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Abstract

A vast amount of caching and replication solutions have
been proposed in the literature to improve the performance
of multi-tiered Web applications (which we call as Internet
services). These solutions aim to alleviate the scalability
bottleneck of only a single tier and different techniques are
suitable for services of different nature. However, from the
view point of an administrator who wants to host a service
scalably, it is not easy to determine the right set of tech-
niques to apply. This leads to either gross over-provisioning
of resources or poor performance. We believe that the deci-
sion process of choosing the right techniques for a service
can be automated. To strengthen our position, we propose
the design of an autonomic hosting system that uses a com-
bination of multi queue models and online simulations to
achieve our goals. Even though our work is very much in
progress, we believe the techniques used in our system can
provide a good start in taming the complex problem of scal-
able hosting of services.

1 Introduction

E-commerce enterprises such as yahoo.com, ama-
zon.com and ebay.com often use complex software systems
to serve content to millions of Web clients. For instance,
the Web page generated in response to each client request
to a Web site like amazon.com is not generated by a sin-
gle application but by a large number of smaller Web appli-
cations operating in parallel. These enterprises build their
software systems out of many such Web applications, usu-
ally calledservices. Services are applications that perform
certain business logic and are exposed through well defined
client interfaces usually accessible over the network. Exam-
ples of service include order processing services and shop-
ping cart services.

Typically, a service consists of business logic which
makes certain queries to a data store and request(s) to other
services to generate a response to its clients. Typically,
the enterprise systems of e-commerce companies (such as

Google, Amazon and Yahoo) run hundreds of these ser-
vices. These services are typically hosted across thou-
sands of inexpensive PCs in multiple data center(s) pos-
sibly located across a wide-area network. Moreover, en-
terprises usually assign performance and availability goals,
commonly known as service level agreement (SLA), to each
service individually.

In this paper, we focus on the problem of hosting a ser-
vice efficiently so that it can meet its SLA. A generalized
service hosting architecture is shown in Figure 1. As seen
in the figure, deploying a service usually involves replicat-
ing its code to a number of application servers and its data
to an array of data store machines. Furthermore, differ-
ent caching layers such as for service response caching and
database caching can be deployed to improve performance.
Various research efforts have been carried out on each of
these solutions [11, 12, 7, 8, 2]. However, all these works
aim to alleviate bottlenecks only in one tier of a given ser-
vice.

For a given service, it is not trivial for an administrator
to determine the best set of techniques and the number of
nodes to provision for each of them. The goal of our work is
to build a system that autonomically provisions the hosting
platform for a service and determines the right configuration
of techniques to apply so that it can meet its performance
goals withminimal usage of servers. For instance, for a
given service our system automatically determines which
set of techniques will help in improving its performance.
This problem is challenging due to four reasons. First, mul-
tiple techniques per service need to provisioned. Second,
the effect of provisioning on performance depends on the
characteristics of the service it hosts. For example, service
caching is beneficial only if the requests to a service ex-
hibit good temporal locality. Third, provisioning a tier does
not always result in a linear performance gain. For exam-
ple, caches tend to follow the law of diminishing returns
(i.e., the benefit of increasing the number of cache servers
decreases after a certain threshold). Fourth, the access pat-
terns (e.g., request rate, update rates, and temporal locality
of requests) can change continuously.

Our position in this paper is follows: For scalable host-



ing of a service, there exists a wide range of caching and
replication solutions that can be applied at different tiers
of a service. We believe that the decision regarding what
are the right set of techniques to apply for a given service
and how to provision each of them can be automated. To
strengthen our position, we present the prototype design of
our system that employs a combination of queueing models
and on-line cache simulations to estimate the performance
gain of adding/removing a resource in a tier. The proposed
system, unlike solutions solely based on queueing models,
is “cache-aware”, which means that it takes into account
temporal access patterns of requests.

The rest of this paper is organized as follows. Section
2 describes our system model and our generalized hosting
architecture. Section 3 discusses the design of our auto-
nomic hosting system. Section 4 presents the related work
and Section 5 concludes the paper with a list of important
open issues to be addressed.

