
Globule: A Collaborative

Content Delivery Network

Guillaume Pierre Maarten van Steen

Abstract

We present Globule, a collaborative content delivery network developed by
our research group. Globule is composed of Web servers that cooperate across
a wide-area network to provide performance and availability guarantees to the
sites they host. We discuss the issues involved in developing and setting up
a large-scale collaborative CDN and provide solutions for many of its unique
problems.

Introduction

Internet users become increasingly aware of the potentials that it has to offer. In
particular, we can observe a trend in which end users move from being only content
browsers to also being content providers. This trend is exemplified by peer-to-peer
file sharing systems, the many Web logs, and the many personal Web sites. Fur-
thermore, the development of broadband Internet connections allows an increasing
number of users to maintain their own permanent Internet node, running various
servers such as those for E-mail, Web content, file transfer, remote login, etc.

In this paper, we concentrate on individuals and organizations who wish to
maintain a Web site. A common approach is to place the site under the regime
of a commercial Web hosting service. In this case, the user merely provides Web
documents, which are then uploaded to the service provider. These services are
generally available at a moderate monthly charge.

Although this approach generally works fine, matters become complicated when
the request load increases and quality-of-service demands rise. For example, an
organization may want to have guarantees concerning the availability and reliability
of its site. Likewise, it may require that the client-perceived latency be minimized
and that enough storage space and bandwidth be available. In many cases, the
resources necessary to meet these QoS demands fluctuate: high bandwidth is not
always needed, but only when many clients are simultaneously accessing the Web
site. Similarly, the resources necessary for high availability may vary depending on
the status of the other servers in the system.

In all these cases, it is important to correctly balance the dimensioning of re-
source usage and the required performance. A common solution is to make use
of the services of a Content Delivery Network (CDN) [1]. In effect, a CDN pro-
vides many resources that can be dynamically allocated to the sites it is hosting.
CDNs are commonly operated on a commercial basis. However, it is not obvious
why Web hosting for increased QoS should be outsourced, as in many cases the
necessary resources are already available elsewhere in the system. Certain users
or organizations, such as a retail chain, may have multiple computers online, so
the extra resources needed are generally already available in-house. Alternatively,
several users can decide to build their own CDN and join their respective resources
in order to average everyone’s resource needs over all the provided servers.

1

We thus come to a simple model in which providing some local resources to
others may allow the provisioner to increase its resource usage elsewhere, in turn
improving its overall QoS. Another way of looking at this, is that donating local
resources to a community of nodes allows each member to ensure itself of sufficient
resources elsewhere when needed. The difficulty, however, is to effectively share
those resources.

Especially for demanding end users, and in general groups and organizations
not willing or capable to make use of commercial CDNs we present an alternative,
namely to join a collaborative CDN (CCDN). A collaborative CDN is an overlay
network composed of end-user machines that operate in a peer-to-peer fashion across
a wide-area network. Members offer resources in the form of storage capacity,
bandwidth, and processing power. In return, their Web content is transparently
and automatically replicated according to QoS demands regarding performance,
availability, and reliability. In this way, a collaborative CDN offers the same service
as a commercial CDN, but at virtually no extra costs beyond what a member is
already paying for Internet connectivity.

In this paper, we discuss the issues involved in developing and setting up a
large-scale collaborative CDN and provide solutions for many of its unique prob-
lems. Our discussion is based on our experience with Globule, a CCDN that has
been developed by our group. Globule has been fully operational since approxi-
mately December 2003. It has been developed for UNIX-based systems, but has
also been ported to Windows machines. We use Globule as a platform to identify
and solve problems related to deploying, managing, and operating fully decentral-
ized collaborative end-user systems.

Issues

We assume that a large collection of interconnected nodes are willing to interact. As
nodes are voluntarily provided by end-users, we assume that they are very diverse
with respect to the resources they can or are willing to provide, their operating
systems, and their degree of availability. For example, we expect that many nodes
are connected through (asymmetric) DSL or cable modem lines. Likewise, end-user
machines cannot be expected to be highly available. Various peer-to-peer studies
indicate that many users have their machines available for at most a few hours.
At best, we should expect machines from organizations to improve on this by an
order of magnitude. Moreover, we do not wish to exclude special computers, such
as laptops, from participating in a CDN. The resulting high churn, as it is called,
is a problem unique to overlay networks composed of end-user machines and deeply
affects their design.

