children are permutations if the parerad@.

The numerical parameters are shown in Table 2 and Table & Not
that although the Newscast gossip protocol is mentionedstatia
value in this table, Jelasitst al. [10] have shown that this choice
is generally not crucial for the correct execution of higteyer
protocols.

5. EXPERIMENTAL RESULTS

We monitored all experiments from an external observeeswi
point and collected data from this perspective. The datis jache
following subsections show exact values on the averagesfitriee
size of the network (population), etc. during a typical run.



Table 2: Parameter settings for the algorithm setup

Parameter Name Value
Evolutionary Algorithm

Initial population size 200
Initial multipliers (mSandmF) 10
Initial shifts (sSandsF) 0.1
Crossover probability gc) 0.2
Mutation probability o) 0.05
Adaptation Algorithm

Implosion threshold; 200
Explosion thresholdg 500
Gossip Algorithm

Number of neighborsglementsin aview) | 20
Gossip protocol Newscast

Table 3: values ford used in the two heuristic rules for adapting

selection parameters

heuristic to prevent

implosion | explosion

o formS 100 -10
o for sS -1 1
o6 for mF 20 -10
o for sk 0.1 -0.1
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Figure 6: Best/average fithess curves for the 96 Queens prob-

lem.
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48 Queens problem

5.1 Fitness of the population

We illustrate how the fitness of the population evolves owaet
by plotting the average and best fithess values. Each ei@iuat
time corresponds to a completed iteration from AlgorithmF83-
ure 6 depicts how the fitness of the population increasesadb-
rithm progresses. From an evolutionary computing pointiefw
this shows that our algorithm is capable of finding solutiomthe
given problem. Quite naturally, the best fithess curve steatep-
wise progress with plateaus indicating periods where nadovgs
ment of the best known fitness value takes place. The curve ex-
hibiting the development of the average fitness shows macug
improvements. It is especially interesting to observe thiy Vast
step before termination. The last plateau is short, whiclicates
that once a node (individual) has found a solution (fithessit0)
spreads quickly within the population. As we have mentiobed
fore this is done by the use of gossiping. Note that gossigbaut
a solution may not involve the whole population at once, mgki
other nodes continue to work towards a solution themselvaatil
they hear the solution from a neighbor.

5.2 Population size and selection parameters

Figure 7 displays the population sizes during a run. Theee ar
several key observations to be made. First, we have stdréeeXt
periments with an initial population size of 200 live nodBsiring
the algorithm run the population shrinks and grows, butvemex-
plodes or implodes to extinction. The plots show that theegew
periods when the population plunged down due to more dedths o
individuals than births, but implosion of the populationsHzeen
automatically avoided through controlling the selecticessure
on-the-fly.

1200
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96 Queens problem ‘«’ﬂ?
vhoA A m'u"
L l“‘(\”‘\yr" i

600

400

200

350

Figure 7: Changes of the population size for the 48 and 96
Queens problems.

Figures 8 and 9 show how the parameter values of the autormou
selection mechanism are adapted during a run. Recall,Hbatu-
tonomous selection mechanism has two parametei@n@s) and
that it is used for parent selection and survivor selectowall, all
together amounting to four parameters for selectiom® mF, sS,
andsF. Furthermore, each individual has its own parameter values
and it changes these values independently from the othiidoe
als (using the same adaptation mechanism). In the figurebove s
the average values for the whole population.

These plots can be related to those showing the population va
ation as depicted in Figure 7. Aligning these we can see hew th
multiplier and shift adapt to keep the population size morkess
stable. When the population size is stable only minute cbsiog-
cur for the multiplier values, while in need of avoiding arplwsion
or explosion of the population larger variances are seegurgi9
shows clearly that the shift value for parent selectioniigdathan
zero, while for survival selection the value is negative.

In our experiments the parametewas found to be more sen-
sitive to the adaptation mechanism than We also noted thamn
should be a large positive integer for the mechanism to wookp
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Figure 8: Average multiplier values for parent selection (nF)
and survivor selection (mS).
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Figure 9: Average shift values for parent selection (sF) andur-
vivor selection (sS).

erly. Throughout our experiments) turned out to remain more or

less static whiles was changed more often to keep the population

stable.

All'in all, these figures illustrate how locally made decisaand
adaptation at local level are able to keep the populatiore @nd
stable on global level.

5.3 Accuracy of population estimates

Figure 10 exhibits the the actual population size and theagyee
of the population size estimates in the individuals overra ihe
averaged estimates and the real values are very close totwsh
The standard deviation of the average was always abéuindi-
cating that almost every individual was able to correctliineate
the population size

5.4 Gossiping a solution
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Figure 10: Population estimates for the 96 Queen puzzle

Table 4: Infection process for the 96 Queens problem

Time Step| Pop. size| Avg. Fitness| Std. Dev
1 746 -4.9571 2.829525
2 746 -4.94102 2.846263
3 746 -4.87668 2.842311
4 746 -4.77748 2.907307
5 746 -4.50134 3.048269
6 746 -3.88606 3.21392

7 746 -2.97587 3.269868
8 746 -1.72118 2.880624
9 746 -0.80027 2.089681
10 746 -0.2748 1.154313
11 746 -0.10456 0.693057
12 746 -0.03083 0.351966
13 746 -0.01609 0.273695
14 746 -0.00268 0.073225
15 746 0 0

The population size has not changed during the gossipintgiou
of the solution. This is because it has been possible tordissge
the solution to the others within the required number of tsteps
for the counting algorithm. Therefore no evolutionary altion
step gets executed within that period. Also, since the teauton
criterion is satisfied within the amount of time steps reegifor the
counting algorithm the distributed algorithm stops witk tfopula-
tion having a solution to the given problem instance. Inaffehat
we see is that during the gossiping rounds when multiplestasi
being carried out, the dissemination of a solution is quidckan
any other task can complete.

