
Peer-to-peer evolutionary algorithms with adaptive
autonomous selection

W R M U K
Wickramasinghe

Vrije Universiteit, Amsterdam
The Netherlands

rmwickra@few.vu.nl

M van Steen
Vrije Universiteit, Amsterdam

The Netherlands
steen@cs.vu.nl

A E Eiben
Vrije Universiteit, Amsterdam

The Netherlands
gusz@cs.vu.nl

ABSTRACT
In this paper we describe and evaluate a fully distributed P2P evo-
lutionary algorithm (EA) with adaptive autonomous selection. Au-
tonomous selection means that decisions regarding survival and re-
production are taken by the individuals themselves independently,
without any central control. This allows for a fully distributed EA,
where not only reproduction (crossover and mutation) but also se-
lection is performed at local level. An unwanted consequence of
adding and removing individuals in a non-synchronized manner is
that the population size gets out of control too. This problem is re-
solved by adding an adaptation mechanism allowing individuals to
regulate their own selection pressure. The key to this is a gossiping
algorithm that enables individuals to maintain estimates on the size
and the fitness of the population. The algorithm is experimentally
evaluated on a test problem to show the viability of the idea and to
gain insight into the run-time dynamics of such an algorithm. The
results convincingly demonstrate the feasibility of a fully decen-
tralized EA in which the population size can be kept stable.

Categories and Subject Descriptors
D.1.3 [Software]: Concurrent Programming – Distributed program-
ming

General Terms
distributed EA, autonomous selection, parameter adaptation, gos-
siping, newscast protocol

Keywords
to be selected on-line during submission

1. INTRODUCTION
Evolutionary algorithms (EAs) have gained a long-standinghis-

tory of successfully solving computationally hard problems. Their
popularity can be partly attributed to the principal simplicity of
the structure of evolutionary algorithms, the transferability of code
(representations and operators) between application areas, and of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO 2006 University College London, UK
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

course their good performance [6]. A characteristic element of the
algorithmic structure is that data and computations are clearly sep-
arated: a common data space is used to store a population of indi-
viduals (genotypes), whereas potentially a large number ofthreads
of computation (selection and variation operators) act concurrently
on this data space.

¿From the beginning, efforts have been taken to distribute the
population in such a way that concurrent threads could operate as
independently as possible, effectively aiming at maximizing the
attainable degree of parallelism in the evolutionary program as a
whole [2, 3, 20]. Key to this approach is constructing groupsof in-
dividuals such that local decisions, i.e., intra-group decisions, can
be taken in a fully autonomous fashion, with at the very extreme
having only one individual per group. To this end, it is important
that variation operators are local by nature, but selectionoperators
are not. As for variation, mutation and crossover operatorsinvolve
only one (two) individual(s), and mutation (crossover) canbe exe-
cuted on many individuals independently from each other. Incon-
trast, selection in an EA (parent selection and survivor selection)
typically involves a comparison of an individual with all others in
the population, as in fitness proportional and ranked-basedselec-
tion. Tournament selection involves only few other individuals, but
its use is still centrally orchestrated in the main evolutionary loop.

For designing fully distributed evolutionary algorithms selection
mechanisms are required that can work in a fully decentralized
way such that threads can operate asynchronously and indepen-
dently from each other. This type of evolutionary algorithmis be-
coming increasingly important with the rising need for decentral-
ized decision-making in fields where an evolutionary approach has
proven to be successful. Examples include data allocation in large-
scale (collaborative) content distribution networks [18], as well as
optimal distributed scheduling in BitTorrent systems (see, e.g., [8]).

In this paper we describe and experimentally evaluate a selection
method,autonomous selection, that meets this requirement. Our
mechanism is based on:

1. Locally available global information. In particular, statistical
information about the population’s fitness, available at each
individual (e.g. average fitness).

2. A locally executable function that determines selectionprob-
abilities for each individual based on its own fitness and the
available global information.

Additionally, we have:

3. An adaptation method regulating the parameters of the selec-
tion mechanism on-the-fly, depending on the course of the
search.

There are two research main challenges that we address. First,
we need to ensure that the population size remains within bounds.
By the decentralized reproduction the population can explode of
implode (die out). Controlling this has proven [16] to be a diffi-
cult problem in distributed evolutionary algorithms. Second, we
investigate whether a gossip-based dissemination protocol can be
effectively used to allow for local-only decision making bynodes.
In this paper we show a solution for both problems.

