
Managing Clouds: A Case for a Fresh Look at Large
Unreliable Dynamic Networks

Ozalp Babaoglu
University of Bologna

babaoglu@cs.unibo.it

Márk Jelasity
University of Bologna

jelasity@cs.unibo.it

AnneMarie Kermarrec
INRIA/IRISA

akermarr@irisa.fr

Alberto Montresor
University of Trento

montreso@dit.unitn.it

Maarten van Steen
Vrije Universiteit Amsterdam

steen@few.vu.nl

ABSTRACT

Peer-to-peer (P2P) protocols have proven efficient to pro-
vide scalable support to many large-scale distributed appli-
cations, successfully coping with unreliability and dynamics.
However, to exploit them in a wider range of environments,
such as very large-scale networks of smartphones or set-top
boxes, it is imperative to make P2P protocols manageable:
we need to be able to start, bootstrap and stop protocols,
and assign resources dynamically. In this paper we present
a general-purpose framework aimed to support several fully
distributed applications running independently over a very
large scale and dynamic pool of resources. We call this re-
source pool a cloud. The basic idea of the framework is a
declarative application suit description, that describes what
applications should be running on what resources, and a
middleware that makes sure the currently available and dy-
namic cloud self-organizes into the configuration represented
by the description, creating the subclouds that are assigned
to applications. The middleware also provides additional
functionality, such as bootstrapping overlay networks, to
support the applications. Our preliminary ideas on the im-
plementation rely on various gossip-based protocols, that
are applied to form the subclouds and to implement boot-
strapping, monitoring and control services. Most of all, this
position paper sets an exciting research agenda to fully ex-
ploit the possibilities offered by very large scale dynamic
networks.

1. INTRODUCTION

Distributed applications running over very large scale, dy-
namic, heterogeneous and unreliable distributed systems are
now commonplace. Examples include desktop grid environ-
ments, file sharing networks, content distribution networks,
voice over IP, and various distributed gaming applications.
For the most part, these applications are made possible
through peer-to-peer (P2P) technologies.

Despite intense activity over the last several years, the
arena of P2P algorithm design continues to be in a growing
phase, with a plethora of protocols available for a wide range
of functions. Yet, the current state of affairs has failed to
relax one important restriction: peer-to-peer protocols and
the systems that exploit them are often very specific to a
given application. As a result, a file-sharing system is only
adapted for file sharing, a desktop grid is able to execute only

specially tailored and centrally managed tasks, and so on.
This situation is somewhat comparable to having a powerful
computer that can run only one application, without the
possibility of reprogramming to exploit all its potentials.

Clearly, this tight coupling between systems, protocols,
and applications is unnecessarily restrictive. For a given
(distributed or networked) system, we should be able to
freely change the P2P protocols at runtime, add new ones
and stop existing ones. Furthermore, we should be able to
merge systems on which P2P applications are running, or
split existing ones. Such flexibility would allow us to deploy
P2P applications much easier and let several such applica-
tions to co-exist independently while making use efficiently
of shared underlying resources and protocols.

The major impediment to this form of deployment is the
extreme scale of the underlying system. Most P2P appli-
cations have been designed with thousands, if not millions
of nodes in mind. As a consequence, managing the suite
of protocols and applications dispersed across a huge collec-
tion of nodes is far from being a trivial task. We take the
position that such management can be achieved only if the
participating nodes have the capability to automatically or-
ganize and manage themselves rather than being managed
by some external entity.

To this end, we propose to make use of a declarative de-
scription of a desired application that specifies what services,
components, etc., should be running on what resources. In
our proposal, the underlying system of nodes and the appli-
cation descriptions are completely separated: the descrip-
tions are disseminated throughout the nodes who then self-
organize to ensure that the desired applications are simul-
taneously supported. The latter requires the implementa-
tion of a lightweight and transparent distributed middleware
layer. In this paper, we sketch a possible implementation
based on gossip-style protocols. Instead of describing an ex-
isting system, we propose a rough outline and some initial
results, however, most of the issues we raise represent open
research issues. In the following we elaborate on the aspects
mentioned above.

