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Abstract. As the amount of information available to users continues to grow, fil-
tering wanted items from unwanted ones becomes a dominant task. To this end,
various collaborative-filtering techniques have been developed in which the rat-
ings of items by other users form the basis for recommending items that could be
of interest for a specific person. These techniques are based on the assumption
that having ratings from similar users improves the quality of recommendation.
For decentralized systems, such as peer-to-peer networks, it is generally impossi-
ble to get ratings from all users. For this reason, research has focused on finding
the best set of peers for recommending items for a specific person. In this pa-
per, we analyze to what extent the selection of such a set influences the quality
of recommendation. Our findings are based on an extensive experimental evalua-
tion of the MovieLens data set applied to recommending movies. We find that, in
general, a random selection of peers gives surprisingly good recommendations in
comparison to very similar peers that must be discovered using expensive search
techniques. Our study suggests that simple decentralized recommendation tech-
niques can do sufficiently well in comparison to these expensive solutions.

1 Introduction

Many successful recommendation systems are based on the idea of collaborative filter-
ing (CF) [6]. In collaborative filtering, two users who have liked the same things in the
past are assumed to like similar things in the future. A user’s preference for a new item,
such as a movie or a book, can therefore be predicted by examining ratings of that item
made by users that previously had similar opinions. Traditionally, CF algorithms oper-
ate on complete knowledge, that is, the ratings of all users are known in one location.
This makes it easy to discover the similar users needed to make the predictions. This,
however, also makes these algorithms hard to employ in a decentralized context, where
not all users’ ratings can be available at all locations. In this paper we investigate how
well CF algorithms operate on partial knowledge; that is, how many similar users does
an algorithm actually need to produce good recommendations for a given user, and how
similar must those users be.

We consider the example of a network of millions of interconnected personal video
recorders. In the near future, these devices will not just be able to receive and record
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programs from satellite or the ether but also over the Internet. As a result, they will
make more content available to the user than ever before, creating the need for a rec-
ommendation system that helps the user to decide what to watch. To build a decentral-
ized recommendation system for these recorders we need to answer the question: what
knowledge they need to achieve good quality recommendations for their users and how
to obtain it?

In the context of personal video recorders, there are a number of related tasks for
which recommendation systems can be used. Recommendation information can be used
to augment an electronic program guide by adding a predicted rating to each item. Al-
ternatively, it can be used to rank the items currently available for a user to watch (i.e.,
present the user with a Top-N of programs to watch). Both of these tasks require cal-
culating accurate recommendations for an entire set of items. We conjecture that in a
network that offers large amounts of content a simpler recommendation task might be
sufficient. In this situation users are more likely to be interested in a list of some pro-
grams which they are certain to enjoy, rather than knowing ratings for all programs, or
identifying the absolute best of the currently accessible programs. Simply discovering
some good programs creates an easier recommendation task. Firstly, it requires an algo-
rithm that need only accurately rate programs the user will find good, rather than having
to accurately predict ratings in the entire rating range. Secondly, an absolute ordering
of programs is not required. Finally, only a sufficiently large number of good programs
must be identified, it does not matter if some are missed. This task is more suitable for a
decentralized setting in which a Top-N recommendation can never be fully correct due
to the fact that not all programs or ratings data are available to each user.

The main contribution of this paper is that we show for the well-known MovieLens
data set [10] that sufficiently good recommendations can be made based on the ratings
of a relatively small number of random users. We believe this to be an important result
in light of the various attempts to port CF solutions to decentralized systems. Based on
our experiments we conjecture that simple solutions are good enough.

The remainder of the paper is organized as follows. In Section 2 we present back-
ground on collaborative filtering algorithms and our system model. Section 3 describes
our experiments studying the effects of the number and type of users on recommenda-
tion quality for the MovieLens data set. We present conclusions in Section 4.

2 Background and System Model

The amount of information made available through computer networks often means
that people need to be selective about what content they spend their time on. This is
especially true in future video-on-demand systems where so many videos are available
that it is infeasible to even browse through them all. Given such an overabundance of
options, recommendation systems can help people make choices by aggregating opin-
ions on what others have found, in their experience, to be valuable. In the simplest case
such recommendations can take the form of a single joint rating which is given to all
users. A group of people can, however, have very different opinions about the value of
an item. More advanced algorithms thus provide personalized predictions by filtering
the opinions upon which a recommendation is made. This is done on the principle that
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users that have exhibited similar opinions on items in the past are likely to continue to
have similar opinions on new items [7, 1].