The goal of a CDN is to replicate Web content to increase performance and
availability [2]. The need for replication immediately raises the following issues,
which are naturally also relevant to collaborative CDNs:

1. A CDN should appear to its clients as a single powerful and reliable server. In
particular, this excludes imposing clients to use any special component besides
a standard Web browser, such as plugins or daemons.

2. Each client should be automatically redirected to the replica server that suits
it best. How this is to be done is another issue that requires attention.

3. If documents are replicated for performance, they should preferably be placed
close to their clients. As a consequence, we need a notion of network proximity.

4. Mutable replicated documents require consistency management, i.e., we need
to decide when and how replicas are to be kept consistent.

2

Origin
site copy

Push/pull
updates

Partial site
copy

Full site
copy

Push updates

Client

Redirector(s)

Origin
Server

Server(s)
Backup

Replica
Server(s)

Figure 1: Globule Model

In addition to these requirements, the fact that we are dealing with a collaborative
system built from end-user machines implies that we cannot expect specific expertise
to be available for managing the collaboration. In particular, we need to address
the following issues as well:

5. A server needs to have some knowledge concerning the organization of the
CDN so that it can identify the places where to replicate its documents. In
particular, we may need a brokerage system to permit automated resource
discovery and allocation.

6. Nodes will need to collaborate, implying that resource usage and provisioning
should be fair among the nodes.

7. The procedure required to join the collaborative CDN (including installing the
necessary software and configuring it correctly) should be simple and require
no specific technical knowledge. For example, a simple Web-based registration
system could be used to allow users to register their machine and resources,
make changes, and also to end membership.

8. Security should be enforced amongst members so that malicious users cannot
attack the system.

Of course, most, if not all aspects that are related to the distribution and replication
of Web content across the CDN should be preferably transparent to a member.
Being a member should be (nearly) as simple as having a Web site hosted on a
single machine.

Model

Globule makes a strong distinction between a site and a server. A site is defined
as a collection of documents that belong to one specific user (the site’s owner). A
server is a process running on a machine connected to a network, which executes
an instance of the Globule software. Each server may host one or more sites, that
is, be capable of delivering the site’s content to clients.

3

To be effective, a collaborative CDN must realize three main tasks. (i) It must be
able to distribute the contents of a hosted site among multiple servers and maintain
its consistency in the presence of updates; (ii) it must redirect client requests to the
best available server; and (iii) it must efficiently deliver the site’s contents to the
clients. These three tasks need to be operating even when some servers are down.
These constraints lead us to the following system model, as illustrated in Figure 1.

Each site is hosted by a modest number of servers belonging to the collaborative
CDN (typically in the order of a dozen servers). One of them is called the origin
server. It contains the authoritative version of all documents of the site, and is
responsible for distributing contents among other involved servers. The origin server
typically belongs to the site’s owner.

The origin server of a given site should normally be reachable by other servers
at all times. However, as this server cannot be assumed to be always available,
it is helped out by any number of backup servers. These servers maintain a full
up-to-date copy of the hosted site. The goal of the backup servers is to guarantee
the availability of the site. When the origin is unavailable, it is sufficient that one
of the backups be available for the site to work correctly.

In addition to backup servers, a site can be hosted by any number of replica
servers. Unlike backups, the goal of replicas is to maximize performance. Depending
on its request load and quality of service requirements, a site may have any number
of replica servers, preferably located across the network so that there is a replica
close to each potential client. A replica server for a site is typically operated by a
different user than its origin, so the replica’s administrator may impose restrictions
on the amount of resources (disk space, bandwidth, etc.) that the hosted site can
use on this machine. As a result, each replica server typically contains only a partial
copy of its hosted site. Similar to a caching proxy, when requested for a document
not present locally, a replica server fetches the document from its origin before
delivering it to the client.

Finally, a site must have one or more redirector servers, whose task is to redirect
client requests to the replica server that can serve them best. In Globule, redirectors
can use either HTTP-based or DNS-based redirection. Redirectors monitor the
availability of the origin, backup and replica servers so that they always redirect
client requests to an available server. Similar to backup servers, the site will be
functioning correctly as long as one of the redirectors is available.