2. SYSTEM MODEL

We consider a huge collection of networked nodes, typi-
cally owned by a single organization. We already see such
collections, for example, with ISPs who place modems and



set-top boxes at their customers’ homes. The benefit of re-
taining ownership is that the ISP stays in control of the
quality of hardware that provides access to their network.
In the long run, the cost of retention is often lower than hav-
ing to provide services to support customers with their own
hardware. In a similar way, we may eventually see more
telcos handing out smartphones at low costs to their sub-
scribers, not only to bind users to their services, but also to
lower management costs.

Given such a situation, we expect that these organizations
would want to deploy massive services across their networks.
In practice, we expect that the number of services is rela-
tively low, say a few dozen. An important issue is that many
of these services will have a strong peer-to-peer flavor. For
example, one can think of collaborative streaming, gaming,
and messaging, just to name a few. Likewise, considering
the enormous popularity of systems such as Wikipedia and
their current scalability problems, it is not difficult to envis-
age peer-to-peer solutions for them offered as services to cus-
tomers. Furthermore, we see efforts toward building fully-
decentralized collaborative personal video recorders that can
be efficiently realized through set-top boxes with sufficient
storage capacity [7].

The computing medium we are thus interested in consists
of a very large number of computing devices that are con-
nected through a routed network. The devices, or nodes, are
unreliable. Nodes may leave or join at any time. We find it
intuitive to call this environment a cloud: a cloud contains
a huge number of water droplets or ice particles that are
constantly leaving and joining, making the boundary of the
cloud fuzzy, but nevertheless forming an identifiable shape.
This metaphor also suggests that an individual node is in-
significant but that a collection of nodes forming a cloud
forms a consistent structure. Indeed, the abstraction of a
cloud of nodes will be considered as a practically infinite,
continuous medium. Note that this environment may also
be composed of a collection of clouds.

One of the key feature of peer to peer systems on which
scalability relies is resource aggregation. The resources in
the system (such as storage space, memory or CPU cy-
cles) are the sum of the resources available at the individual
nodes. The only type of resource that is assigned to appli-
cations is a cloud of nodes. The assigned cloud is selected
based on certain attributes relevant for an application using
it; for example, we can select x% of nodes or N nodes based
on storage capacity, availability, bandwidth, etc. The unit of
allocation in our scheme is an entire node in the sense that
it is not possible to allocate portions of it to applications —
a node either participates in facilitating a given application
or it does not.

The usage of the word cloud in the context of resource as-
signment is, again, intentional. The collection of nodes that
we assign to an application is generally very large and highly
dynamic. Obviously, the system dynamism is reflected in the
cloud composition. This is possible since the (peer-to-peer)
applications we intend to support are designed with such
environments in mind.

3. APPLICATION SUITE DESCRIPTION

The purpose of an application suite description is to de-

fine what applications are running on the network, and what
resources should be assigned to these applications. A de-
scription is independent of the actual available set of nodes,
in that it does not refer to any individual nodes. Instead, it
identifies resources as subclouds that span a certain propor-
tion of the entire cloud and that possibly have some desirable
properties such a given reliability or storage availability.

To give a simple example, we can have a description where
we assign the most reliable 10% of the network to a monitor-
ing/control service, and divide the remaining 90% randomly
and equally among two user applications. Since the set of
nodes keeps changing, as well as their characteristics, the
top 10% most reliable nodes will keep changing as well, al-
though probably more slowly (after all, they are the most
reliable ones). The monitoring service and the two appli-
cations in our example are responsible for dealing with any
churn or unreliability of their respective subcloud. The only
thing that we require from the middleware layer that lets the
system self-organize to meet the actual description is that
it ensures at any time that the 10% most reliable nodes are
always assigned to the monitoring service (perhaps invoking
any join or leave protocols, etc) and the rest of the nodes
are divided equally among the applications.

