
A distributed shared data space for
personal health systems

Wim Stuta,1, Frank Wartenaa and Maarten van Steenb

a Philips Research, Eindhoven, Netherlands
b Vrije Universiteit, Amsterdam, Netherlands

Abstract. Ubiquitous computing is a promising paradigm to support health care
outside traditional care institutes. Sensor-based systems may continuously collect
data on a person’s health status and context, and provide immediate feedback or
contact a remote physician. This paper presents a novel programming model to
facilitate the development of such systems. The model, which has been inspired by
tuple spaces, offers robustness for ad hoc mobile environments and explicit
support for data streams
Keywords: Medical Informatics, Ubiquitous Computing, Sensor Networks, Body
Area Networks, Intermittent Connectivity, Middleware.

1. Introduction

Demographic developments in society lead to an increasing demand for health care.
The main reasons are that people get older and become increasingly aware of disease
risks and a healthy life style. At the same time health-care budgets are under pressure.
These two developments demand for new ways of delivering health care services.

One approach is to support people in having a healthy life style or managing their
disease while residing outside traditional health care institutes. In this case, sensor-
based systems continuously acquire data on a person’s health status and context. These
data can be interpreted locally by the system, which may give immediate feedback or
control an actuator, or be sent to a remote care provider for further interpretation.

For example, when a patient is discharged from a hospital after heart surgery, a
sensor may continuously measure the patient’s heart rate. If the heart rate value
exceeds a threshold, the patient’s cellular phone automatically warns a remote
physician. This concept may also be used to coach a person training for a marathon:
while running, a small wearable computer advises the runner to adapt his or her speed
based on the measured heart rate.

A system that supports an individual’s health is called a personal health system. It
consists of sensors, actuators, and appliances (such as cellular phones and PDAs)
within the range of an individual person. A personal health system may be connected to
other systems, such as hospital information systems, tele-health-care services, or fitness
centres. An important requirement is that it should be able to support persons with
multiple diseases, and be extendable with new hardware and software.

1 Corresponding Author: Wim Stut, Philips Research, High Tech Campus 31, 5656 AE Eindhoven,

Netherlands. E-mail: wim.stut@philips.com

Submitted to Medical Informatics Europe, Maastricht, August 2006

As persons move around, devices or networks may become unreachable. Hence,
personal health systems are in fact ad hoc mobile computing environments that show
intermittent connectivity. Yet, robustness is a core requirement for these systems.
Another characteristic of these systems is that they deal with data streams rather than
individual data values as they continuously monitor a person’s status and context.

There is currently very little support for building personal health systems.
Applications are generally tailored to specific hardware and poorly integrated with
other applications. We believe that lightweight middleware may solve many of the
issues needed to develop open and portable applications that can operate independently
of the characteristics of specific hardware devices such as sensors.

As a step in this direction, we present a novel programming model for the
collection, exchange, management, and access of data in personal health systems. The
paper is organised as follows. Section 2 describes the problem that we solved. Our
programming model is explained in Section 3. Section 4 summarizes a prototype
implementation. Finally, we discuss our work in Section 5.

2. Material and Methods

2.1. Problem description

Today, personal health systems are typically aiming at a single disease or purpose. This
leads to unnecessary duplication of equipment and makes it difficult to offer integrated
health support when patients have multiple diseases or goals. For example, if the
patient and the runner from the previous section are the same person, with current
technology he or she has to wear two heart rate sensors, and both a mobile phone and a
wearable computer when running. Moreover, the sports application does not know that
this person has had heart surgery, and cannot adapt its advice accordingly.

Furthermore, each personal health system has its own architecture, which makes it
difficult to reuse components. Each has its own solutions for robustness and handling
ad hoc mobility, or does not support these features at all. From a system development
point of view, it would be much more efficient if these systems could be based on a
shared architecture. Functionality that is needed by multiple applications can then be
offered by a common middleware layer, which can support a range of devices.

As a contribution to solve these problems, we have developed a programming
model for the collection, management, and access of data in personal health systems.
The model is based on a shared data space concept, and explicitly offers robustness in
ad-hoc mobile environments. The model hides sensors for applications: each
application merely specifies what kind of data it needs (like heart rate) and at which
frequency; the middleware finds the appropriate sensor, and warns the application if it
cannot meet its request. The patient data as collected and stored in the data space can
serve as basis for multiple applications, each targeted towards a specific disease.

2.2. Scenario

To further illustrate the problem domain, consider the following scenario:

Jim likes running. To improve his performance he wants to know his heart rate during
his training sessions on a per-second basis; he therefore buys a heart rate sensor and a

Submitted to Medical Informatics Europe, Maastricht, August 2006

PDA that communicate wirelessly. Unfortunately, several times a week Jim feels dizzy.
His family doctor suspects a small cardio-vascular problem, and wants to know Jim’s
heart rate and blood pressure during the day on a per-minute basis. The heart rate
sensor that Jim already has, is accurate enough, and can thus be used for this purpose
too; for measuring blood pressure, another sensor is used. The collected sensor data
are stored on Jim’s PDA such that the doctor can inspect these data at Jim’s next visit.