It should be clear that the distinction between origin, replica, backup and redi-
rector servers refers only to the role that a given server takes with respect to any
given site. The same server may for example simultaneously act as the origin and
one of the redirectors for its owner’s site, as a backup for a few selected friend’s
sites, as a replica for other sites, and as a redirector for yet other sites.

Content Distribution

When replicating documents for performance, a CDN should strive to place replicas
close to where clients are. Such a placement generally leads to low access times.
Proximity between Internet nodes can be measured according to different metrics
such as the number of hops in the shortest route and round-trip delays. In Globule,
we take internode latency as our proximity measure, and use this metric to optimally
place replicas close to clients, and also to redirect clients to an appropriate replica
server.

4

browser
Web

Landmarks

H
T

T
P

server
Web

Latency Reports

HTTP requests for 1x1−pixel images

1

3

2

Figure 2: Positioning a new node in Globule.

Computing proximity

Estimating internode latencies in a large overlay network is a formidable task. In
principle, to compute optimal replica placement we would need to measure the
latency from each potential client machine to each potential replica server. However,
the large numbers of machines involved clearly make these measurements impossible.
To solve this problem, latencies in Globule are estimated by positioning nodes in an
M -dimensional geometric space, similar to what is done by GNP [3] and Vivaldi [4].
The latency between any pair of nodes is then estimated as the Euclidean distance
between their corresponding M -dimensional coordinates. A typical value for M
is 6. The coordinates of node X are calculated based on the measured latencies
between X and m designated “landmark” nodes, where m is slightly larger than
M . Consequently, estimating pairwise latencies between N nodes requires much
fewer measurements (N ·m) than in the naive approach (N(N − 1)/2). Additional
techniques such as node clustering allow reducing the number of necessary latency
measurements even further.

Latency measurements can be made totally transparent to the clients, which
complies with our requirement that no special software should be installed at the
client machines. As shown in Figure 2, when a Web browser accesses a page (step
1) it is requested to download a 1x1-pixel image from each of the landmarks (step
2). The client-to-landmark latency is measured passively by the landmark during
the TCP connection phase, and reported back to the origin server where the node’s
coordinates are computed (step 3).

Latency estimations derived from this method are reasonably good: with a space
dimension of 6, 90% of the latency estimations fall in the interval [23L, 3

2L], where
L is the actual latency between two nodes. This accuracy is enough to handle the
placement of replicas and to redirect clients to their best replica server.

Replica placement

When clients of a specific site have been localized, we need to identify areas in the
M -dimensional space where many clients are located, and place replicas there. A
very simple algorithm consists of partitioning the space into cells of identical size,
and ranking the cells according to the number of nodes each of them contains. By
placing a replica in each of the k highest ranked cells, we thus minimize the overall
client-perceived latency. We have proved that, provided that cells overlap and the
cell size is chosen carefully, this algorithm provides placements almost as good as the
best algorithm known to date. On the other hand, the computational complexity of
our algorithm is much lower. This is crucial for large systems, where near-optimal
replica placement can now be computed within minutes instead of days [5].

5

Client redirection

In a system where replicas of a given site may be created or deleted dynamically,
and where few assumptions are made on their availability, we cannot expect clients
to manually select the closest server where requests should be issued. Instead, we
need to provide automatic client redirection.

A redirector is a component that monitors the availability of replica servers of a
given site and instructs client browsers on where that site should be accessed. We
support HTTP as well as DNS redirection. With HTTP redirection, a redirector
can decide on a per-page basis which replica server is to handle the request. To
this end, the redirector returns the URL of the replicated page to the client. The
drawback of HTTP redirection is the loss of transparency and control: as the client
is effectively returned a modified URL, it can decide to cache that URL for future
reference. As a consequence, removing or replacing a replica may render various
cached URLs invalid.

As an alternative, we also support DNS redirection. In this case, redirection
is based entirely on a site’s host name and the client’s location. When the client
resolves the site’s hostname, the redirector returns the IP address of the replica
server closest to the client. In this case, redirection is done on a per-site basis as
the DNS redirector has no means to differentiate between individual pages. On the
other hand, DNS redirection is mostly transparent to the client, allowing for better
control of replica placement.