The description itself is allowed to change abruptly as
well. In fact, this is exactly the mechanism to stop and
launch services and applications: when a new application
needs to be launched, it is simply added to the description
which triggers the self-organizing middleware to assign re-
sources and launch the application. Similarly, stopping a
service and recycling its resources, or simply shifting priori-
ties (amount of resources assigned to applications) involves
updating its description. Individual applications will experi-
ence only some dynamism of the subcloud they are running
on as a function of these global changes, but otherwise, they
are not concerned or know about global resource assignment
issues.

4. IMPLEMENTATION

Evidently, the abstractions and the usage scenarios sketched
above raise many challenging implementation issues. For
example, what does “changing the suite description” mean?
Where this description is stored? How do applications get
launched and how are the prescribed resource assignments
maintained?

In short, the task is to implement the middleware that
connects two entities: the cloud on which the system as a
whole is running and the possibly-changing system descrip-
tions. This means that all participating nodes have to know
what application(s) to run at any time, and proper startup,
node joining and node leaving have to be managed for all
applications using the procedures the given application pre-
scribes.

4.1 The Challenge

This task is very challenging because we do not assume
the existence of a specific infrastructure: the system has to
work completely automatically, in a self-organizing way due
to its large scale and dynamic behavior. The only possibil-
ity for human intervention is by changing application suite
descriptions; manually mapping descriptions to the current



network is simply not feasible.
In principle, by investing in infrastructure (such as power-

ful servers), it would be possible to control the system from
a central location. This, however, is an expensive and vul-
nerable solution that we wish to avoid. Yet without central
control, things like assigning nodes to applications based
on descriptions is highly non-trivial since it requires global
agreement among the nodes. Effectively, a relevant mapping
between clouds and suite description relies on some form of
global assessment of the system whereas nodes have only a
very limited knowledge of the network. The fact that nodes
continuously join and leave only further complicates the sit-
uation.

4.2 The Cloud

The cloud has been used as a metaphor for a very large
scale and dynamic group. In practice, we expect clouds to be
dynamically and automatically formed as nodes belonging
together get to know each other. To actually implement such
a cloud, we propose to rely on a peer sampling service [2].
This service provides random samples from the cloud to each
participating node. The implementation of this service is a
gossip-based protocol that periodically exchanges and up-
dates a list of random members at each node. This protocol
provides high tolerance to rapid changes in the system, in-
cluding failures, which makes it attractive as a minimal but
very robust bottom layer for our architecture.

More generally, similar gossip-based protocols can be used
in a subcloud as well, so that related nodes (according to the
application suite description) get to know each other.

4.3 Application Suite Description: Implemen
tation

We do not address language issues that relate to the de-
scription of an application suite. We intentionally work with
an informal concept that nevertheless allows for a list of
applications, and the description of the required allocation
of resources to the respective applications. This resource-
allocation description expresses what proportion of the nodes
should be assigned to a given application, and optionally
a description of desirable properties of these nodes. Con-
straints on the allocation could take the form of describing
a minimal number of nodes, or a minimal number satisfying
a certain property such as a node’s average availability.

We assume that the application suite description is known
to all participating nodes at all times. This can be achieved
by piggybacking an anti-entropy gossip protocol on the peer
sampling service implementation, which maintains the de-
scription at all nodes. This can be very cheap since we
expect the description to be very compact, and in most of
the cases, the piggybacking does not result in observable
increase of traffic due to the small size of packets that are
being exchanged.

Access rights to update the description have to be imple-
mented as well, which can be done using common techniques
such as public key cryptography and signed certificates.

4.4 The Middleware Service

Having addressed how the cloud and the application suit
description can be implemented, we move on to the middle-

ware layer that is responsible for keeping the system in a
state that corresponds to the description.

