
GlobeDB: Autonomic Data Replication for Web
Applications

Swaminathan Sivasubramanian1 Gustavo Alonso2 Guillaume Pierre1 Maarten van Steen1

Dept. of Computer Science1 Dept. of Computer Science2

Vrije Universiteit Swiss Federal Institute of Technology (ETHZ)
Amsterdam, The Netherlands Zurich, Switzerland
{swami,gpierre,steen}@cs.vu.nl alonso@inf.ethz.ch

ABSTRACT
We present GlobeDB, a system for hosting Web applications that
performs autonomic replication of application data. GlobeDB of-
fers data-intensive Web applications the benefits of low access la-
tencies and reduced update traffic. The major distinction in our sys-
tem compared to existing edge computing infrastructures is that the
process of distribution and replication of application data is handled
by the system automatically with very little manual administration.
We show that significant performance gains can be obtained this
way. Performance evaluations with the TPC-W benchmark over an
emulated wide-area network show that GlobeDB reduces latencies
by a factor of4 compared to non-replicated systems and reduces
update traffic by a factor of6 compared to fully replicated systems.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Distributed Systems;
C.4 [Performance of Systems]: Design studies; H.3.4 [Information
Storage and Retrieval]: Systems and Software

General Terms
Design, Measurement, Performance

Keywords
Data Replication, Edge Services, Autonomic Replication, Perfor-
mance

1. INTRODUCTION
Edge service architectures have become the most widespread

platform for distributing Web content over the Internet. Commer-
cial Content Delivery Networks (CDNs) like Akamai [4] and Speed-
era [28] deploy edge servers around the Internet that locally cache
Web pages and deliver them to the clients. By serving Web con-
tent from edge servers located close to the clients, the response
time for serving clients is reduced as each request need not travel
across a wide-area network. Typically, edge servers store static
Web pages and a plethora of techniques and commercial systems
exist for replicating static pages [26].

In practice, however, a large amount of Web content is gener-
ated dynamically. These pages are generated upon request using
Web applications that take, e.g., individual user profiles and re-
quest parameters, into account when producing the content. These

Copyright is held by the International World Wide Web Conference Committee
(IW3C2). Distribution of these papers is limited to classroom and personal use.
WWW 2005May 10-14, 2005, Chiba, Japan.
ACM 1-59593-046-9/05/0005.

applications tend to run on top of databases. When a request ar-
rives, the application examines the requests, issues the necessary
read or update transactions to the database, retrieves the data, and
composes the page that is sent back to the client. To speed up the
access, traditional CDNs use techniques such as fragment caching
whereby the static fragments (and sometimes also certain dynamic
parts) of a page are cached at the edge servers [13, 23, 9, 18, 11].
However, this solution assumes that temporal locality of requests is
high and database updates are infrequent. Applications that do not
meet these assumptions require different solutions than fragment
caching.

In this paper we explore a different approach to delivering dy-
namic content that offers more flexibility than fragment caching.
The idea is to replicate not the pages but the data residing in the
underlying database. This way, the dynamic pages can be gener-
ated by the edge servers without having to forward the request to
a centralized server to guarantee consistency. In particular, if the
temporal locality and update rate are high, an application may ben-
efit by moving (part of) the underlying database, along with the
code that accesses the data, to the location where most updates are
initiated. If the temporal locality and the update rate is low, then
replication of the database and access code may be a viable solu-
tion. This allows the edge servers to generate documents locally. In
both cases, the amount of wide-area traffic can be reduced, leading
to better client-perceived performance.

We are thus confronted with the problem of sustaining perfor-
mance through distribution and replication of (parts of) an applica-
tion, depending on access and usage patterns. In general, we need
to address the following three issues: (1) determine which parts
of an application and its data need to be replicated, (2) find where
these parts need to be placed in a wide-area network, and (3) de-
cide how replicated data should be kept consistent in the presence
of updates.

These issues are currently handled by human experts who manu-
ally partition the databases of a Web application, and subsequently
distribute the data and code among various servers around the In-
ternet. Not only is this a difficult and time-consuming process, it is
also not very feasible when usage and access patterns change over
time [24]. In addition, consistency in these systems tends to be
ad-hoc and largely application-dependent.