A redirector should also implement a redirection policy, which is an algorithm
to dictate where each client should be redirected. The default policy redirects each
client to the closest replica in terms of estimated latency. However, other factors
can be introduced to influence the choice, such as the respective load of each replica
server.

Content Availability

As we already mentioned, a CCDN will typically run on a collection of end-user
machines whose availability cannot be relied on. Moreover, when the number of
servers taking part in hosting a given site increases, the probability that at least
one server is unreachable grows quickly. We therefore need to make sure that a site
will remain functional even if a fraction of its hosting servers fail.

The first issue to address is the availability of a redirector at the time of a client
request. When using DNS redirection, this issue is easily solved. A DNS redirector
is simply a DNS server responsible for the site’s host name, and which returns
responses customized to each client. The DNS protocol allows multiple redundant
servers to be registered for the same name; if one server fails, then the other ones
are automatically queried instead.

The second issue is to make sure that redirectors always direct clients to a
working replica server. To this end, redirectors periodically probe the availability
of the replica servers. Whenever one replica server becomes unreachable, redirectors
will stop redirecting clients to it, and direct them to the second best server instead.

The last issue related to content availability is to ensure that any replica server is
able to obtain fresh up-to-date copies of the requested documents if it does not have
them already. As previously mentioned, an origin server should always maintain at
least one backup server, which by definition always has a full and up-to-date copy
of the whole site. If a replica server cannot obtain a copy of a document from the
origin, it automatically fetches it from one of the backups.

6

Management

A collaborative CDN relies on multiple users to cooperate for hosting each other’s
sites. This raises two specific issues. First, we must secure the system against
malicious users. Second, we must provide the means by which users locate suitable
available servers where to place their replicas.

Security

In a CCDN, servers will often host content that does not belong to their own ad-
ministrator. In such situations, most administrators would demand guarantees that
potentially malicious content cannot damage the server, by means of excessive re-
source usage, access to confidential information, or any other type of misbehavior.
This threat is particularly present when hosting dynamic content, where arbitrary
code can be executed to generate documents. This is a well-known problem, how-
ever, which is usually addressed by means of sandboxing techniques.

A more difficult security-related issue is that a content owner expects guarantees
that replica servers will actually perform their assigned task faithfully. Indeed, a
malicious replica server could, for example, reject incoming connections (creating
a denial-of-service attack) or deliver modified versions of the original content. Our
current solution consists of instrumenting certain clients so that they inform the
origin server of the way their requests to the replicas were handled. The origin
server can thus detect unexpected behavior from the replicas, and cease cooperation
with them if they are found unreliable. This technique, however, requires a fraction
of Web clients to be instrumented with Globule-related code, which contradicts
our goal of keeping clients unmodified. For this reason, we are currently exploring
approaches which would allow origin servers to obtain cryptographic proofs of the
behavior of its replicas, without involving clients at all.

Brokerage

The effectiveness of a CCDN depends to a large extent on the number of users
who take part in it. For example, a relatively large server base allows to better
absorb significant variations in request rates addressed to individual sites; it also
increases the probability that replica servers are available near the optimal locations
computed by the replica placement algorithm. We therefore need to offer a service
by which users can locate each other’s servers.

When users install Globule, they are directed to a Web site known as the “Glob-
ule broker service” where they can register their new server(s). Users can also specify
policies which define who is authorized to use a given server for replica, backup or
redirection purposes. Finally, they are proposed a number of servers willing to host
replicas of their content. Future Globule versions will also allow origin servers to
automatically query the broker for potential servers located close to a given loca-
tion. As any other Web site, a broker is likely to be replicated, allowing brokerage
to scale.

Configuration

Establishing replication between an origin and a replica server requires that the
two servers authenticate each other. They must therefore agree on a shared pass-
word and update both configurations before the replication can take place. To
facilitate this procedure, the broker service generates the appropriate configuration
files automatically. Globule servers can periodically fetch a fresh copy of their own
configuration file from the broker, which fully automates the configuration update
process.