What makes this scenario interesting from a system’s perspective?
• the sports application and the cardio-vascular application share the heart-rate

sensor but have different sampling frequency requirements. When Jim is not
running, the heart rate needs to be collected only once per minute. We could
unnecessarily drain batteries when collecting these data every second.

• the cardio-vascular application needs sensor data only once per minute. Even
if more data are available (due to the fact that Jim went running and the sports
application asked for heart rate values every second), these additional data
items need not be used by the cardio-vascular application.

• the sensor data must be available for future use in the order that they are
produced by the sensor. In particular, when Jim, at his next visit, tells the
doctor that he felt dizzy yesterday around 10 am, the doctor may connect her
PC to Jim’s body area network (BAN) to visualize the heart rate and blood
pressure values as measured between 9 AM and 11 AM.

• the collection of data is orthogonal to the processing of data. At Jim’s first
visit to the doctor, the doctor sets the desired frequency to one sample per
minute. The software that is used for this may run on the doctor’s PC that is
temporarily connected to Jim’s BAN. However, the collecting of sensor data
must continue when the associated application is not connected.

• the system’s reaction to the removal of the heart rate sensor depends on the
applications that are present. It would be no problem at all if, before his first
visit to the doctor, Jim turns off his heart rate sensor after running. However,
if this sensor is also used for collecting heart rate values for the cardio-
vascular application, the system should warn Jim.

• details about the sensors should be hidden to the applications. The
applications are merely interested in data that reflect the status of the person;
whether the heart rate is measured by one or multiple sensors is irrelevant to
the applications. Implementation changes in sensor technology should not
affect the applications that use sensor data.

3. Programming Model

To address these issues, we have developed a programming model inspired by Linda-
like shared data spaces [1]. Data spaces have shown to be a powerful concept when it
comes to separating applications in time and space: the components do not need to co-
exist in time for them to communicate and need not know about each other’s existence.
The asynchronous and connectionless programming paradigm of data spaces makes
them more attractive for ad hoc mobile computing environments than the remote
procedure call model (systems based on the latter model are less robust when devices
or networks become unreachable).

Submitted to Medical Informatics Europe, Maastricht, August 2006

In contrast to other approaches, our shared data space works on data streams rather
than only single data items, as is normally the case. The components in our system
(sensors, actuators, and applications) communicate via a distributed shared data space.
These components do not need to know each other; instead they communicate via
typed data elements. The components write and read data elements to and from the data
space via generic operations.

Typically a data space contains data of a single person and is distributed over
multiple nodes. These nodes communicate via a wired or wireless network, and may
temporarily be disconnected. The data space system software is responsible for moving
or replicating data elements between the nodes of the data space. This is hidden for the
component developers; they can focus on application-level functionality.

Sensor data are typically processed in the same order as produced by the sensors.
The processing may take place immediately, or later. To make the programming of
applications easier, the model contains an explicit stream concept, where a stream is
defined as a time-ordered collection of typed data elements (see Figure 1). No
assumptions are made about the frequency: even the data elements produced by a
sensor that measures the heart rate only once per day, can be viewed as a stream.

T

nowT0: start
collecting

collected data

stream

Figure 1. A stream in a distributed shared data space

Components may create a stream, which requires specifying the type of the data

elements in the stream, such as HeartRate, and providing a unique name by which the
stream can be identified. A stream can then be opened either for reading or writing
elements. Since different readers may simultaneously access a stream at different
positions and in different manners, opening a stream returns an application-specific
descriptor that is subsequently used for all stream accesses by that application.

Data elements can only be appended to a stream (i.e., at the right-hand side in
Figure 1), at which point they are timestamped. To read data from a stream the reader
must first position itself in the stream via the seek operation. Data elements can then be
read via the read operation. The effect of the read operation is that the reader gets a
copy of a data element. The reader receives the data elements in the same order as they
have been added to the stream.

As illustrated in the scenario, different readers of a stream may want to receive
data at different frequencies. We have chosen to let the reader define its own frequency
via the operation setReadFrequency. The side effect of the read operation is that the
position of this reader in the stream is adapted according to its frequency. In other
words, subsequent read operations return elements at the specified frequency. A read
may block the caller until a sample is available.

Submitted to Medical Informatics Europe, Maastricht, August 2006

The system may be instructed to immediately collect a data sample (which can
then be read). As an alternative, an application may tell the system to start the
continuous collection of data samples (at a specified frequency). We deploy call-backs
to handle exceptions, such as when there is no data available.