In this paper we propose GlobeDB, a system for hosting Web
applications, which handles distribution and partial replication of
application dataautomaticallyand efficiently. Our system pro-
vides Web-based data-intensive applications the same advantages
that content delivery networks offer to traditional Web sites: low
latency and reduced network usage. We substantiate these claims

� �� �
� � �� �

� � � � �� � � �� � � � � �� � � � �� � � � � �� � � � � �	 	 	 	 		 	 	 	 	

� � � � �� � � � �

� � � � � �� � � � � �

� � � � � �� � � � � �

� � �� � �� � �� � �

��
� �� �� �� �

� � �� � � � �� �
� �� �

� �� �

� � �� � �

Replication
Full

Server 1

 Data

Server 1 Server 2

 Data

Server

Autonomic Replication

System
Centralized

Updates

Updates

 Data

GlobeDB

Autonomic Replication

Server 2

 Data

 Data

 Data Data

� � �� � �� � �� � � ! ! ! " "" "
#

$ $% %

& & &' '
((()))* *+ +

, ,- -
./0
1122

3 3 3 33 3 3 34 4 4 44 4 4 4

5 55 56 66 6 7 7 7 77 7 7 7
8 8 8 88 8 8 8

Clients accessing

Clients accessing

Clients accessing

9 9 99 9 9: : :: : :
; ;; ;< << <

= => >
?@A
BC

D D D DD D D DE E E EE E E E

F FG G

H HH HII
J JJ JKK

L L LL L LM M MM M MN NO O P PP P
Q QQ Q

R R RS S

Figure 1: Example of benefits of autonomic replication.

through extensive experimentation of a prototype implementation
running the TPC-W benchmark over an emulated wide-area net-
work.

Our major contribution is that we demonstrate that configuration
of Web applications for data and code replication can be largely
automated, and in such a way that it yields a substantial perfor-
mance improvement in comparison to simple or non-replicated ap-
proaches. As such, our work improves upon other research demon-
strating that application-specific replication improves performance
as well (e.g., [15]). In particular, we argue that there is often
no compelling reason to adapt the logical design of an application
in order to support replication. By automatically partitioning and
replicating an application’s associated database, we can achieve the
same results without involving the application designer or requiring
other human intervention.

The rest of the paper is organized as follows. Section 2 presents
several design issues involved in building the system and motivates
our design choices. Section 3 presents GlobeDB’s architecture and
Section 4 describes the design of the data driver, the central compo-
nent of GlobeDB. Section 5 describes the replication and clustering
algorithms adopted in our system. Section 6 presents an overview
of GlobeDB implementation and its internal performance. Sec-
tion 7 presents the relative performance of GlobeDB and different
edge service architectures for the TPC-W benchmark. Finally, Sec-
tion 8 discusses the related work and Section 9 concludes the paper.

2. DESIGN ISSUES
To illustrate the benefits of autonomic replication, consider the

scenarios presented in Figure 1 that show edge server(s) hosting a
Web application. As seen in the figure, there is a fraction of data
accessed only by clients of server1, another fraction by clients
of server2 and the rest are accessed by clients of both servers.
Not replicating at all (centralized system) can result in poor client
response time. Replicating all data everywhere (full replication)
can result in significant update traffic between servers for data they
barely access. In such scenarios, GlobeDB can be very useful as it
places the data in only those servers that access them often. This
can result in a significant reduction in update traffic and improved
client-perceived response time.

Building a system for autonomic replication of Web application

data requires addressing many issues such as identifying the gran-
ularity and constituents of the data segments, finding the optimal
placements for each data unit, and maintaining consistency of repli-
cated data units. In this section, we discuss these issues in detail.

2.1 Application transparency
The first and foremost issue is to decide the extent to which an

application should be aware of data replication. Replication can
yield the best performance if it is completely tuned to the specific
application and its access patterns [15]. However, this requires sig-
nificant effort and expertise from an application developer. As a
consequence, optimal performance is often not reached in practice.
Furthermore, changes in access pattern may warrant changes in in
the replication strategies, thereby making the design of an optimal
strategy even more complex.