7

Origin server’s configuration file
<VirtualHost *>

ServerName 131-38-194-67.mysite.globeworld.net
ServerAlias mysite.globeworld.net
DocumentRoot "/var/www/mysite.globeworld.net/htdocs"
<Location "/">

GlobuleReplicate on
GlobuleReplicaIs http://131-38-32-118.mysite.globeworld.net/ RWkVh6l31hHoi
GlobuleRedirectorIs http://131-38-199-246.mysite.globeworld.net/ vccXwYA5V8Eas

</Location>
</VirtualHost>

Replica server’s configuration file
<VirtualHost *>

ServerName 131-38-32-118.mysite.globeworld.net
ServerAlias mysite.globeworld.net
DocumentRoot "/var/www/mysite.globeworld.net/htdocs"
<Location "/">

GlobuleReplicaFor http://131-38-194-67.mysite.globeworld.net/ RWkVh6l31hHoi
</Location>

</VirtualHost>

Figure 3: Configuration files of an origin server and its corresponding replica

Figure 3 displays example configuration files generated by the broker1. They
show the configuration of a replicated site called mysite.globeworld.net. This
site is hosted by an origin server (131.38.194.67, also known as 131-38-194-67.
mysite.globeworld.net) and a replica server (131.38.32.118, also known as
131-38-32-118.mysite.globeworld.net). Since we are using DNS redirection,
both servers are also registered under the same name mysite.globeworld.net.
Finally, the origin server has an entry to define a DNS redirector running at
131-38-199-246.mysite.globeworld.net (whose configuration is not shown for
lack of space).

Supporting Web applications

The discussion so far applies to hosting both static and dynamically generated
content. In practice, however, both document types must be handled differently.
Replicating static content, even in the presence of updates, is relatively simple. On
the other hand, a large amount of Web content is generated dynamically. Web
pages are being generated upon request using applications that take, for example,
individual user profile and request parameters into account when producing the
content. These applications often run on top of databases. When a request arrives,
the application examines the requests, issues the necessary read or update queries
to the database, retrieves the data, and composes the page that is sent back to the
client (see Figure 4(a)). For example, an e-commerce application can provide links
to “best-sellers lists,” which effectively require a search through the customer order
database.

A simple approach to handling dynamic documents in content delivery networks
is edge-server computing, which distributes the application code at all replica servers
and keeps the database centralized (Figure 4(b)). Dynamic documents can then be
generated at the edge servers. However, each database query must be issued across
a wide-area network, thereby experiencing significant latency. Also, keeping the
database centralized creates a performance bottleneck.

To overcome these limitations, we designed two complementary approaches to ef-
ficiently improve the scalability of dynamically generated documents. Even though

1Globule is implemented as a third-party module for the Apache Web server, which explains
the recognizable Apache-like syntax of configuration files.

8

Database

Web browser

Appl. code

<xml>

</xml>

HTTP response

records

Database result

Database

HTTP request

Database query

���������
���������
���������
���������
���������

���������
���������
���������
���������
���������

Web server

(a) Non replicated

Query
result

<xml>

</xml>

Query
result
<xml>

</xml>

Database
queries

HTTP
response

HTTP
request

HTTP
request

HTTP
response

Web browser Web browser

Database

Edge serverEdge server

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������

Appl. code Appl. code

(b) Edge server computing

<xml>

</xml>

Query
result

Query
result
<xml>

</xml>

Database
queries

Cached
database

query
results

Database

Web browser Web browser

Replica server Replica server

<xml>

</xml>

<xml>

</xml>��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
Appl. code

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
Appl. code

(c) Database query caching

Database

Web browser

database
Replicated

records

Web browser

Replica server Replica server

updates
Database record

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
Appl. code

��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
Appl. code

(d) Database record replication

Figure 4: Various Web application hosting techniques

9

the HTTP requests addressed to Web applications are often very different, we no-
ticed that the database queries addressed from the application code to the database
are often identical to each other. For applications with so-called high database query
locality, we cache the results of database queries at the replica servers (Figure 4(c)).
The application code can then be executed at the replica based on locally cached
database query results, which provides significant performance improvements to the
system.

When the database query locality is low, database query caching will not pro-
vide any improvement. In this case, it is more efficient to replicate the underlying
database at each replica server, so that database queries can be issued to the lo-
cal database (Figure 4(d)). The difficulty in this case is that each update to the
data may lead to excessive communication to keep replicas consistent. This issue
can be addressed by replicating each element of the database to only a fraction
of all servers [6]. This allows significantly reducing the amount of communication
required to maintain consistency between the databases, while maintaining high
performance for generating documents.