At an abstract level the problem of collaborative-filtering considers a set of N users,
U = {u1, . . . ,uN} and a set of M items X = {x1, . . . ,xM}. Each user provides ratings,
taken from a set of possible values, V , the rating scale, for a subset of the items in X .
These ratings form an N × M user-item matrix, R, where the entry ri, j is the rating of
user ui for item x j, or empty if that rating is unknown. The basic recommendation task
is to predict a rating value for a given empty element ri, j based on the known values in
R. This is done by means of a prediction function, f , where f (R, i, j) �→ V .

The prediction function usually performs two tasks. First, it selects rows from the
matrix which correspond to data which is most likely to accurately predict ri, j . Second,
it aggregates the information in these rows to calculate an actual value for ri, j. When
the user-item matrix is used as the input to f , the rows selected correspond to users that
are similar to user ui. This is called user-based collaborative filtering. The item-user
matrix, R�, can also be used as the input to the prediction function, thus calculating
f (R�, j, i). In this case the rows selected correspond to data items that have received
similar ratings to the item x j. This is called item-based collaborative filtering [8]. Ex-
actly how f performs the selection and aggregation tasks is the subject of many studies
on which heuristics lead to the best recommendations [2, 1, 8].

In our study, we assume an architecture in which each user has a personal networked
video recorder by which he or she rates content. These personal devices can exchange
gathered ratings with the devices of other users via the network, and use them to make
personal predictions to their respective users using a given prediction function f . As
the network grows, it becomes infeasible to distribute all ratings, i.e. the full matrix
R, to all recorders. The video recorder for user ui must therefore base its predictions
on a submatrix of R denoted Ri. In this paper, this submatrix Ri will consist of ui’s
own ratings and the ratings of a specific set of other users, called ui’s peer group, as
described in Section 3.1.

Following the above, there are five factors that can influence the quality of the pre-
dictions in decentralized algorithms. In addition to (1) the size and (2) composition of
the peer group of each user, the quality of prediction will be affected by the properties
of function f itself. In particular, it depends on f ’s (3) selectiveness in choosing rows
of the ratings matrix to consider, (4) the sophistication of the method by which aggre-
gation is performed, and (5) whether the function considers user-based or item-based
correlations. We study the effects of these five factors. As we shall see, the differences
between simple and sophisticated approaches are small enough to raise the question of
whether we need sophisticated algorithms at all.

3 Experiments

We present an analysis study in which we examine the effects of the five factors identi-
fied in the previous section on the quality of decentralized peer-to-peer recommendation
algorithms. We first introduce our methodology and the data set we consider in Sec-
tion 3.1. Next, we study the effect of peer-group size and composition in isolation from
other factors, by using rudimentary prediction functions in Section 3.2. The analysis is
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repeated with sophisticated prediction functions from the well-known CF algorithms in
Section 3.3. Section 3.4 analyzes the suitability of the well-known algorithms for the
task of identifying just some good items to recommend to a user (as opposed to the ab-
solute best available). Section 3.5 repeats the analysis of Section 3.4 for the PocketLens
peer-to-peer recommendation algorithm proposed in [4].

3.1 Experiment Methodology

For our experiments we organize the users’ personal video recorders into a peer-to-peer
overlay. The personal recorder for user ui will make its predictions on the submatrix Ri,
consisting of the ratings of the peers it is connected to in the peer-to-peer overlay and
its own ratings. To test the influence of the five factors, we vary the number and type of
peers ui is connected to and the prediction functions used.

The users’ personal devices are organized into overlays as follows. Each of the nodes
in the overlay stores the ratings data for a single user, that is, the node for user ui stores
the ith row of R. Nodes are connected by directed links to other nodes, called their
neighbors, thus forming a peer-to-peer overlay network. The set of links of each node
is called its neighbor cache which has a size c. Only the ratings data stored at a node’s
neighbors is available as input to the prediction function f . Note that because links are
directed, more than c nodes can use the ratings of any particular user.