Our key contribution is that we demonstrate how fully autonomous
decision making in evolutionary computing can be achieved by
combining standard evolutionary algorithms with decentralized ag-
gregation of global statistics through gossiping. In principle, our
approach will allow the development of solutions that can oper-
ate on decentralized networks, notably peer-to-peer overlays, thus
opening the road to massively, large-scale evolutionary computa-
tions in completely asynchronous environments.

2. RELATED WORK
The research behind this paper is a new idea in both fields of

evolutionary computing and peer-to-peer (P2P) computing.It is
important to note that most of the related research work referenced
here is based on centralized algorithms.

2.1 Related work in evolutionary computing
Evolutionary computing is mainly used in the form of central-

ized algorithms running on single-processor computers. Indecen-
tralized algorithms, we generally see the members of populations
being spatially organized in the form of graphs [20]. However, even
in these cases the execution of the actual algorithm takes place in
a centralized fashion. Parallel versions of evolutionary algorithms
are described in [3, 4, 1, 17]. The main goal in these cases is to
simply improve efficiency by exploiting parallelism in the evolu-
tionary computations. Due to the fact that virtually all algorithms
make use of a shared data space, success has been mainly limited
to shared-memory parallel processors, although combiningspatial
structures and parallelism has also proven to be a promisingap-
proach [1]. The work described in this paper essentially follows
this last approach as well.

Local selection algorithms for distributed models of evolutionary
algorithms have been given some attention in the last decade[5, 9,
19, 20, 17, 7]. Recent work concerns devising a locally executable
function to determine selection probabilities for each individual.
Parent selection and survivor selection are separated and handled
independently, but selection probabilities in both cases are deter-
mined by a sigmoid function. This function has two parameters,
m ands, that determine the properties of the selection mechanism.
Using this function an individual first determines if it should live
or die and if it survives it also checks if it is good enough to cre-
ate offspring. If it proves good enough it will mate a randomly
chosen other individual and the new offspring can be added tothe
population without replacing any old individual. Note thatby this
latter property the population can shrink or grow. This poses a new
challenge to the EA designer, because population explosionand
implosion should be prevented by calibrating the parameters m and
s. Previous work considered a system with perfectly informedin-
dividuals that received the exact population statistics from an “ora-
cle” and provided proof-of-principle evidence that the autonomous
selection idea is viable. However, tuningm ands required substan-
tial computational efforts.

The work described in this paper exceeds previous research in
two aspects.

• We remove the central oracle and use a gossiping protocol to

acquire global statistics locally.

• We introduce an adaptation mechanism to calibratem ands
on-the-fly, depending on how the search proceeds.

In this system an individual can exchange information only with
its neighbors. The individual can ask a neighbor for its estimations
of the population’s average fitness and the population size.With
this information it can make (adjust) its own estimations for the
population size and average fitness. Then according to this infor-
mation an individual would make decisions for the selectionpro-
cess. This method is the main feature of our proposed decentralized
algorithm.

2.2 Related research in P2P computing
Our research is based on results from gossip algorithms [13,10,

11, 12, 15] and decentralized peer sampling [10, 12].
Gossip-based (or epidemic based) algorithms have the inherent

ability to reliably pass information among a large set of intercon-
nected nodes. They are robust even if the nodes regularly join and
leave the system (either purposefully or on account of failures),
or the underlying network suffers from broken or slow links.In
a gossip-based protocol, each node in the system periodically ex-
changes information with a subset of its peers. The choice ofthis
subset is crucial to the wide dissemination of the gossip. This ex-
change of information is in the form of either push or pull. Ina push
methodology a node will inspect to see if one of its peers (neigh-
bors) has data and if not send (or push) the current data to thepeer.
In a pull-based system it is the reverse, where a node will getinfor-
mation from its peers. A combination of push and pull has proved
to operate best [15].

The gossiping protocol that was used in our research was the
Newscast protocol [14]. Although this is a simple protocol it is very
efficient in networks where nodes join and leave the network con-
tinuously (churn). Using the Newscast protocol the peer-sampling
service has been defined. This fully decentralized service provides
a node a uniform randomly selected set of peers, which can be used
to exchange information with.

In this setting once we have our individuals of the evolutionary
algorithm running on nodes of a P2P system, they exchange infor-
mation by gossiping. This gossiping is crucial for the execution of
our algorithm, because it defines a methodology to make estima-
tions of the population size and average fitness. An individual can
also use the peer-sampling service to locate a mate.