The services that this middleware has to perform are the
following:

Slicing: Responsible for assigning the right proportion of
nodes (subclouds) to applications, taking care of other
possible requirements about these nodes,

Bootstrapping: Responsible for starting up an application
from scratch,

Churn handling: Responsible for assisting the application
in handling churn and failures.

We describe these middleware services one-by-one below.

4.4.1 Slicing

As mentioned above, the application suit description as-
signs resources to applications, and “resource” always means
a percentage of the total nodes, that may or may not have
special characteristics. Since all nodes are assumed to have
a copy of the description, the problem boils down to let-
ting the nodes select which subcloud they want to belong
to. The simplest case is when the network is partitioned
at random, and no special requirements are placed over the
nodes in any partition. In this case, each node can pick a
subcloud at random, proportional to the required size of the
subcloud.

If the partitions have other constraints, for example, we
need to create a partition from the most reliable nodes, then
the problem becomes much more challenging. We have pre-
liminary results that point towards this direction [3]. Those
results show that in a few cycles, the network can get par-
titioned according to the description.

The approach that we have taken is that each node gets
an associated random ID from [0, 1]. Using a gossip-based
protocol, nodes keep swapping their random ID until the or-
der of IDs reflects the order of a given gradient (bandwidth,
storage capacity, etc.). This way, if a node finally gets an
ID which is, for example, less than 0.5, then it knows it is
in the top half of the network according to the gradient. In
this manner partitions can be selected locally.

Partitions created this way need to form a cloud them-
selves. This can be achieved if the contact nodes are also
disseminated along with the application suite description:
each node in each application keeps publishing itself as a
contact node for its own application, using the anti-entropy
epidemic database update propagation protocol. This way
each node has constantly updated information about possi-
ble contacts to all applications. New nodes use these contact
nodes to join the peer sampling overlay we described above,
hence connecting to their subcloud.

4.4.2 Bootstrapping

Bootstrapping is a service that can be issued for a specific
subcloud to build an overlay topology, which can in turn be
used by the application or service that occupies that sub-
cloud. It will be issued when the application that needs a
specific overlay topology (such as a specific distributed hash
table) is being started for the first time, or when dramatic
events happen such as splitting or joining two systems. We



assume that topology is maintained through an appropriate
P2P protocol; the bootstrapping service only provides quick
and cheap startup. This is crucial if we want to allow the
system to be truly dynamic and support the launching of
possibly complex applications quickly, to be run perhaps for
a short time.

We have developed a number of protocols for bootstrap-
ping different topologies [1, 6, 5]. These implementations
are also gossip-based, and therefore are simple and robust.

4.4.3 Churn

The churn-handling service is rather simple: it is respon-
sible for adding nodes to and removing nodes from an ap-
plication. The service utilizes join and leave methods im-
plemented by the application, by calling them at the appro-
priate times. For example, if a new node joins the system,
and decides to be part of a particular subcloud (via the slic-
ing service), then it needs to first get the application code
from one or more contacts from the subcloud, and subse-
quently issue a join method that is available in the obtained
code. When leaving, a node notifies the churn-handling ser-
vice about this fact, which then invokes the leave method
registered by the application.

Dealing with crashes is the responsibility of the applica-
tion itself. The middleware layer itself will be extremely
robust to failures, but applications also have to be robust
themselves, because their subcloud inherits any unreliability
in the available set of nodes.

4.5 Usage Scenario

Using these middleware services, the scenario for the life-
cycle of a user application would be the following:

1. The user writes the application against an API that
allows it to read the application suit description and
gives access points to the middleware such as leave and
join methods, etc.

2. The user is assigned a subcloud via an update to the
application suit description, through a procedure we
do not detail here. It can be automatic, based on ac-
cess rights, or done through a central administration
point.

3. The system will then automatically self-organize into
the new configuration that contains the new subcloud,
and at least one node, that of the user. This node will
seed the spreading of the application code over the
subcloud in an epidemic fashion, or through more so-
phisticated content distribution algorithms, or a com-
bination of the two techniques. Those nodes that are
assigned to the application but have not received the
application code will actively try to get it from their
contacts in the cloud.