In addition to varying c, we consider two contrasting peer-to-peer overlay topolo-
gies. In the first, neighbor caches contain links to random nodes, creating a random
overlay. In the second, neighbor caches contain links to the nodes to which a node is
most similar, given a similarity function d for rating data, creating a best-neighbors
overlay. Given the base assumption of collaborative filtering that ratings from similar
users provide the best quality recommendations, these two cases represent a worst-case
and a best-case scenario, respectively.

A best-neighbors overlay can be constructed in a decentralized fashion, for instance
by using a gossiping protocol such as Cyclon/Vicinity [11]. Nodes exchange their rating
data and compute the similarity to the other peers using the given similarity function d.
By remembering the best candidates so far, while continuing to exchange preferences
with other peers, each node will eventually fill its neighbor cache with the nodes most
similar to it. As running such a protocol is more expensive in terms of network usage
than discovering random peers, the random and best-neighbor overlays also represent
the cheap and expensive solution respectively. We use Pearson’s correlation using sig-
nificance weighting [2] as the similarity function to define best-neighbors overlays in
all our experiments. Following Herlocker et al.’s conclusions for the MovieLens data
set we set the significance weighting parameters to minCommonItems=2 and maxCom-
monItems=100 for all experiments. Negative correlations are not considered.

We evaluate the performance of each algorithm for differing values of c and the two
topologies using the MovieLens data set [10]. This data set consists of 100,000 rat-
ings, on a scale of 1 to 5 stars, of 1,682 movies made by 943 users. Each user rates at
least 20 items, but the data set is still sparse: 94% of the user-item space has no rating.
For evaluating the performance we partition this data into a training set and a test set.
The training set forms the matrix R, constituting the users’ ratings used to populate the
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Table 1. Summary of the ratings in the training and test set

Ratings Count in Training Set Count in Test Set
1∗ 5568 542
2∗ 10375 995
3∗ 24721 2424
4∗ 30858 3316
5∗ 19048 2153

Total 90570 9430

nodes in the overlay. The test set consists of 10 randomly chosen movies per user as
summarized in Table 1.

Each experiment consists of constructing the peer-to-peer overlay using the train-
ing set and then attempting to make predictions for the 9430 withheld (user,movie)
pairs. Our experiments thus measure algorithm performance in making 9,430 predic-
tions based on 90,570 ratings. In particular, each node will attempt to predict the rating
its user ui would give to the 10 withheld items based on its Ri matrix, consisting of
the ratings of the user and those of its neighbors. The resulting predictions are com-
pared to the 9430 actual ratings in the test set using several metrics. The experiments
are conducted using the CoFE collaborative filtering engine [5] that implements cen-
tralized user-based collaborative filtering. We extended CoFE to support item-based
recommendation and the rudimentary recommendation algorithms.

We use the following metrics to evaluate predictions. Initially, we consider the mean
absolute error (MAE) metric [9]. Given a list L of H user-item pairs (ui1 ,x j1), . . . ,
(uiH ,x jH ), a corresponding list A of actual user ratings for these user-item pairs ri1 j1 ,
. . . , riH jH with rik jk ∈ V , and a corresponding list P of unrounded1 predictions of the
ratings for the user-item pairs r∗

i1 j1
, . . . , r∗

iH jH
with r∗

ik jk
∈ V , the mean absolute error is

given by:

MAE =
∑H

k=1 |r∗
ik jk

− rik jk |
H

Associated with MAE is the coverage metric which measures what fraction of the
predictions attempted actually returned a result. Predictions for user ui and movie x j

may fail because, for example, none of the user’s neighbors actually rated x j.
Mean absolute error is a rough estimation of the overall accuracy of an algorithm. It

considers errors in any part of the ratings scale to be equal. For our stated purpose of
identifying a set of some good items, however, errors at the top end of the scale become
more important than errors elsewhere in the scale. In order to measure recommendation
accuracy more precisely we will use the standard information-retrieval metrics recall
and precision in Section 3.4. Recall and precision compare, for a particular query q, the
set of selected items Sq, which were returned in reply to q, and the set of relevant items
Tq, which contains all items that are correct replies to q. Recall measures the fraction

1 Users rate and see predictions as integer values, but for the calculation of prediction-
performance metrics the unrounded predictions returned by the recommendation algorithms
are used.
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Fig. 1. Recommendation quality for the four rudimentary algorithms. For the random overlays,
values are averaged over three runs. The vertical errorbars show the minimum and maximum
value obtained in these three runs. Note that the y-axis starts at 0.72.

of correct replies to q that actually appeared in the selected set: |Sq ∩Tq|/|Tq|. Precision
measures, for the selected set, the fraction of correct replies it contains: |Sq ∩Tq|/|Sq|.