3. SYSTEM DESCRIPTION
The system we propose resembles a staged, layered protocol ar-

chitecture. This allows us to divide the functionalities ofthe evo-
lutionary algorithm and the P2P networking components. We used
PeerSim [14] as the P2P computing simulator for our experiments.

3.1 Layered algorithm approach
Each node of the P2P system runs our algorithm, which is di-

vided into three stages organized in a layered fashion (Figure 1).
The core is formed by the evolutionary stage during which selec-
tion and variation operators (mutation and crossover) are executed
locally. The execution of this algorithm is interrupted to allow for
the adaptation of selection mechanism (that decides on the proba-
bilities for selecting parents and survivors on this node).This adap-
tation concerns properly setting the valuess andm of Equation 1.
To this end, the adaptation stage itself is interrupted for agossiping
stage during which (1) estimates of the network size and global av-
erage fitness are computed, and (2) the neighbor set of each node
is randomized. When the gossiping stage finishes, the adaptation

stage can complete its work, in turn allowing the completionof the
evolutionary stage. Execution of these three stages is iterated until
a solution is found.

Evolutionary stage
Adaptation stage
Gossiping stage

Figure 1: Layered algorithms

3.2 Algorithmic details
Our algorithm runs on each node of the P2P system, where each

node represents a candidate solution to the given problem. There
are two main algorithmic parts: the evolutionary stage and the
adaptation stage, see Algorithm 1. The termination of the algo-
rithm is managed in a distributed fashion too: each node decides
to terminate when it reaches the optimal fitness value or it “hears”
that other nodes have done so.

Algorithm 1 Outline of the adaptive distributed evolutionary algo-
rithm

initialize
repeat

if a solution is foundthen
inform the neighbors (by gossiping)

end if
if adaptation stagethen

exchange information by gossiping
estimate the population size and average fitness
update selection parameters by adaptation

end if
if evolutionary stagethen

if not able to survivethen
die

end if
if fertile then

get a neighbor and mate and create a new offspring
end if

end if
until stop criteria

3.2.1 Evolutionary algorithm
The core of the evolutionary mechanism is the selection-variation

cycle. Variation operators, mutation and crossover, must always
match the problem at hand, that is, the data structure representing
an individual. Therefore, we do not specify them in this generic
description. The autonomous selection mechanism is, however,
generic. As mentioned before, it determines selection probabilities
by a sigmoid function.

sigm,s(x) =
1

1+e−m·(x−s)
(1)

This sigmoid yields large probabilities whenx > 0 and small prob-
abilities whenx < 0 as illustrated in Figure 2. If̄f is the aver-
age fitness of the population and we fill in the fitness deviation
∆ f (x) = f (x)− f̄ of an individualx in sig, we get:

P(x) = sigm,s(∆ f (x)) =
1

1+e−m·(∆ f (x)−s)
(2)

1

0

0

Figure 2: Sigmoid curve

1

0

0

Figure 3: For m > 1 the curve becomes step-like

Note that the sigmoid function depends on two parameterss and
m. The shift s determines where the transition from low proba-
bilities to high probabilities takes place. Usings = 0 centers the
transition interval in the middle of the whole region, increasings
will shift it to the right, thus decreasing the number of individu-
als selected. Themultiplier m determines how sharp the transition
is. Low values imply a smooth curve with a broad slope, while
increasingm will make the transition sharper. This effect is illus-
trated in Figure 3 (m > 1, probabilities are more discrete) and Fig-
ure 4 (0< m < 1, a stretched sigmoid curve making the differences
in probability smaller). Obviously, the choice of these parameters
greatly influences the response of the sigmoid and hereby theprop-
erties of the selection mechanisms.

This selection mechanism is used in a fully decentralized man-
ner. Each node applies survivor selection and parent selection on
itself with possibly differentm ands values. First a node applies
the sigmoid formula for survivor selection to see whether itis fit
to survive. If not, it simply puts itself in adead state. If the node
survives it applies the sigmoid formula for parent selection to de-
termine if it is fertile (i.e., good enough to mate). When a surviving
node is fertile, it selects a random neighbor to mate with. Ran-
dom mate selection is possible as a by-product of gossiping that
not only exchanges information, but also imposes an overlaynet-
work of neighbors on the population. This network is updatedby
exchanges of neighbors among nodes. This exchange of neighbors
is crucial to operate as a peer-sampling service [10].