In our system, we chose atransparentreplication model. The
application developer need not worry about replication issues and
can just stick to the functional aspects of the application. The sys-
tem will automatically find a placement and replication strategy,
and adapt it to changing access patterns when needed.

2.2 Granularity of data
The underlying principle behind our system is to place each data

unit only where it is accessed. In our previous research on replica-
tion for static Web pages, we showed that the optimal replication
performance in terms of both client-perceived latency and update
bandwidth can be achieved if each Web page is replicated accord-
ing to its individual access patterns [20]. A naive transposition of
this result would lead to replicating each database record individu-
ally. However, such fine-grained replication can result in significant
overhead as the system must maintain replication information for
each record.

In our system, we employ an approach where the data units are
initially defined at a very fine grain. Data units having similar ac-
cess patterns are then automatically clustered by the system. The
system subsequently handles replication at the cluster level, thereby
making the problem of managing a cluster feasible without losing
the benefits of partial replication. However, a caveat of this ap-
proach is that if the access patterns change, then the system must
perform re-clustering to sustain good performance. More informa-
tion on the clustering algorithm used in our system is presented in
Section 5.

2.3 Consistency
One important issue in any replicated system is consistency. Con-

sistency management has two main aspects: update propagation
and concurrency control. In update propagation, the issue is to de-
cide which strategy must be used to propagate updates to replicas.
Many strategies have been proposed to address this issue. They
can be widely classified into push-based and pull-based strategies.
Pull-based strategies are mostly suitable for avoiding unnecessary
data update transfers when no data access occurs between two sub-
sequent updates. In our system, we decided to use apushstrategy
where all updates to a data unit are pushed to the replicas immedi-
ately. Pushing data updates immediately ensures that replicas are
kept consistent and that the servers hosting replicas can serve read
requests immediately.

Yet, propagating updates is not sufficient to maintain data con-
sistency. The system must also handle concurrent updates to a data
unit emerging from multiple servers. Traditional non-replicated
DBMSs perform concurrency control using locks or multiversion
models [16]. For this, a database requires an explicit definition of
transaction, which contains a sequence of read/write operations to
a database. For example, PostgreSQL uses a variant of multiver-

sion model called snapshot isolation to handle concurrent transac-
tions [3]. When querying a database each transaction sees a snap-
shot of consistent data (a database version), regardless of the cur-
rent state of the underlying data. This protects the transaction from
viewing inconsistent data produced by concurrently running update
transactions.

However, concurrency control at the database level can serialize
updates only to a single database and does not handle concurrent
updates to replicated data units at multiple edge servers. Tradi-
tional solutions such as two-phase commit are rather expensive as
they require global locking of all databases, thereby reducing the
performance gains of replication. To handle this scenario, the sys-
tem must serialize concurrent updates from multiple locations to a
single location. GlobeDB does not guarantee full transaction se-
mantics, but enforces consistency for each query individually. In
other words, it imposes that each transaction be composed of a
single query/operation which at most modifies a single data unit.
The concurrency control adopted in our system is explained in Sec-
tion 3.

2.4 Data placement
Automatic data placement requires the system to find a set of

edge servers to host the replicas of a data cluster according to cer-
tain performance criteria. One can measure the system perfor-
mance by metrics such as average read latency, average write la-
tency, amount of update traffic, etc. But a naive approach based on
optimizing the system performance for one of these metricsalone
can easily result in degrading the performance according to other
metrics. For example, a system can be optimized for minimizing
read latency by replicating the data to all replica servers. However,
this can lead to huge update traffic if the number of updates is high.

In general, there is a clear tradeoff between the performance
gain due to replication and the performance loss due to consis-
tency enforcement. However, there is no universal definition of
“best” tradeoff. In fact, each system administrator should specify
a particular tradeoff based on the system needs. For example, the
administrator of a CDN with (theoretically) unlimited bandwidth
may choose to optimize on client response time alone. The same
administrator, when facing a bottleneck at the central server, may
prefer to minimize update traffic.

In our system, the system administrator specifies relative perfor-
mance tradeoffs as the weights of acost function. This function ag-
gregates multiple performance metrics into a single abstract metric.
Optimizing the cost function is equivalent to optimizing the global
system performance. This function therefore acts as a measure of
the desired system performance and aids the system in making its
placement decisions. The cost function and placement algorithms
are presented in Section 5.