Related work

Collaborative content delivery has been the subject of many research and develop-
ment efforts. In particular, peer-to-peer overlays such as Kazaa and BitTorrent have
recently received a lot of attention. These systems are best suited for large-scale
distribution of large, static and immutable files such as music or video files. Web
content, on the other hand, is much harder to deliver using peer-to-peer overlays
because its content is updated frequently and is often generated dynamically. To
our knowledge, no peer-to-peer overlay offers such features so far.

Systems such as Coral [7] and CoDeeN [8] address these issues by building large-
scale collaborative Web caches on top of a peer-to-peer overlay that regular Web
browsers can access. This architecture allows handling large amounts of traffic
with reasonable performance. However, it also makes it very hard to select replica
placement and to handle dynamically-generated content.

Two systems allow for collaborative hosting of dynamic Web content, but they
make strong assumptions on the characteristics of the applications. ACDN assumes
that the applications do not modify their underlying data [9]; DotSlash assumes
that the database is not the performance bottleneck of Web applications, and uses
edge-server computing techniques [10].

Conclusions

We believe that our work on Globule contributes to providing end users with state-
of-the-art Web hosting functionalities. Globule has been in use in our group since
December 2003; more recently, it has been used to host www.minix3.org, which
served about 600,000 Web pages and 12,000 CD-ROM images to 50,000 clients
during the first 24 hours following the release of the Minix3 operating system.
Globule software is available for public use under an open-source licence at www.
globule.org.

We consider Globule as a vehicle for research: building it leads us to address a
wide range of difficult research topics, such as client localization, replica placement
and Web application replication. Future research topics derived from our experience
with Globule include the enforcement of fair resource usage among participants, the
detection of and reaction to flash crowds, and the design of systems that aggregate
many low-end machines into the abstraction of a few high-end reliable servers.

10

Naturally, the results of our research are initially designed with respect to specific
issues in Globule. However, most of it also applies to other types of large-scale
distributed systems, such as peer-to-peer networks and computing grids.

References

[1] Michael Rabinovich and Oliver Spatscheck. Web Caching and Replication.
Addison Wesley, Reading, MA, USA, 2002.

[2] Swaminathan Sivasubramanian, Micha l Szymaniak, Guillaume Pierre, and
Maarten van Steen. Replication for Web hosting systems. ACM Computing
Surveys, 36(3):291–334, 2004.

[3] T. S. Eugene Ng and Hui Zhang. Predicting Internet network distance with
coordinates-based approaches. In IEEE INFOCOM Conference, New York,
NY, June 2002.

[4] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. Vivaldi: A
decentralized network coordinate system. In ACM SIGCOMM Conference,
Portland, OR, August 2004.

[5] Micha l Szymaniak, Guillaume Pierre, and Maarten van Steen. Latency-driven
replica placement. In IEEE Symposium on Applications and the Internet,
Trento, Italy, January 2005.

[6] Swaminathan Sivasubramanian, Gustavo Alonso, Guillaume Pierre, and
Maarten van Steen. GlobeDB: Autonomic data replication for Web applica-
tions. In 14th International World-Wide Web Conference, Chiba, Japan, May
2005.

[7] Michael J. Freedman, Eric Freudenthal, and David Mazières. Democratizing
content publication with Coral. In 1st Symposium on Networked Systems De-
sign and Implementation, pages 239–252, San Francisco, CA, March 2004.

[8] Limin Wang, KyoungSoo Park, Ruoming Pang, Vivek S. Pai, and Larry Peter-
son. Reliability and security in the CoDeeN content distribution network. In
Usenix Annual Technical Conference, Boston, MA, June 2004.

[9] Michael Rabinovich, Zhen Xiao, and Amit Aggarwal. Computing on the edge:
A platform for replicating Internet applications. In 8th International Web
Caching Workshop, Hawthorne, NY, September 2003.

[10] Weibin Zhao and Henning Schulzrinne. DotSlash: Handling Web hotspots at
dynamic content web sites. In IEEE Global Internet Symposium, Miami, FL,
March 2005.

11