If two individuals are coupled for mating, they reproduce byexe-
cuting crossover followed by mutation. The resulting childis added

1

0

0

Figure 4: For 0 < m < 1 the curve resembles a line

to the system as a new nodewithout removing an existing one. This
latter feature implies that the population size becomes an observ-
able, rather than a user parameter. It is important to note that a
node/individual will never change through the evolutionary oper-
ators. More precisely, the candidate solution it represents will re-
main the same, only the status of the node can change from alive
to dead by survivor selection. The gossiping algorithm, however,
can change a node: if a node hits upon a solution it will infectother
nodes through gossiping, thus proliferating a solution over the net-
work.

As mentioned above, the evolutionary algorithm terminatesif all
nodes become “aware” of a solution, either by being one, or by
being told about one.

3.2.2 Adaptation algorithm
The adaptation algorithm as part of our layered architecture forms

the interface stage between the gossiping stage and the evolutionary
stage. The adaptation process is mainly deployed to preventexplo-
sion and implosion of the population by adjusting the parameters of
the sigmoid. We do this in each node independently, which requires
that nodes know whether the population as a whole is growing or
shrinking. However, in our situation there is no meta observer to
provide this information. A node only has its locally computed
estimations. Therefore, within the adaptation stage the counting al-
gorithm is called that makes estimations about the size of the P2P
system. Based on that information the parameters for the selection
functions (m ands) are adjusted. We use simple heuristic rules to
achieve this. The rules are based on observing how the sigmoid re-
sponses to various values and experiences with initial experiments.
For instance, the population grows if parent selection usess < 0
and shrinks whens > 0.

Recall that the autonomous selection mechanism is used for par-
ent selection and survivor selection as well, so all together there
are four parameters:mS and mF denoting them values for sur-
vival selection and parent selection (F as in fertile) andsS andsF
that stand for thes values for survival and parent selection. The
adaptation heuristic meant to prevent implosion of the population
is based on an absolute boundary rule: If the estimated popula-
tion size is smaller than a user defined implosion thresholdTI , then
the selection parameters are increased/decreased by adding a posi-
tive/negativeδ. The adaptation heuristic meant to prevent explosion
of the population is based on a relative increase rule: If thepresent
estimation of the population size exceeds the previous one by more
than a user defined explosion thresholdTE , then the selection pa-
rameters are increased/decreased by adding a positive/negative δ.

Specificδ values we use in this study are shown in Table 3 later on.

3.2.3 Counting algorithm
The counting algorithm described in Algorithm 2 is part of the

gossiping layer. It deploys an aggregation protocol described in [11].
We have modified the original protocol so that it also provides each
node with an estimate of the global average fitness. It is onlyafter
these estimations have been obtained that the the adaptation stage
can complete.

Algorithm 2 Counting algorithm
initially
msg tag := id /* all nodes have unique identifier */
sizeest := 1 /* initially a node knows that only it exists */
avg est := fitnessvalue /* a node knows its own fitness value */
computeestimates(size est, avg est, msg tag)
repeat

pull estimates(size estp, avg estp, msg tagp) from neighbor p
if (msg tag< msg tagp) then

/* abort own counting process */
msg tag := msgtagp
sizeest := 0

else if(msg tag> msg tagp) then
/* abort other counting process */
sizeestp := 0

end if
sizeest := (sizeest + sizeestp) / 2
avg est := (avgest + avgestp) / 2
pushestimates(size est, avg est, msg tag) to neighbor p

until desired number of gossiping rounds

Note that although each node starts an estimation process for the
size and fitness of the system, at the end only one estimation pro-
cess survives, namely the one started by the node with the highest
identifier.

The counting algorithm needs to be executed in several time
steps, or rounds [11]. The required number of rounds grows loga-
rithmically in the size of the P2P system. We executed the counting
algorithm alone first on the P2P system with the Newscast proto-
col to find out how many rounds are needed to get good (almost
perfect) estimations of the size of the system.

Using Table 1 we computed Equation 3, which gives the required
number of gossiping rounds needed to get a good estimation ofthe
size of the network. The variableγ is the current population size,α
is the initial population size andβ is the number of rounds needed
for the initial population size.

#rounds = (log10(γ)− log10(α))∗5+β (3)

During our experiments we found that for our initial population size
of 200 we required about 13 rounds to accurately compute the net-
work size. This finally led to the following simpler approximation:

#rounds ≈ (log10(γ)−2)∗5+15 (4)

This equation gives more than the minimum number of rounds
needed to estimate the network size. It is robust enough for the
growth of the network also since the network can never grow more
than a factor 2 during the execution of the evolutionary stage, in
which every node can at best create one offspring.