3. SYSTEM ARCHITECTURE

3.1 Application model
The application model of our system is shown in Figure 2. An

application is made of code and data. The code is written using
standard dynamic Web page technology such as PHP and is hosted
by the Web server (or the Web application server). It is executed
each time the Web server receives an HTTP request from its clients,
and issues read/write accesses to the relevant data in the database
to generate a response.

Access to the data is done through a data driver which acts as
the interface between code and data.1 The data driver preserves

1This driver is different from conventional PHP drivers as it not

Requests/Responses

Client

Database

Server

Data Data

DriverAccess

Read/

Write

Code
Application

ServerWeb

� � � �� � �

� � � �
� � � �
� � � �

� � �
� � �

� � �
� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �
� � �

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 2: Application Model

distribution transparency of the data and has the same PHP inter-
face as regular PHP drivers. It is responsible for finding the data
required by the code, either locally or from a remote server, and for
maintaining data consistency.

We assume that the database is split inton data units,D1, D2,· · · ,
Dn, where a data unit is the smallest granule of replication. Each
unit is assumed to have a unique identifier, which is used by the
data driver to track it. An example of a data unit is a database
record identified by its primary key.

GlobeDB enforces consistency among replicated data units us-
ing a simple master-slave protocol: each data cluster has one mas-
ter server responsible for serializing concurrent updates emerging
from different replicas. GlobeDB assumes that each database trans-
action is composed of a single query which modifies at most a sin-
gle data unit. When a server receives an update request, it forwards
the request to the master of the cluster, which processes the up-
date request and propagates the result to the replicas. Note that this
model is sometimes called eventual consistency. If stronger con-
sistency is needed, then models such as session guarantees can be
envisaged [29].

3.2 System Architecture

Web Server

Data

Access

Data
Driver

Read/

Write
Server

Database

Web Server

Data

Access

Data
Driver

Read/

Write
Server

Database

Web Server

Data

Access

Data
Driver

Read/

Write
Server

Database

Consistency Updates

Consistency Updates

Consistency Updates

Internet

...Edge Server 1 Edge Server m

Origin Server

Web
Clients

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �
� � � � �

� � � � �
� � � � �

� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � � � �
� � � � �
� � � � �

	 	 	 	
	 	 	 	
	 	 	 	

� � � � �
� � � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � � �
� � � � �
� � � � �

� � � �
� � � �
� � � �

� � � � �
� � � � �

� � � �
� � � �

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 3: System Architecture - Edge servers serving clients
close to them and interactions among edge servers goes through
Wide-area network.

The architecture of GlobeDB is presented in Figure 3. An appli-
cation is hosted bym edge servers spread across the Internet. Com-
munication between edge servers is through wide-area networks

just an interface driver but also responsible for functional aspects
such as location of replicated data.

incurring wide-area latency. Each client is assumed to be redi-
rected to its closest edge server using enhanced DNS-based redi-
rection [12, 14]. Furthermore, for each session, a client is assumed
to be served by only one Web server.

When a client issues an HTTP request to a Web server, the re-
quest is forwarded to the application code (e.g., PHP) residing in
the server. The application code usually issues a number of read/write
accesses to its data through the data driver. The application data are
partially replicated, so the local database hosts only a subset of all
data clusters. The data driver is responsible for finding the relevant
data either locally or from a remote edge server if the data are not
present locally. Additionally, when handling write data accesses,
the driver is also responsible for ensuring consistency with other
replicas.

To perform autonomic replication, the system must decide on
the placement of replicas for each data cluster and choose its mas-
ter according to its access pattern. To this end, each application
is assigned oneorigin server, which is responsible for making all
application-wide decisions such as clustering data units and placing
clusters on edge servers. The origin server performs replica place-
ment periodically to handle changes in data access patterns and the
creation of new data units. For reasons explained below, the origin
server also has a full replica of the database.

Consistency is enforced using a simple master-slave protocol:
each data cluster has one master server responsible for serializ-
ing concurrent updates emerging from different replicas. When a
server holding a replica of a data cluster receives a read request, it
is answered locally. When it receives an update request, it is for-
warded to the master of the data cluster. If the server does not have
a replica, then requests are forwarded to the origin server. More
information on locating data units is presented in Section 4.