3.2 Rudimentary Recommendation Algorithms

In this section we establish a baseline for the effect of varying peer-group size and com-
position. We also look at the underlying differences between user-based and item-based
algorithms. We consider a rudimentary prediction function, f0. This function performs
no selection on its input matrix. To predict a rating for user ui of an item x j it simply
computes the mean value of the relevant column in the input matrix. More specifically,
when given a user-item matrix R, f0 calculates a user-based prediction by computing the
average of the rating for item x j as given by the nonempty entries in column j (that is,
from users who have rated x j). When given an item-user matrix, f0 calculates an item-
based prediction by computing the average over the values for items rated by user ui.

Figure 1 shows recommendation quality in terms of MAE versus the size c of a user’s
peer group (i.e., its neighbors). We consider four different inputs to f0. In the user-based
cases, the input consists of the submatrix Ri as constructed from the peer group. In the
item-based cases, the input is R�

i , the transposition of Ri. The x-axis shows the effect of
having more or less ratings data available to f0; the random and best-neighbors variants
show the effect of the quality of the information available.

The first thing to note when analyzing Figure 1 is the scale of the y-axis. MAE values
range from 0.82 to 0.99. An MAE of 1 means that predictions are, on average, one star
off from the actual ratings given by users. From this perspective, a difference in MAE
0.17 is fairly insignificant, and we could say that all four algorithms perform fairly well.
It is interesting to note that the best reported MAE for an algorithm on this data set is
0.72 [8].
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Because item-based predictions are based on a user’s own ratings, and f0 does not
select among these ratings, the item-based algorithms simply recommend the average of
a user’s ratings for all predictions. Therefore, the results are independent of the network
type and peer-group sizes. For group sizes of over 200 these item-based algorithms
actually produce the lowest MAE of all algorithms, 0.83. Such a small MAE indicates
that users tend to give similar ratings to all the movies they rate. Table 1 shows that,
in general, this is fairly true for this data set: the average rating over the whole data
set (training+test) is 3.53 and using this value for all predictions gives an MAE of
0.94.

For the user-based best-neighbors algorithm, in which the peer-to-peer network per-
forms user selection, we see that smaller group sizes, in which less information is avail-
able, produce better results. This indicates that some users are better predictors of each
other than others, and therefore selection can have a positive effect. It also shows the
disadvantage of using averaging, by which mediocre opinions can drown out good ones,
in the aggregation function. The fact that this algorithm performs better than the others
only for groups sizes under 200 indicates that the number of very similar neighbors
per peer is fairly small. The small difference between good performance and bad again
indicates that all peers are similar enough to provide acceptable predictions.

We also calculated the coverage values for the four algorithms. The item-based al-
gorithms are always able to make predictions for all items. For the user-based best-
neighbors algorithm coverage was about 1.0 for all group sizes showing that nodes’
best neighbors practically always had at least one rating for their movies in the test set.
This could indicate that nodes with a large numbers of ratings tend to be chosen more
often as best neighbors. For random groups coverage was as low as 0.69 for a group
size of 10 but rose quickly to 0.98 or higher for group sizes over 100.

Given the overall small differences in MAE it could be said that even small groups
of randomly chosen neighbors produce sufficiently good recommendations. This leads
to the interesting conclusion that we need only consider small groups of users, and their
exact composition may not be that critical. Note, however, that the difference in terms
of MAE between the best performing algorithm to date and the trivial algorithm that
always predicts the average rating is only two tenths of a star. This makes MAE an un-
intuitive metric for measuring recommendation performance. The trivial algorithm does
not provide user-specific recommendations nor does it accurately predict which movies
are very good or very bad. Therefore, a metric judging this algorithm’s performance
should clearly indicate that it performs poorly. For now, we continue to use MAE as it
is a standard metric that, although subtly, gives a decent indication of the general per-
formance difference between algorithms. We return to the issue of performance metrics
in Section 3.4.