Table 1: Minimum number of rounds for a good estimate
Population size Minimum rounds Average estimation Standard deviation

10 6 9.6 0.5163977794943321
100 12 99.48 0.9043106644159661

1,000 18 999.477 0.7266353961777479
10,000 23 9,999.4976 0.7790089272147155
100,000 29 99,999.50162 0.6690605610882638

3.3 Workflow of the algorithm
Our solution is deployed on a P2P system, with no centralized

components, in contrast to a traditional evolutionary computing
setup. Each individual corresponds to a node in our P2P system,
and like cellular evolutionary algorithms, will have a collection of
neighbors. An individual can only mate with one of its neighbors.
As we mentioned, the set of neighbors of a given node changes over
time.

Figure 5: A simple 1-1 mapping of a cellular EA to a P2P net-
work

In our setup the nodes can be in one of two states: alive or dead.
A live node participates in the algorithm, while a dead node does
not. A node is set todead if the evolutionary algorithm finds that it
is not fit for survival. Initially, we start with a number of live nodes,
while all others are declared dead.

Live nodes are initialized with candidate solutions as is usually
done in any evolutionary algorithm (here: randomly). Afterinitial-
ization, each live node gossips with its neighbors (some of which
may be dead) in order to estimate the current network (population)
size and the global average fitness. With these estimates, a node
can then adapt the parameter values of the sigmoid functions, and
take subsequent decisions on its viability and fertility.

Newly created offspring (i.e., a node that becomes alive) ispo-
sitioned close to its parents, which is done by assigning neighbors
from those of its parents. This proximal placement turned out to be
important for the efficient dissemination of information.

Every (live) node in the system is able to choose a mate if it
is fertile. As a consequence, there are two ways in which a node
can become a parent: by selecting a mate, or by being selectedas
mate by another node. After mating, a node resets its estimation of
network size and fitness value to the default values. However, the
previously known estimated size of the network is used to decide
on the next number of gossiping rounds. The number of rounds
chosen is good enough even if the population has changed during
the evolutionary stage.

If a node finds a solution it will piggyback it while gossipingfor
estimating the population size and overall fitness. The net effect is
that the solution will spread across all nodes, allowing each of them
to take the correct termination decision.

This brings us to a complete single iteration of our algorithm.

Each iteration consists ofn + 3 steps, as shown in Algorithm 3.
Note thatn may change as the algorithm iterates. The bulk of an
iteration consists ofn gossiping rounds, normally in the order of
a few tens. Gossiping is done for disseminating informationand
computing estimates. Stepn+1 consists of adapting the selection
function, while stepn+2 constitutes an evolutionary step in which
the population is adjusted. Finally, stepn+3 consists of resetting
estimates and determining the next number of steps for the follow-
ing iteration.

Algorithm 3 Outline of an iteration of the distributed algorithm
1 to n time steps: Gossiping rounds

Exchange information with neighbors
If there is a solution inform the neighbors
Perform the counting algorithm

n+1 time step: Adaptation
Call the adaptation process
Update the parameters for selection

n+2 time step: Evolution
Call selection process
Either die or mate or do nothing accordingly

n+3 time step: Resetting
Reset the values for the counting algorithm
Calculate steps needed (n) for next iteration

4. EXPERIMENTAL SETUP
For an empirical study of our distributed EA with adaptive au-

tonomous selection we perform experiments on the N Queens prob-
lem with different problem sizes (values ofN). We represent a
board setting as an array of integers that form a permutation. The
value xi ∈ {1, . . . ,N} on the i-th position denotes the row of the
queen standing in thei-th column. This representation ensures that
each column and each row contains only one queen, thus we only
need to resolve the constraints on diagonals. Such permutations
form then the individuals (nodes). The fitness value of an individ-
ual is the number of queens who attack each other in the board
setting it represents. The optimal fitness value is 0 meaningthat no
queens are attacking each other. As for the variation operators, we
used the Partially Mapped Crossover (PMX) and swap mutation
to ensure that all children are permutations if the parents are [6].
The numerical parameters are shown in Table 2 and Table 3. Note
that although the Newscast gossip protocol is mentioned as astatic
value in this table, Jelasityet al. [10] have shown that this choice
is generally not crucial for the correct execution of higherlayer
protocols.