Note that eventual consistency does not guarantee that all repli-
cas are identical at all times. The master of a cluster delivers up-
dates to all replicas in the same order without any global locking.
This can lead to transient situations where the latest updates have
been applied only to a fraction of the replicas. We assume that this
can be tolerated by the application as each client session is handled
by only one edge server in the network. Note that even existing
solutions over commercial database systems such as DBCache [6]
and MTCache [17] face similar issues and guarantee the same level
of consistency as GlobeDB.

4. DATA DRIVER
The data driver is the central component of GlobeDB. It is in

charge of locating the data units required by the application code
and maintaining consistency of the replicated data.

4.1 Types of Queries
The primary functionality of the data driver is to locate the data

units required by the application code. Data access queries can
be classified into write and read queries based on whether or not
an update to the underlying database takes place. Another way of
classifying queries is based on the number of rows matched by the
query selection criterion. We refer to the queries based on primary
keys of a table or that result in an exact match for only one record
assimple queries. An example of a simple query is “Find the cus-
tomer record whose userid is ‘xyz’.” Queries based on secondary
keys and queries spanning multiple tables are referred to ascom-
plex queries. An example of a complex query is “Find all customer
records whose location is ‘Amsterdam’.”

As noted earlier, we assume that each data unit has a unique
identifier. For fine-grained data units, such as database records, we
use the primary key as the record’s unique identifier. This allows

the data driver to map simple queries to required data units, which
makes locating data units relatively straightforward.

For answering a complex query, the driver cannot restrict its
search to its local database but needs to inspect the entire database.
Such a query can be answered by forwarding it to a subset of servers
that jointly have the complete database table. For the sake of sim-
plicity, we stipulate that the origin server has a replica of all data
units. For this reason all complex queries are forwarded to the ori-
gin server which will incur a wide-area latency.

At the outset, being able to answer only simple queries locally
might appear very limiting. However, typical Web applications is-
sue a majority of simple queries. To get an idea of the percentage
of simple queries used on real e-commerce applications, we exam-
ined the TPC-W benchmark which models a digital bookstore [27].
We collected the SQL traces generated by execution of the bench-
mark’s ordering mix workload [1]. We analyzed the accesses to
the book tables (which contains the records pertaining information
about individual books) and found that more than80% of the ac-
cesses to the table consist of simple queries or can be easily re-
written as simple queries. Similarly, about80% of accesses to the
customer tables use simple queries. Similar figures are seen for
other workload mixes of TPC-W. In TPC-W, updates to a database
are always made using simple query.

4.2 Locating data units

if complex querythen
Execute query at the origin server and return result;

else
if read then

Execute query locally;
if execution returns resultthen

return result;
else

execute on origin server and return result;
end

else
Get cluster id of data unit from (local or origin server);
Find master for cluster from cluster-property table;
Execute query on master server and return result;

end
end

Algorithm 1 : Pseudocode used by data driver for executing
queries

The data driver of each edge server maintains three tables. The
cluster-membershiptable stores the identifiers of data units con-
tained in each cluster. Thecluster-propertytable contains the fol-
lowing information for each data cluster: the origin server, the mas-
ter replica, and the list of servers that host a copy of this cluster.
These two tables are fully replicated at all edge servers. Each driver
also maintains anaccess tableto keep track of the number of read
and write accesses to each cluster.

To answer simple queries, the driver locates a data unit by iden-
tifying the cluster to which the data unit belongs, using thecluster-
membershiptable. Once the appropriate cluster is identified, the
driver uses thecluster-propertytable to find details about the loca-
tion of the cluster and its master. Upon each read or write access,
the driver updates the access table accordingly. The data driver for-
wards all complex queries to the origin server.

A naive design of thecluster-membershiptable can be a scala-
bility bottleneck. In our initial implementation, we used bit arrays
for numerical primary key IDs and bloom filters for non-numerical
IDs [5]. A typical bit-array based cluster membership table will
have a size of only125 Kbits for each cluster to represent a database

with a million data units. Such a small size allows the table to reside
in main memory thereby resulting in faster access. However, these
filters have several disadvantages. First, storing non-numerical IDs
using Bloom filters can result in potential inaccuracies that result
in redundant network traffic. Second, the system needs to allocate
enough memory for filters to accommodate creation of new data
units in the future, which poses a scalability problem.