An important observation is that the shared data space hides how it actually
collects data, and from which sensors. We believe this to be an important contribution
as it allows us to decouple applications from specific hardware.

4. Prototype implementation

To validate the data space concept we have built a prototype for a part of the scenario
of Section 2.2 (see Figure 2). The heart rate is measured by a sensor that is connected
wirelessly to a PDA via an 802.15.4 link. The PDA and laptop communicate via the
network access profile of Bluetooth.

The PDA contains a sports application, which asks the data-space middleware to
collect the heart rate at a frequency of 1 Hz when the user is running. The laptop (of the
family doctor) contains a cardiovascular application; when Jim visits his doctor and
connects his PDA to her laptop, this application asks the middleware to collect heart
rate samples at a frequency of 1/60 Hz.

hub laptopheart rate sensor

BAN

Figure 2. Overview of the prototype implementation.

Both the PDA and the laptop have data-space software. Both devices host a data-

space kernel that contains stream data and that offers the data-space operations to the
local applications. When the PDA and the laptop are connected, both kernels
synchronize their contents by exchanging samples using an IP socket.

Once the middleware (on behalf of an application) has asked the sensor to start
sampling at a certain frequency, the sensor autonomously sends the heart rate at this
frequency. When a sample cannot be delivered (e.g., because the connection between
the sensor and the PDA has broken), both the sensor and the PDA raise an alarm to
inform the user that something is wrong. Note that this alarm is raised only after a
sample could not be taken.

The prototype confirmed that the system continues to operate correctly even if a
network connection breaks. The prototype did reveal that the clocks of the sensor and
the PDA drift apart (about 10 ms per minute). This was an issue since the software on

Submitted to Medical Informatics Europe, Maastricht, August 2006

the sensor and the PDA need a timer to know the next sampling moment. We solved
the problem by sending a clock synchronization message from the PDA to the sensor
every 10 minutes to keep the drift within reasonable limits.

5. Discussion and Conclusion

This paper has presented a novel programming model to facilitate the development
of personal health systems. The model, which has been inspired by tuple spaces, offers
robustness for ad hoc mobile environments (data does not get lost when devices or
networks become unreachable, and users are informed when the system cannot fulfil its
tasks), separates applications and sensors, and explicitly supports data streams. We
now briefly discuss related work for such systems.

MiLAN [2] is middleware for (medical) sensor networks. Its underlying goal is to
maximize the system lifetime by reducing energy consumption. Applications explicitly
specify the desired data types and quality (e.g. depending on the patient’s status).
MiLAN combines these requests, and determines the most feasible sensor set that
satisfies the applications’ requirements.

Secure UPnP [3] deals with secure access to and data transport in wireless health
care systems. However, little attention is paid to data distribution with intermittent
connectivity, or to the separation of applications and sensors. Fluid Computing [4]
specifically addresses system robustness with intermittent connectivity, but offers no
support to applications to transparently gather sensor data.

Earlier work has shown that the data space concept is a promising concept for ad-
hoc mobile computing environments with intermittent connectivity. For example,
LIME is aimed at applications that exhibit logical and/or physical mobility [5]. All
communication takes place via transiently shared tuple spaces distributed across the
mobile hosts. At any moment an application running at a host, can access the tuples
located on its own host and the hosts it is connected to. The set of tuples accessible by
a particular agent residing on a given host is altered transparently in response to
changes in the connectivity pattern among the mobile hosts.

However, to our knowledge, existing data space models do not offer explicit
support for accessing data streams and for collecting sensor data in a way that
applications are shielded from low-level interfaces. We believe that by letting
middleware offering this support, robust and better personal health applications can be
developed. Future experiments should lead to further insight in this.

References

[1] Gelernter D. Generative communication in Linda. ACM Transactions on Programming Languages and
Systems, 1985; Volume 7, Issue 1: 80–112.

[2] Heinzelman WB, Murphy AL, Carvalho HS, and Perillo MA. "Middleware to support sensor network
applications". IEEE Network Magazine, 18(1):6--14, 2004.

[3] Keinänen K and Pennanen M. Secure UPnP and Networked Health Care. ERCIM News No. 63,
October 2005, pp 25-26.

[4] Graf M. Fluid Computing. ERCIM News No. 54, July 2003, pp 21-22.
[5] Picco GP, Murphy AL and Roman GC. Developing Mobile Computing Applications with Lime. Proc.

of the 22th International Conference on Software Engineering, ACM Press, June 2000, pp. 766-769.

Submitted to Medical Informatics Europe, Maastricht, August 2006

	Introduction
	Material and Methods
	Problem description
	Scenario

	Programming Model
	Prototype implementation
	Discussion and Conclusion