2 Background

2.1 System and Application Model of a
Service

We assume that each service is assigned a perfor-
mance and availability goal (usually referred to as an
SLA). For sake of simplicity, we will restrict ourselves to
performance-related SLAs in this paper. We define the SLA
of a service such that its average response time should be
within the [LowRespT ime, HighRespT ime). Typically,
large scale e-commerce enterprises deploy their software
system across multiple data centers to attain high perfor-
mance and availability. We assume that the resources allo-
cated to a service (and all its tiers) is located within a single
data center. Replicating a service across multiple data cen-
ters is assumed to be done by replicating the service (and all
its tiers) as a whole, so that there is no inter data center com-
munication between the tiers of a service. Furthermore, we
assume that each data center has a pre-allocated rescue pool
of resources. When a service hosted in a data center does
not meet its SLA, the autonomic hosting system adds one or
more resources from this pool to the service to ensure that
it meets its desired performance. However, a service cannot
use all the resources in the pool as the pool is shared with
other services hosted in the data center.

2.2 Generalized service hosting architec-
ture

Our generalized service hosting architecture is given in
Figure 1. As seen in the figure, there are various techniques
that can be applied at different tiers of a service to improve
its performance. These techniques include server-side and
client-side response caching (e.g., [12, 1]) done at tier0
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Figure 1. Generalized hosting architecture for
a service

and2a respectively, business logic replication done at tier
1, database caching (e.g., [2]) done at tier2b and database
replication at tier3 (e.g., [7]). We do not explain these tech-
niques in detail due to space constraints. Interested readers
are referred to [9].

Each tier of a service can be provisioned with one or
more servers (zero or more for caching tiers). This requires
the use of a load balancer to route the requests and/or share
the load among replicas in a tier uniformly. In our system,
we assume the presence of hardware load balancers (e.g.,
CISCO GSLBs) for the business logic tier and use a request
distributor (e.g., [5]) for routing requests across servers in a
caching tier.

Caching service responses (at tier0 and tier2a) and data-
base query responses (at tier2b) introduces the problem of
consistency maintenance. To simplify the process of con-
sistency maintenance, we assume that the request workload
to the database of a service (and also to other services)
consists of a fixed set of read and write query templates.
A database query template is a parameterized SQL query
whose parameter values are passed to the system at run-
time. This scheme is deployed, for example, using Java’s
prepared statement. In our system, we expect the devel-
oper to specify a priori which query template conflicts with
which update template. For example, consider the follow-
ing template:QT1: “SELECT price, stock, details from
book where id=?” and its conflicting update query tem-
plateUT1: “Update price=price+1 from books where
id=?”. In this example, when a server caches a query result
that is an instance ofQT1, then it subscribes to receive up-
date events generated byUT1. Ofcourse, template-based
invalidations can be extended to include the parameter of
the query template. We use the same template-based invali-
dation technique for service response caching.
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Figure 2. Logical Design of an Adaptive Host-
ing System for Internet Services

3 Design of an adaptive hosting system

The goal of our adaptive hosting system is to ensure that
the service is continuing to meet its SLA even when its
workload (e.g., request rate, temporal locality of requests,
or update ratio) may change. In such a scenario, the system
needs to take appropriate action by increasing or decreasing
the amount of resources allocated to one (or more) of the
service tiers in Figure 1. In a sense, we can see this sys-
tem as a continuous feedback system as the one shown in
Figure 2. The system must detect changes in performance
(using a metric estimation system) and trigger the controller
to change the resource configuration (i.e., the number of
servers dimensioned for each tier) to bring the average re-
sponse time back to the acceptable interval.

The controller is the decision-making element that is re-
sponsible for provisioning each tier in a given service. The
controller answers the following the question:what is the
right resource configuration for a given service that can
help to meet its SLA with a minimum number of servers be-
ing used for hosting it?To design such a controller, we
must first be able to estimate the response time of a service
for a given resource configuration. This would enable the
controller to determine the response time if extra servers
are added (or removed) in different tiers and select the best
configuration. In this section, we propose a way to model
the response time of a service and a method to estimate the
gain in response time when a server is added (or removed)
in each of the tier. Finally, we explain how this model is
used to make a decision to adapt the resource configuration
of a service.