5. EXPERIMENTAL RESULTS
We monitored all experiments from an external observer’s view

point and collected data from this perspective. The data plots in the
following subsections show exact values on the average fitness, the
size of the network (population), etc. during a typical run.

Table 2: Parameter settings for the algorithm setup
Parameter Name Value

Evolutionary Algorithm
Initial population size 200
Initial multipliers (mS andmF) 10
Initial shifts (sS andsF) 0.1
Crossover probability (pc) 0.2
Mutation probability (pm) 0.05

Adaptation Algorithm
Implosion thresholdTI 200
Explosion thresholdTE 500

Gossip Algorithm
Number of neighbors (elements in a view) 20
Gossip protocol Newscast

Table 3: values forδ used in the two heuristic rules for adapting
selection parameters

heuristic to prevent
implosion explosion

δ for mS 100 - 10
δ for sS - 1 1
δ for mF 20 -10
δ for sF 0.1 - 0.1

5.1 Fitness of the population
We illustrate how the fitness of the population evolves over time

by plotting the average and best fitness values. Each evaluation
time corresponds to a completed iteration from Algorithm 3.Fig-
ure 6 depicts how the fitness of the population increases as the algo-
rithm progresses. From an evolutionary computing point of view,
this shows that our algorithm is capable of finding solutionsto the
given problem. Quite naturally, the best fitness curve showsa step-
wise progress with plateaus indicating periods where no improve-
ment of the best known fitness value takes place. The curve ex-
hibiting the development of the average fitness shows more gradual
improvements. It is especially interesting to observe the very last
step before termination. The last plateau is short, which indicates
that once a node (individual) has found a solution (fitness 0), it
spreads quickly within the population. As we have mentionedbe-
fore this is done by the use of gossiping. Note that gossipingabout
a solution may not involve the whole population at once, making
other nodes continue to work towards a solution themselves or until
they hear the solution from a neighbor.

5.2 Population size and selection parameters
Figure 7 displays the population sizes during a run. There are

several key observations to be made. First, we have started the ex-
periments with an initial population size of 200 live nodes.During
the algorithm run the population shrinks and grows, but it never ex-
plodes or implodes to extinction. The plots show that there were
periods when the population plunged down due to more deaths of
individuals than births, but implosion of the population has been
automatically avoided through controlling the selection pressure
on-the-fly.

-120

-100

-80

-60

-40

-20

 0

 50 100 150 200 250 300 350

Best fitness

Average fitness

Figure 6: Best/average fitness curves for the 96 Queens prob-
lem.

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 50 100 150 200 250 300 350

48 Queens problem

96 Queens problem

Figure 7: Changes of the population size for the 48 and 96
Queens problems.

Figures 8 and 9 show how the parameter values of the autonomous
selection mechanism are adapted during a run. Recall, that the au-
tonomous selection mechanism has two parameters (m ands) and
that it is used for parent selection and survivor selection as well, all
together amounting to four parameters for selection:mS, mF , sS,
andsF . Furthermore, each individual has its own parameter values
and it changes these values independently from the other individu-
als (using the same adaptation mechanism). In the figures we show
the average values for the whole population.

These plots can be related to those showing the population vari-
ation as depicted in Figure 7. Aligning these we can see how the
multiplier and shift adapt to keep the population size more or less
stable. When the population size is stable only minute changes oc-
cur for the multiplier values, while in need of avoiding an implosion
or explosion of the population larger variances are seen. Figure 9
shows clearly that the shift value for parent selection is larger than
zero, while for survival selection the value is negative.

In our experiments the parameters was found to be more sen-
sitive to the adaptation mechanism thanm. We also noted thatm
should be a large positive integer for the mechanism to work prop-

-100

 0

 100

 200

 300

 400

 500

 600

 50 100 150 200 250 300

48 Queens mS

48 Queens mF

96 Queens mS

96 Queens mF

Figure 8: Average multiplier values for parent selection (mF)
and survivor selection (mS).

-6

-5

-4

-3

-2

-1

 0

 1

 2

 50 100 150 200 250 300

48 Queens sS

48 Queens sF

96 Queens sS

96 Queens sF

Figure 9: Average shift values for parent selection (sF) andsur-
vivor selection (sS).

erly. Throughout our experiments,m turned out to remain more or
less static whiles was changed more often to keep the population
stable.