3.3 Sophisticated Recommendation Algorithms

The experiments with a simple prediction function, f0 provided some initial insight into
the effect of decentralization on recommendation quality. By removing the selection
task from the prediction function we were able to examine the situation where all peer
selection (if any) is done by the peer-to-peer protocol. In this section we reintroduce
(additional) selection by the prediction function. Letting the prediction function make
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the selection is to be preferred provided quality does not suffer much, as it is a local
operation on the matrix Ri rather than a search operation on the network.

Advanced prediction functions use two types of selection: (1) choosing from the
matrix those ratings of a user that are of interest, and (2) judging the relative importance
of the ratings chosen. This second selection is accomplished by assigning weights to the
input ratings. For this experiment we use a prediction function f1 that was designed by
Herlocker et al. [2] to optimize user-based prediction accuracy. This prediction function
performs both types of additional selection. First, when asked to make a prediction for
item x j for user ui, it selects from the matrix Ri supplied by the peer-to-peer overlay
the ratings of x j as made by the z users most similar to ui, thus creating a rating vector
�r. To calculate the similarity it uses the same function as the best-neighbors overlay
(Pearson’s correlation with significance weighting).

Second, when making the actual prediction for item x j it weights the rating of the z
users most similar to ui with their similarity value. In short, in addition to any selection
by the peer-to-peer network, f1 limits the set of opinions to consider to z and weights
those opinions based on just how similar they are in absolute terms. In this experiment
we use a parameter set shown by Herlocker to be optimal for user-based predictions
on this data set [2], in particular, z is set to 60 and the Pearson significance weighting
parameters are set to minCommonItems=2 and maxCommonItems=100, as before.

Figure 2 shows data for the experiment from the previous section repeated with
prediction function f1. The first two plots in Figure 2 (using the dark symbols) show
results for user-based prediction using f1 on random and best-neighbors overlays. For
comparison, the f0 results for user-based prediction on the best-neighbors overlay are
also shown. For both overlays, f1 improves predictions over f0. For the random overlay,
f1 bases predictions only on the more similar users in the random input set. For small
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are averaged over three runs. The vertical errorbars show the minimum and maximum value
obtained in these three runs. Note that the y-axis starts at 0.72.
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group sizes this results in very little data with which to make predictions, but it is very
effective for larger group sizes. The additional ability to weight these inputs relative to
each other allows f1 on a random overlay to outperform f0 on a best-neighbors overlay
for group sizes over 100. Using a best-neighbors overlay to provide f1 with higher
quality input improves recommendation, especially for smaller groups. The difference
between the f1 user-based best-neighbors and the f0 user-based best-neighbors curves
shows how valuable weighting input results can be.

The second two plots in Figure 2 (using the open symbols) show results for item-
based prediction using f1 on random and best-neighbors overlays. Interestingly, even
though f1 was not designed as an item-based prediction function, the results improve
slightly on those for user-based predictions. This indicates that there may be more sim-
ilarity between items than between users in the data sets, though the imprecision of the
MAE metric precludes hard conclusions. It should be noted that the item-based best-
neighbors algorithm is in fact a hybrid item-based/user-based approach, with user-based
selection taking place within the peer-to-peer network and item-based selection taking
place within the prediction function.

We also examined the coverage of the algorithms using f1. This was slightly lower
than the coverage using f0, especially for predictions based on random groups of users,
but still above 0.93 for all algorithms for a group size of 100 or more.

Overall, this experiment shows that for a more sophisticated prediction function
making item-based predictions in a best-neighbors network produces the best MAE
values. The differences between the algorithms are, however, fairly small. In general,
it appears that performing selection within the prediction function, even out of a small
amount of random input, is more effective than performing selection within the peer-
to-peer network. This again indicates that peer-to-peer networks that provide users with
small amounts of random ratings information from other users might be a sufficient
basis for decentralized-recommendation algorithms.

3.4 Identifying Good Programs

Our measurements of mean absolute error in Section 3.3 give an indication of the rel-
ative quality of our recommendation methods. MAE, however, provides only a general
measure of overall quality. As described in the introduction, in the context of a personal
video recorder we are most interested in being able to produce accurate recommenda-
tions for movies at the five-star end of the ratings scale. To investigate recommendation
behavior in more detail, we employ the standard information-retrieval metrics precision
and recall (see Section 3.1), as follows.