To overcome these shortcomings, in our current implementation
the cluster-membershiptable is stored along with the respective
database records. In this implementation, each database record has
an extra attribute that indicates which cluster the record belongs to.
The pseudocode for executing queries by the data driver is shown
in Algorithm 1. As seen in the figure, simple queries with read ac-
cesses are always first executed locally. If a record is returned, the
result is returned immediately.2 Otherwise, the query is forwarded
to the origin server (which contains a full copy of the database).
For update queries, the driver first runs a query to find the cluster
ID. If the data record is replicated locally, its cluster ID will be
returned and the information regarding who its master is can be ob-
tained from thecluster-propertytable. Then, the update query is
forwarded to the master. In case of update queries to a data unit not
present locally, the query to find cluster information for the data
unit will return no result and this query is then run on the origin
server. Subsequently, the update query will be sent to the appropri-
ate master server. Thecluster-propertytable is simply implemented
as a file.

5. REPLICATION ALGORITHMS
Replicating an application requires that we replicate its code and

data. For the sake of simplicity, in this paper we assume that the
code is fully replicated at all replica servers. In this section, we
present the algorithms we use for clustering data units, placing
the data cluster, and selecting their master. For the placement of
data, we use acost functionthat allows the system administrator to
tell GlobeDB his/her idea of optimal performance. As we explain
in detail in this section, GlobeDB uses this function to assess the
goodness of its placement decisions.

5.1 Clustering
As we mentioned earlier, in GlobeDB, data units with similar

access patterns are clustered together. A similar problem was ad-
dressed in [10] in the context of clustering static Web pages to re-
duce the overhead in handling replicas for each Web page. The au-
thors propose several spatial clustering algorithms to group pages
into clusters and incremental clustering algorithms to handle the
creation of new pages. They show that these clustering algorithms
perform well for real-world Web traces. We use similar algorithms
for clustering data units.

The origin server is responsible for clustering the data units dur-
ing the initial stages of system. The origin server collects access
patterns of data units from all edge servers into its access table.
Each data unitDi’s access pattern is modelled as a2∗m-dimensional
vector,Ai =< ri,1,ri,2,· · · ,ri,m,wi,1,· · · ,wi,m >, whereri,j and
wi,j are respectively the number of read and write accesses made
by the edge serverRj to the data unitDi. The origin server runs
a spatial clustering algorithm that uses correlation-based similar-
ity on the access vectors of the data units. As a result, two data
unitsDi andDj are grouped into the same cluster if and only ifAi

andAj are similar. In correlation-based similarity, the similarity

2This is also done for exact match queries (queries that match a
single data unit) based on non-primary queries.

between two data unitsDi andDj is given by

Sim(i, j) =

∑2∗m
k=1 (ai,k − āi)(aj,k − āj)√∑2∗m

k=1 (ai,k − āi)2
∑2∗m

k=1 (aj,k − āj)2

where< ai,1,ai,2,· · · ,ai,m > = < ri,1,ri,2,· · · ,ri,m > and<
ai,m+1,ai,m+2,· · · ,ai,2∗m > = < wi,1,· · · ,wi,m >. Data unitsDi

andDj are clustered together ifSim(i, j) ≥ x, for some threshold
valuex, where0 ≤ x ≤ 1.

The origin server iterates through data units that are yet to be
clustered. If a data unitDi is sufficiently close to the access vector
of an existing cluster, it is merged into it. Otherwise, a new cluster
with Di as the only member is created. Once the data clusters are
built, the origin server creates the appropriate cluster-membership
table for each cluster. Obviously, the value ofx has an impact on
the effectiveness of the replication strategy. In all experiments from
Section 6 we fix the thresholdx to 95%. We will study the process
of determining the optimal threshold value in the near future.