3.1 Modeling end-to-end latency of a ser-
vice

An internet service is multi-tiered. Each incoming re-
quest is first received by the first tier which in turns serves

the request locally and/or can trigger calls to other tiers. Let
us consider a tierTi that receives a request which can be ser-
viced locally with a probabilitypi and/or can trigger mul-
tiple requests to more than one tier. LetKi be the set of
tiers thatTi calls for servicing its incoming requests, i.e.,
Tj ε Ki if Tj is called byTi. For example, in Figure 1,T1

makes requests toT2a andT2b , soK1 = {T2a , T2b}. Let
Ni,j denote the average number of requests sent toTj by Ti

for serving a single incoming request toTi. For example,
if a single request to the business logic tier (T1) results in
1.5 queries to the data cache tier (T2b), thenN1,2b = 1.5.
Now, the average response time to service a request atTi,
RespT imei is given by:

RespT imei = Qi+pi∗ExecT imei+
∑

jεKi

Ni,j∗RespT imej

(1)

whereQi is the average queueing latency experienced by
a request atTi before being serviced andExecT imei is
the average time taken by tierTi to execute the request (and
does not include the response times of other tiers). Note that
equation 1 can capture the response times of tiers with dif-
ferent characteristics (e.g., caching or computational). For
example, for a server-side caching tier (T0), p0 denotes the
average cache hit ratio,N0,1 = 1−p0 (each request to cache
goes toT1 only if it is a cache miss) andK0 = {T1} (as
all outgoing requests ofT0 are always sent toT1). For the
business logic tier,p1 = 1 as all services always have to do
some business logic computation, andK2 = {T2a , T2b} as
the business logic can make requests to the external service
tier (T2a) and data tier (T2b ).

We can then perceive a service as a4-tiered system,
whose end-to-end response time can be obtained from equa-
tion 1 as follows:

RespT ime0 = Q0 + p0 ∗ ExecT ime0 + (1− p0)∗
(Q1 + ExecT ime1 + N1,2a ∗RespT ime2a

+N1,2b ∗RespT ime2b)
(2)

whereRespT ime2a andRespT ime2b are the average re-
sponse time for client-side service caching and database
caching tiers respectively. The equations for the variables
can be similarly derived from equation 1.

3.2 Service Characterization

In our model, parameters such aspi, ExecT imei and
Ni,j characterize the service and its workload. To estimate
the average response time of a service, these parameters
must be measured. Here, we discuss how the system can
accomplish such measurements.



3.2.1 Estimating different parameters

To estimate the response time of a service, we need to know
the execution time (ExecT imei), pi, andNi,j (∀Tj ε Ki)
of each tier. Most of these values can be obtained by in-
strumenting the cache managers and application servers ap-
propriately. For example,ExecT ime of caches can be ob-
tained by instrumenting the cache manager appropriately
so that the average latency to fetch an object from cache
can be logged. MeasuringExecT ime for business logic
tier is harder because mere instrumentation at the busi-
ness logic tier can only obtain the average time to ser-
vice a request at the application service, i.e.,RespT ime1.
However,RespT ime1 not only includes the computational
time at application server (ExecT ime1) but also the re-
sponse time of data (RespT ime2b ) and external service
tiers (RespT ime2a). So, to obtainExecT ime1, we need
to measure the values ofRespT ime1, RespT ime2a and
RespT ime2b during low loads (to avoid queueing latency).
Using these valuesExecT ime1 can be obtained subse-
quently.

3.3 Impact of adding a server at each tier

An SLA violation can occur when one (or more) tier(s)
face a bottleneck that may occur due to a change in its work-
load. For example, if the cache hit ratio atT0 decreases
(due to low temporal locality or increased number of inval-
idations) then the request rate to the business logic tier will
increase thereby leading to increased response time. In such
a scenario, the controller need to answer the following ques-
tions: (i) Will provisioning extra server(s) at any of the tiers
improve the response time? and if so, (ii) what is the best
tier to provision the resource(s)?

To answer these questions, the controller needs to au-
tomatically estimate the relative goodness in adding a ma-
chine at each tier and choose the tier that gives the highest
benefit as the one to provision the resource. Adding an extra
resource, i.e., a server, to a tier can reduce the queueing la-
tency as the tier has more processing capacity. For caching
tiers, it can improve the hit ratio as the caches have more
memory capacity. We describe the process of estimating
these gains below.

In general, estimating the improvement in queueing la-
tency by adding another server is easier. Queueing latency,
Qi is given by Little’s law asQi = rpsi ∗ ExecT imei.
In this model, the reduction in queueing latency by adding
a new server to a tier that hasn servers is: (rpsi ∗
ExecT imei)∗ (1/n−1/(n+1)) (note that execution time
is not affected if we assume that servers are homogeneous).

3.3.1 Estimating improvement in cache hit ratio

For caching systems, execution time and queueing latency
are not the main bottleneck and cache hit ratio is the cru-

cial factor. The amount of memory available for the caches
has a direct impact on the cache hit ratio. Estimating the
improvement in cache hit ratio when a new server is added
is not trivial. Before we present the details of hit ratio es-
timation, recall that we design our distributed cache using
consistent hashing [5].