For the user-item pairs in the test set, we separate the list of returned predictions
P, according to prediction value, into the sublists P1∗ , P2∗ , P3∗ , P4∗ and P5∗ . We also
divide the actual ratings of the test set in a similar manner into A1∗ , A2∗ , A3∗ , A4∗ and
A5∗ . Thus, P5∗ , for instance, contains all of the five-star predictions (r∗

ik jk
= 5) and A5∗

contains all the actual five-star ratings in the test set (rik jk = 5). The user-item pairs
(uik ,x jk ) that correspond to the predictions and ratings in P5∗ and A5∗ can be viewed
as a selected-items set S5∗ and a relevant-items set T5∗ , respectively, for the query “find
all five-star movies for each user”. This allows us to calculate precision and recall per
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Fig. 3. The 1–5 star precision of f1 item-based for differing numbers of similar peers
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Fig. 4. The 1–5 star recall of f1 item-based for differing numbers of similar peers

rating value. Note that precision and recall are computed only over the predictions that
could actually be made (see the discussion of the coverage metric in Section 3.1).

We use these new metrics to analyze the best performing according to MAE, the
f1 item-based best-neighbors algorithm, in Figures 3 and 4. The figures establish that
items with different values in the ratings scale are not, in fact, treated equally by the
algorithm. In general, precision is higher for items at the extremes for the rating scale,
while recall is higher for items in the middle of the rating scale. This tradeoff between
recall and precision is not unusual, increasing precision requires an algorithm to be
more picky about the replies it chooses, which tends to decrease recall.
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Figures 3 and 4 indicate that this algorithm tends to predict extreme ratings values
only when the rating is fairly clear, and otherwise chooses a safer prediction in the
middle of the scale. This is in line with the fact that the algorithm does aggregation by
taking a weighted average of ratings. Items with mixed reviews should thus tend to be
given mediocre predicted ratings, while items which everyone liked or disliked can be
given extreme ratings.

Fortunately, for the task of recommending some good items, we are most interested
in having a high precision for five-star items, as is the case. Five-star recall is less
important, as long as it is high enough for a query for five-star items to produce some
answers. Five-star recall for the test set is 20 percent for this algorithm at a group size
of 200. An average user rates about 21% of movies with five stars, so in the collection
of 1682 movies there are about 357 movies he will like. If we use the recall for the test
set as an estimate for recall on the whole data set, the algorithm recalls 20% of these
357 enjoyable movies, yielding roughly 71 movies to watch. At 1.5 hours per movie,
this translates to 107 hours of viewing pleasure. A video-on-demand system is likely to
give access to even more content.

Comparing the performance of the four f1 algorithms from Section 3.3, we find
that using a best-neighbors overlay instead of a random one results in higher precision
values, especially for one-star and five-star items and groups smaller than 200. In par-
ticular, one-star precision is up to 24 percentage points higher and five-star precision is
11 percentage points higher for the item-based best-neighbors algorithm. For the user-
based best neighbors algorithm these values are 28 percentage points and 8 percentage
points, respectively. This higher precision does not come at the cost of a lower recall,
which remains practically the same for these extremes. Recall for the other values in-
creases up to 6 percentage points. Figure 5 and 6 show precision, respectively recall for
f1 item-based using a random overlay.
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In general, making item-based in place of user-based predictions results in higher
precision for five-star ratings. The item-based best-neighbors algorithm improves this
precision by an average of 8 percentage points over the user-based best-neighbors al-
gorithm for all group sizes. This is, however, at the cost of recall, which we found to
be up to 10 percentage points lower for five-star predictions. Meanwhile recall on four-
star and three-star items improves slightly, indicating that item-based prediction gives
higher five-star precision because it has a greater tendency to give predictions from the
middle of the scale. One-star precision decreases around 8 percentage points, its recall
went down by 3 percentage points on average.

Precision results may be affected by the fact that there are a very small number of
one-star items in the data set, due to the way user opinions were gathered. A data set
with a more even distribution of ratings might result in slightly worse precision results.
On the other hand, in a video-on-demand network, users are also likely to watch and
rate a majority of items at the upper end of the scale.

For the task of recommending good items, predictions that are slightly off will prob-
ably not be noticed, while predictions that are very wrong could undermine a user’s
faith in the recommendation system. A list of good items to watch should ideally con-
tain only five-star items. A user will probably also be glad to watch four-star items, but
will be annoyed to find one-star or two-star items in the list. We thus introduce a fur-
ther metric, adapted top precision (ATP), which measures precision for the query “find
five-star movies for each user” but also considers a four-star prediction a valid answer.
Formally, AT P = |S5∗ ∩ (T4∗ ∪ T5∗)|/|S5∗|. Figure 7 shows ATP for each of the four f1

algorithms. All four algorithms perform well on this metric. Even the worst performing
algorithm at the smallest group size still returns 77% four- or five-star items when asked
for five-star items.