All in all, these figures illustrate how locally made decisions and
adaptation at local level are able to keep the population alive and
stable on global level.

5.3 Accuracy of population estimates
Figure 10 exhibits the the actual population size and the average

of the population size estimates in the individuals over a run. The
averaged estimates and the real values are very close to eachother.
The standard deviation of the average was always about 0.5 indi-
cating that almost every individual was able to correctly estimate
the population size

5.4 Gossiping a solution
Table 4 shows how a node is able to proliferate a solution to the

rest of the population by gossiping. We can see how the popula-
tion’s average fitness increases during each time step.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 50 100 150 200 250 300

Actual size
Est. size

Figure 10: Population estimates for the 96 Queen puzzle

Table 4: Infection process for the 96 Queens problem
Time Step Pop. size Avg. Fitness Std. Dev
1 746 -4.9571 2.829525
2 746 -4.94102 2.846263
3 746 -4.87668 2.842311
4 746 -4.77748 2.907307
5 746 -4.50134 3.048269
6 746 -3.88606 3.21392
7 746 -2.97587 3.269868
8 746 -1.72118 2.880624
9 746 -0.80027 2.089681
10 746 -0.2748 1.154313
11 746 -0.10456 0.693057
12 746 -0.03083 0.351966
13 746 -0.01609 0.273695
14 746 -0.00268 0.073225
15 746 0 0

The population size has not changed during the gossiping rounds
of the solution. This is because it has been possible to disseminate
the solution to the others within the required number of timesteps
for the counting algorithm. Therefore no evolutionary algorithm
step gets executed within that period. Also, since the termination
criterion is satisfied within the amount of time steps required for the
counting algorithm the distributed algorithm stops with the popula-
tion having a solution to the given problem instance. In effect, what
we see is that during the gossiping rounds when multiple tasks are
being carried out, the dissemination of a solution is quicker than
any other task can complete.

6. CONCLUSIONS
Our experiments demonstrate the feasibility of a fully decentral-

ized evolutionary algorithm in which the population size can be
kept stable. What makes our solution unique, is that parent and
survivor selection can be done completely autonomously andasyn-
chronously, without central control, yet avoiding the riskof popu-
lation explosion or implosion.

The gossip protocols play a major role with respect to node selec-
tion and the dissemination of information. Note that gossiping does

require that nodes cooperate. In other words, it requires (coarse)
synchronization between nodes. Each node starts the gossiping
stage for estimations, followed by the adaptation and evolution-
ary stages, and finally resets before executing the next iteration.
In practice, enforcing such a synchronization can be simplyestab-
lished by having a node defer responding to gossiping messages
until it has entered its gossiping stage again.

The effect of estimations to our algorithm compared to the ac-
tual values was also an important finding. Since the estimates were
as good as the actual value, the distributed algorithm was able to
perform properly. The estimates did however play a crucial part
in the whole algorithm setup, since it was the main building block
of the adaptive process. This adaptive process made sure that the
population size stayed stable. It is worthwhile to note thatbecause
of the gossip algorithm’s ability to disseminate information reliably
each of the nodes could obtain proper estimates about the network.
Also since the new offspring stay close to the parents (in thesense
of sharing neighbors), there is a much better chance of proper de-
livery of messages and information between the nodes from gos-
siping. These factors also made possible for nodes to communicate
better with each other and make correct estimates about the popu-
lation.

7. FUTURE WORK
An important area for improvement is making the individual

nodes more independent by loosening or removing the impliedsyn-
chronization between them. In particular, we are interested in re-
placing the gossiping stage with a solution that will allow anode
to take a local decision whenever needed. For example, it maybe
possible to let nodes gossip continuously and in this way also con-
tinuously collect information about the behavior of the population.

¿From the EA perspective, further study is required to investigate
the algorithm’s sensitivity to its parameters, e.g., the initial values
for population size,m, s, and the adaptation heuristics. It would be
also interesting to try whether this, or a similar, adaptation mech-
anism could be used in a traditional EA for on-the-fly population
size control.

Last, but not least, the algorithm should be evaluated on more
problems. A specific area of interest is to apply decentralized evo-
lutionary algorithms for hard scheduling problems in P2P networks.
One such example is formed by content distribution networksin
which placement of data is crucial for optimizing client-perceived
performance [18].

8. REFERENCES
[1] E. Alba and B. Dorronsoro. The exploration/exploitation

tradeoff in dynamic cellular genetic algorithms.IEEE
Transactions on Evolutionary Computation, 9(2):126–142,
2005.