4. In parallel with the startup, the bootstrapping service
will build any necessary overlay networks and present
them to the application through an API.

5. Removing the application simply means removing it
from the application suit description. As a result, all
nodes will get automatically re-assigned through the

slicing service and any old application state simply gets
discarded.

Executing long-running applications as generic services is
also possible in an identical fashion.

4.6 Federation and Splitting

It might become important or useful to split or merge
complete systems that follow the present framework. This is
rather straightforward. Recall that the system is composed
of a cloud, an application suite description and middleware
services. We assume that the only difference lies in the ac-
tual applications that are running, that is, in the application
suit descriptions.

If there are no applications running, then only the cloud
has to be split or unified, which is trivial to do if we assume
the gossip-based implementation described above. Note that
the unification or splitting of the cloud is a low-level op-
eration that has to do only with maintaining a connected
random overlay network of the participating nodes.

If there are applications, then, in the case of unification,
we need to unify the descriptions first and issue the new
description as an update on both systems. In parallel with
this, the two clouds need to be unified. This is all that needs
to be done: the rest is taken care of by the self-organization
mechanism provided by the middleware services. The ap-
plications will only experience an increased churn rate, or
maybe a sudden increase or decrease of the number of nodes
they run on, depending on how exactly the descriptions were
unified. However, due to the bootstrapping service, any
complex overlay structures can readily be provided even in
this case.

In the case of splitting, again a lot depends on the in-
tended function of the two resulting systems. First of all,
the descriptions have to be split, followed by splitting the
cloud, and then providing the new descriptors to the result-
ing parts. The network can be split also simply by splitting
the cloud and leaving the description intact. In this case
we automatically get two new systems with identical struc-
ture but fewer resources. The applications will experience
a sudden decrease in the amount of resources in this latter
case.

5. EXAMPLE APPLICATIONS

An application has an associated protocol, without any
central components, that can run on a cloud. It will typi-
cally be implemented using a P2P approach and will be de-
signed to run in large-scale and unreliable environments. We
discuss here some possible example applications, increasing
in complexity.

First of all, not all protocols running on a cloud have to
be associated with only a single application; instead, some
of them may be simple services extending our middleware
with additional functions. For example, consider a monitor-
ing service based on aggregation [4], that keeps administra-
tors informed about the current system state, and possibly
intervenes by appropriately modifying the application suite
description (e.g., by shutting down a “secondary” applica-
tion in case of a catastrophic failure of a large portion of
the cloud). As another example, consider a registry service



based on, for example, a DHT, used by external entities to
obtain enhanced information about the applications running
in the system.

An important observation here is that such services can
be implemented and deployed on the same cloud that will
be used for hosting user applications. In other words, we
can assume that there is no need for extra resources besides
those that are already part of the cloud. Such a deploy-
ment is easier if a cloud is indeed owned by, in principle, a
single organization. This same approach is followed when
considering user applications.

For example, consider an instant messaging application.
An ISP may dedicate a subcloud to this service, dimen-
sioning it based on the foreseen popularity (and thus load).
Later, if the application becomes more popular, the size of
the subcloud may be modified adaptively. New features may
be added by simply distributing new code. In contrast, in
current systems updates are left to the will of users and sev-
eral versions of the same application co-exist. Apart from
modifying the resource allocation requirements in the appli-
cation suite description, no further action needs to be taken:
the system automatically deals with churn and even catas-
trophic failures and other sudden changes in the available
resource pool.

The applications discussed so far are relatively simple and
their execution is managed by a single authority through the
configuration of the application suite description. However,
an additional possibility is to run complex applications that
can themselves contain multiple services and applications.
In this case, the structure is recursive; subclouds may be
organized into sub-subclouds, using another instance of the
cloud middleware running inside a subcloud. Even different
resource management middleware can be adopted to fulfill
different requirements. The control over applications exe-
cuted in subclouds may be delegated to other (potentially
multiple) authorities.