6. CONCLUSIONS

Our experiments demonstrate the feasibility of a fully deca-
ized evolutionary algorithm in which the population sizendze
kept stable. What makes our solution unique, is that paredt a
survivor selection can be done completely autonomouslyaayd-
chronously, without central control, yet avoiding the ridkpopu-

lation explosion or implosion.
The gossip protocols play a major role with respect to notkese
tion and the dissemination of information. Note that gosgjloes

Table 4 shows how a node is able to proliferate a solutiondo th
rest of the population by gossiping. We can see how the pepula
tion’s average fithess increases during each time step.



require that nodes cooperate. In other words, it requirearée)

synchronization between nodes. Each node starts the gassip algorithms. Inint’'l Conf. Genetic Alg., pages 17-23, San

stage for estimations, followed by the adaptation and eiwiu Mateo, CA, 1995. Morgan Kaufman.

ary stages, and finally resets before executing the nextiter [6] A.E. Eiben and J. E. Smithntroduction to Evol utionary

In practice, enforcing such a synchronization can be sireptgab- Computing. Natural Computing Series. Springer, Berlin,

lished by having a node defer responding to gossiping messag Heidelberg, New York, 2003.

until it has entered its gossiping stage again. [7] L. J. Eshelman. The chc adaptive search algorithm: How to
The effect of estimations to our algorithm compared to the ac have safe search when engaging in nontraditional genetic

tual values was also an important finding. Since the estsnatze recombination. IFFOGA, pages 265-283, 1990.

as good as the actual value, the distributed algorithm whestab [8] C.Fry and M. Reiter. Really truly trackerless bittorten

perform properly. The estimates did however play a crucat p Technical Report CMU-CS-06-148, Carnegie Mellon

in the whole algorithm setup, since it was the main builditark University, Aug. 2006.

of the a.dapti.ve process. This ao!aptive process made surththa [9] M. Gorges-Schleuter. A comparative study of global and
population size stayed stable. It is worthwhile to note tetause local selection in evolution strategies. In T. Back, A. &ib

of the gossip algorithm’s ability to disseminate infornaatreliably M. Schoenauer, and H.-P. Schwefel, editérsceedings of
each of the nodes could obtain proper estimates about theret thé 5th Conferenée on PalraJIIeI ProblerﬁsSoIvi ng from
Also since the new offspring stay close to the parents (irstrese Nature, pages 367—377. Springer, 1998

of sharing neighbors), there is a much better chance of prpe [10] M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and M. van
livery of messages and information between the nodes frosa go Stéen Thé péer samplinéj séwice' experin‘;ental e\l/aluafion
siping. These factors also made possible for nodes to coraten unstru.ctured gossip-based implerﬁentationsMiddIeware
better with each other and make correct estimates aboutaie- p '04: Proceedings of the 5th ACM/IFIPJUSENIX

lation. international conference on Middleware, pages 79—98, New
York, NY, USA, 2004. Springer-Verlag New York, Inc.
7. FUTURE WORK [11] M. Jelasity, A. Montresor, and O. Babaoglu. Gossipelas
An important area for improvement is making the individual aggregation in large dynamic network&CM Trans. Comput.
nodes more independent by loosening or removing the impired Yt 23(_3)2219—252,_2005- )
chronization between them. In particular, we are intecktere- [12] M. Jelasity, S. Volgaris, R. Guerraoui, A.-M. Kermasrand
placing the gossiping stage with a solution that will allowade M. van Steen. Gossip based peer sampling. Technical report,
to take a local decision whenever needed. For example, itbeay Vrije Universiteit, 2004.
possible to let nodes gossip continuously and in this way @ds- [13] K. Jenkins, K. Hopkinson, and K. Birman. A gossip pratoc
tinuously collect information about the behavior of the plagion. for subgroup multicast. IRroceedings of the 21st
¢ From the EA perspective, further study is required to itigase International Conference on Distributed Computing Systems
the algorithm’s sensitivity to its parameters, e.g., thddhvalues Workshops, Washington, DC, USA, 2001. IEEE Computer

[5] K. A. DeJong and J. Sarma. On decentralizing selection

for population sizem, s, and the adaptation heuristics. It would be Society.

also interesting to try whether this, or a similar, adapiatinech- [14] G. P. Jesi. Peersim, a peer-to-peer simulator.
anism could be used in a traditional EA for on-the-fly popolat http://peersim.sourceforge.net/.

size control. [15] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based

Last, but not least, the algorithm should be evaluated oremor
problems. A specific area of interest is to apply decentadlievo-
lutionary algorithms for hard scheduling problems in P2Bvaoeks.
One such example is formed by content distribution netwanks
which placement of data is crucial for optimizing clientrpaived
performance [18].

computation of aggregate information. ROCS’ 03:
Proceedings of the 44th Annual |EEE Symposium on
Foundations of Computer Science, page 482, Washington,
DC, USA, 2003. IEEE Computer Society.

[16] V. K. Koumousis and C. P. Katsaras. A saw-tooth genetic
algorithm combining the effects of variable populatioresiz
and reinitialization to enhance performantieEE Trans.
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