In our distributed cache, we estimate the possible gain
in hit ratio due to addition of a new server using the fol-
lowing technique. Let us assume the memory limit of each
cache server isM . Each cache server stores only the list of
objects whose size jointly does not exceedM and keeps sta-
tistics about its cache hit ratio. In addition to this, the cache
manager at each cache server maintains avirtual cachelist
that will hold the identifiers of objects that the server would
have cached if it hadM + ∆ memory and its correspond-
ing virtual cache hit ratio. The hit ratio of the virtual list is
what the server would have obtained if it had been given an
extra∆ memory for caching. So, if the caching tier runsN
cache servers and∆ is set toM/N , then the average of vir-
tual cache hit ratios of all servers is the possible hit ratio the
distributed cache would obtain when an extraM memory is
added to it. This is equivalent to adding another server with
memoryM to the distributed cache. Of course, this estima-
tion is valid only if the requests are distributed uniformly
across caches which is the case in our distributed cache.

The cache hit ratio of the virtual cache list is used by the
controller to compute the gain in response time due to addi-
tion of another server to the distributed cache (using equa-
tion 2). Similarly, the possible degradation in response time
due to removal of a server from distributed cache can be
estimated by maintaining another virtual list in each cache
server with aM −∆ memory threshold. Note that a similar
technique of virtual cache list was used in [14].

3.4 Decision process

When the system faces an increase in observed
end-to-end response time (RespT ime0) beyond the
HighRespT ime threshold set by the SLA, then the con-
troller needs to adapt. The controller can use one or more
servers from the rescue pool to bring the response time back
to the acceptable interval. However, the controller must
first decide on the best tier to add the new server. To do
that, the controller obtains values ofExecT imei, pi and
Ni,j for each tier from the metric estimation system. For
caching tiers, it also obtains the estimated cache hit ratio
for M + ∆ memory. With these values, the controller com-
putesRespT ime0 when a server is added to each tier and
selects the one that offers the least response time as the tier
to add the new resource. This process is continued until the
response time falls within the acceptable interval or until the
rescue pool is exhausted.

Continuous addition of servers without appropriate scal-
ing down can lead to over-provisioning of resources.



To avoid this scenario, the controller must periodically
check if the observed response time is lower than the
LowRespT ime threshold. If so, the service is probably
over provisioned. To avoid that, the controller estimates the
increase in response time if one (or more) server(s) is re-
moved in any of the tier. Subsequently, it chooses to remove
a resource from the tier that offers the lowest estimated re-
sponse time, provided the estimated value is within the ac-
ceptable interval set by the SLA.

4 Related Work

A vast number of solutions have been proposed in the
literature for improving the performance of Web applica-
tions [3, 12, 2, 10, 7, 8]). All these techniques are studied
independently and aim to address the bottleneck at different
tiers of a service. In contrast, we aim to build a hosting sys-
tem that automatically chooses the right set of techniques
to apply for a given service based on its individual charac-
teristics and to determine the right amount of resources to
provision for each tier. The problem studied in this paper is
closely related to capacity provisioning and has been well
studied in the context of single-tiered applications [6, 4].
A simple transposition of these techniques to our problem
is however not suitable as database, business logic and ser-
vice caches have very different characteristics. Hence, it is
imperative to treat each individual tier as a separate entity.
A recent work studied the problem of provisioning a3-tier
web site using multi-queueing models [13]. Unfortunately,
the study does not include any caching techniques (such as
client/server-side service caching or database caching) in its
model. This is a very limiting approach as caching is one
of the widely used techniques used in boosting the perfor-
mance of a service.

5 Conclusion and Future Work

A vast number of techniques exist for scalable hosting
of networked services. However, the choice of right tech-
niques and number of resources to provision in each tier
depends on the characteristics of the individual service. In
this paper, we have presented the initial design of a system
that performs autonomic hosting of internet services. Our
system employs a combination of queueing models and on-
line cache simulations to decide on the right resource con-
figuration to use for a given service. We have implemented
our prototype in Tomcat and the Axis platform with a Post-
greSQL database backend. We believe the techniques used
in our hosting system can help multi-tiered internet services
in handling sudden changes of workload that may arise due
to events such as flash-crowds.

As a next step, we plan to test our prototype with differ-
ent Web services benchmark to validate our model and to re-

fine it further. Subsequently, we plan to look into the issue
of proactive adaptation and taking into account the avail-
ability SLAs.
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