To illustrate this point, consider the case of desktop grids;
possible scenarios include an ISP that decides to sell part of
the computing and storage power of its networked set-top
boxes to paying clients, or a potentially large number of or-
ganizations that decide to federate their clouds to take ad-
vantage of the aggregated computational and informational
resources available at each organization.

In such a scenario, a grid service could be run on one
of the subclouds; when a complex task is submitted to the
grid for execution, a suitable subset of nodes is selected,
and the specific task is run over them. The selection can
exploit the slicing ability of our middleware, or more com-
plex resource management schemes can be used, e.g., based
on quality-of-service agreements. Once selected, the nodes
may self-organize into complex overlay topologies using the
bootstrapping service and maintain these using the churn-
handling service.

6. SUMMARY

In this short position paper, our goal was to outline some
initial ideas that we believe could eventually lead to a mid-
dleware layer to enable very large and unreliable sets of net-
worked computing devices to act as a platform for fully dis-
tributed applications and services, in an easily manageable

manner.
We have proposed abstractions — a cloud and resource as-

signment based on subclouds — and we have outlined ideas
towards a possible middleware implementation as well. This
implementation is purely gossip-based: as a consequence, it
is potentially cheap, lightweight and robust. The middel-
ware layer is also transparent, because the mapping of the
application suit description to the actual cloud and the run-
ning applications is fully automated.

Some of the protocols have been studied to some degree:
for example the bootstrapping service, that allows applica-
tions to start new DHTs on demand, and to recover from
catastrophic failures involving a large number of nodes, is
know to be efficient and fast as well.

Clearly, until the system becomes a reality, many ques-
tions remain to be solved. Most importantly, we need to
develop novel protocols for our specific resource assignment
approach and various other functions, and study the pos-
sible complex interaction of the many simple components,
which forms an interesting research agenda.

7. REFERENCES

[1] M. Jelasity and O. Babaoglu. T-Man: Gossip-based
overlay topology management. In S. A. Brueckner,
G. Di Marzo Serugendo, D. Hales, and F. Zambonelli,
editors, Engineering Self-Organising Systems: Third
International Workshop (ESOA 2005), Revised Selected
Papers, volume 3910 of Lecture Notes in Computer
Science, pages 1–15. Springer-Verlag, 2006.

[2] M. Jelasity, R. Guerraoui, A.-M. Kermarrec, and
M. van Steen. The peer sampling service: Experimental
evaluation of unstructured gossip-based
implementations. In H.-A. Jacobsen, editor, Middleware
2004, volume 3231 of Lecture Notes in Computer
Science, pages 79–98. Springer-Verlag, 2004.

[3] M. Jelasity and A.-M. Kermarrec. Ordered slicing of
very large-scale overlay networks. In Proceedings of the
Sixth IEEE International Conference on Peer-to-Peer
Computing (P2P 2006), 2006. to appear.

[4] M. Jelasity, A. Montresor, and O. Babaoglu.
Gossip-based aggregation in large dynamic networks.
ACM Transactions on Computer Systems,
23(3):219–252, August 2005.

[5] M. Jelasity, A. Montresor, and O. Babaoglu. The
bootstrapping service. In Proceedins of the 26th
International Conference on Distributed Computing
Systems: Workshops (ICDCS WORKSHOPS), 2006.
International Workshop on Dynamic Distributed
Systems (IWDDS), to appear.

[6] A. Montresor, M. Jelasity, and O. Babaoglu. Chord on
demand. In Proceedings of the Fifth IEEE International
Conference on Peer-to-Peer Computing (P2P 2005),
pages 87–94, Konstanz, Germany, August 2005. IEEE
Computer Society.

[7] J. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang,
A. Iosup, D. Epema, M. Reinders, M. van Steen, and
H. Sips. Tribler: A Social-Based Peer-to-Peer System.
In The 5th International Workshop on Peer-to-Peer
Systems (IPTPS’06), February 2006.