Overall, the experiments in this section confirm the conclusions we made in
Section 3.3. The item-based best-neighbors algorithm generally produces the best
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Fig. 7. Adapted top precision for differing numbers of peers. For the random overlays, values are
averaged over three runs. The vertical errorbars show the minimum and maximum value obtained
in these three runs. Note that the y-axis starts at 0.76.

recommendations, especially from the perspective of simply finding good items. But
again, results for item-based prediction on a random network are not that much worse.
We also still find that increasing group size improves results, but that small groups can
still produce good recommendations. As an example, when given the task of finding a
set of items which are predicted to have five-star ratings, for a group size of 200, the
item-based best-neighbors algorithm returns 425 five-star items, 179 four-star items, 26
three-star items, 9 two-star items, and 5 one-star items. The item-based random algo-
rithm returns 444 five-star items, 202 four-star items, 53 three-star items, 14 two-star
items and 10 one-star items.

3.5 Comparison to PocketLens

PocketLens is an item-based prediction algorithm designed specifically for a peer-to-
peer setting. In [4], Miller et al. evaluated the performance of PocketLens using several
different underlying overlays: a Gnutella-based random overlay, a best-neighbors over-
lay, and two Distributed-Hash Table-based overlays. The performance of each overlay
was tested using a non-standard version of the MovieLens data set with twice as many
items. They found the best MAE performance was achieved by the random overlay and
with sufficient coverage (already 90% for groups of just 65 peers). Their measurements
thus support our conclusion that random overlays can be used for decentralized CF
algorithms. We show it holds for the standard MovieLens data set and for user-based
algorithms, and when measured using more expressive metrics. In addition, we provide
a detailed examination of why random overlays can be used.

To examine how PocketLens performs on the new task of recommending some good
items we repeat the analysis from the previous section for this algorithm. Figure 8 com-
pares the adapted top precision measure for the PocketLens prediction function on a
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Fig. 8. Adapted top precision for PocketLens compared to f1 item-based predictions. For the
random overlays, values are averaged over three runs. The vertical errorbars show the minimum
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random overlay with the most similar algorithm we studied, the item-based f1 pre-
diction function on a random overlay. We also plot the results for item-based f1 on a
best-neighbors overlay, the algorithm which produced the best ATP above.

The PocketLens prediction function performs better than f1 on the random overlay
for group sizes smaller than 300, but fails to improve its predictions for larger group
sizes. In a more detailed exploration of this behavior we found that PocketLens pro-
duces high five-star precision values in this range, but that this is at the cost of low
five-star recall. For a group size of 100, for instance, PocketLens has a five-star recall
value of 0.07 while the item-based f1 algorithm has a recall of 0.22. Overall, we found
that PocketLens produces lower recall for all ratings except for four-stars, indicating
that it has a much greater tendency to guess that items will be rated four-stars, which is
the rounded average ratings value for the data set (see Section 3.2).

4 Conclusions

Our experiments with the MovieLens data set bring us to the conclusion that the neigh-
bors from which a peer receives ratings data may not be critical to the quality of peer-to-
peer recommendations. That is, neither the number of neighbors nor selecting the most
similar really matters. If a peer has access to ratings from a few hundred, randomly
chosen other nodes, we see that reasonable recommendations can be obtained. This is a
notable result in light of the various attempts to port existing centralized collaborative-
filtering algorithms to peer-to-peer networks. We conjecture that there may be no need
to incur the added costs of structuring a network in order to improve recommendations.

Whether these results can be generalized remains to be seen. The quality of recom-
mendations provided by any algorithm is highly dependent on the quality of the input
ratings data, which in turn, strongly depends on the rating behavior of users [3]. To this
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end, we plan to extend our experiments to other data sets. There may be circumstances
in which selecting best neighbors is worth the trouble. For example, our current experi-
ments show that quality of recommendation does improve if neighbors are not selected
randomly, albeit by a small amount. Thus, although the results presented in this paper
are promising, further research is needed in order to truly substantiate our claims.
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