[2] E. Alba, B. Dorronsoro, M. Giacobini, and M. Tomassini.
Decentralized cellular evolutionary algorithms. In S. Olariu
and A. Y. Zomaya, editors,Handbook of Bioinspired
Algorithms and Applications, volume 7 ofChapman and
HallCRC Computer and Information Science Series, pages
103–120. 2005.

[3] E. Alba and M. Tomassini. Parallelism and evolutionary
algorithms.IEEE Transactions on Evolutionary
Computation, 6(5):443– 462, 2002.

[4] E. Cantú-Paz and D. Goldberg. Efficient Parallel Genetic
Algorithms: Theory and Practice.Computer Methods in
Applied Mechanics and Engineering, 186:221–238, 2000.

[5] K. A. DeJong and J. Sarma. On decentralizing selection
algorithms. InInt’l Conf. Genetic Alg., pages 17–23, San
Mateo, CA, 1995. Morgan Kaufman.

[6] A. E. Eiben and J. E. Smith.Introduction to Evolutionary
Computing. Natural Computing Series. Springer, Berlin,
Heidelberg, New York, 2003.

[7] L. J. Eshelman. The chc adaptive search algorithm: How to
have safe search when engaging in nontraditional genetic
recombination. InFOGA, pages 265–283, 1990.

[8] C. Fry and M. Reiter. Really truly trackerless bittorrent.
Technical Report CMU-CS-06-148, Carnegie Mellon
University, Aug. 2006.

[9] M. Gorges-Schleuter. A comparative study of global and
local selection in evolution strategies. In T. Bäck, A. Eiben,
M. Schoenauer, and H.-P. Schwefel, editors,Proceedings of
the 5th Conference on Parallel Problems Solving from
Nature, pages 367–377. Springer, 1998.

[10] M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and M. van
Steen. The peer sampling service: experimental evaluationof
unstructured gossip-based implementations. InMiddleware
’04: Proceedings of the 5th ACM/IFIP/USENIX
international conference on Middleware, pages 79–98, New
York, NY, USA, 2004. Springer-Verlag New York, Inc.

[11] M. Jelasity, A. Montresor, and O. Babaoglu. Gossip-based
aggregation in large dynamic networks.ACM Trans. Comput.
Syst., 23(3):219–252, 2005.

[12] M. Jelasity, S. Volgaris, R. Guerraoui, A.-M. Kermarrec, and
M. van Steen. Gossip based peer sampling. Technical report,
Vrije Universiteit, 2004.

[13] K. Jenkins, K. Hopkinson, and K. Birman. A gossip protocol
for subgroup multicast. InProceedings of the 21st
International Conference on Distributed Computing Systems
Workshops, Washington, DC, USA, 2001. IEEE Computer
Society.

[14] G. P. Jesi. Peersim, a peer-to-peer simulator.
http://peersim.sourceforge.net/.

[15] D. Kempe, A. Dobra, and J. Gehrke. Gossip-based
computation of aggregate information. InFOCS ’03:
Proceedings of the 44th Annual IEEE Symposium on
Foundations of Computer Science, page 482, Washington,
DC, USA, 2003. IEEE Computer Society.

[16] V. K. Koumousis and C. P. Katsaras. A saw-tooth genetic
algorithm combining the effects of variable population size
and reinitialization to enhance performance.IEEE Trans.
Evolutionary Computation, 10(1):19–28, 2006.

[17] N. Melab, M. Mezmaz, and E.-G. Talbi. Parallel hybrid
multi-objective island model in peer-to-peer environment. In
IPDPS ’05: Proceedings of the 19th IEEE International
Parallel and Distributed Processing Symposium (IPDPS’05)
- Workshop 6, page 190.2, Washington, DC, USA, 2005.
IEEE Computer Society.

[18] G. Pierre and M. van Steen. Globule: A Collaborative
Content Delivery Network.IEEE Communications
Magazine, 44(8):127–133, Aug. 2006.

[19] G. Rudolph. On risky methods for local selection under
noise. In T. Bäck, A. Eiben, M. Schoenauer, and H.-P.
Schwefel, editors,Proceedings of the 5th Conference on
Parallel Problems Solving from Nature, pages 169–177.
Springer, 1998.

[20] M. Tomassini.Spatially Structured Evolutionary Algorithms.
Natural Computing Series. Springer, Berlin, Heidelberg,
New York, 2005.