Data clustering works well if data units once clustered do not
change their access pattern radically. However, if they do, then
the clusters must be re-evaluated. The process of re-clustering re-
quires mechanisms for identifying stale data units within a cluster
and then re-clustering them. For reasons of space, we do not ad-
dress the re-clustering problem in this paper. It is orthogonal to the
replication strategy and it mainly involves determining when to re-
cluster and how to re-cluster efficiently. Also note that re-clustering
can be done by progressively invalidating and validating copies at
the different edge servers as it is done for data caches.

5.2 Selecting a Replication Strategy
The origin server must periodically select the best replication

strategy for each cluster. A replication strategy involves three as-
pects:replica placement, consistency mechanism, and, in our case,
master selection. As we use push strategy as our consistency mech-
anism, the selection of a replication strategy for a cluster boils down
to deciding about replica placement and selecting the master.

As noted earlier, to select the best replication strategy, the sys-
tem administrator must specify what “best” actually means. In Gl-
obeDB, we represent overall system performance into a single ab-
stract figure using acost function. A cost function aggregates sev-
eral evaluation metrics into a single figure. By definition, the best
configuration is the one with the least cost. An example of a cost
function which measures the performance of a replication strategy
s during a time periodt is:

cost(s, t) = α ∗ r(s, t) + β ∗ w(s, t) + γ ∗ b(s, t)
wherer is the average read latency,w is the average write latency,
andb is the amount of bandwidth used for consistency enforcement.

The valuesα, β andγ are weights associated to metricsr, w, and
b respectively. These weights must be set by the system adminis-
trator based on system constraints and application requirements. A
larger weight implies that its associated metric has more influence
in selecting the “best” strategy. For example, if the administra-
tor wants to optimize on client performance and is not concerned
with the bandwidth consumption, then weightsα andβ can be in-
creased. Finding the “best” system configuration now boils down
to evaluating the value of the cost function for every candidate strat-
egy and selecting the configuration with the least cost.

In GlobeDB we use the cost function as adecision making tool
to decide on the best server placements and master server for each
cluster. Ideally, the system should periodically evaluate all possible
combinations of replica placement and master server configurations
for each cluster with the cluster’s access pattern for the past access
period. The configuration with the least cost should be selected as

the best strategy for the near future. This relies on the assumption
that the past access patterns are a good indicator for the near future.
This assumption has been shown to be true for static Web pages and
we expect the dynamic content will exhibit similar behavior [20].

Ideally, the system should treat the master selection and replica
placement as a single problem and select the combination of master-
slave and replica placement configuration that yields the minimum
cost. However, such a solution would require an exhaustive eval-
uation of 2m ∗ m configurations for each data cluster, ifm is
the number of replica servers. This makes this solution compu-
tationally infeasible. In GlobeDB, we use heuristics to perform
replica placement and master selection (discussed in the next sub-
sections). We propose a number of possible heuristics for place-
ment and a method for optimal selection of master server. This
reduces the problem of choosing a replication strategy to evaluat-
ing which combination of master server and placement heuristics
performs the best in any given situation. After selecting the best
replica placement and master for each data cluster, the origin server
builds the cluster-property table and installs it in all edge servers.

5.3 Replica Placement Heuristics
Proper placement of data clusters is important to obtain good

client latencies and reduced updated traffic. We define a family
of placement heuristicsPx where an edge server hosts a replica
of a data cluster if its server generates at leastx% of data access
requests.

Obviously, the value ofx affects the performance of the system.
A high value ofx will lead to creating no replica at all besides the
origin server. On the other hand, a low value ofx may lead to a
fully replicated configuration.

Expecting the system administrator to determine the appropri-
ate value forx is not reasonable, as the number of parameters that
affect system performance is high. Instead, in GlobeDB, adminis-
trators are just expected to define their preferred performance trade-
offs by choosing the weight parameters of the cost function. The
origin server will then evaluate the cost value for placement con-
figurations obtained for different values ofx (wherex=5,10,15),
and select the one that yields the least cost as the best placement
configuration.

5.4 Master Selection
Master selection is essential to optimize the write latency and

the amount of bandwidth utilized to maintain consistency among
replicas. For example, if there is only one server that updates a data
cluster, then that server should be selected as the cluster’s master.
This will result in low write latency and less update traffic as all
updates to a cluster are sent to its master and then propagated to the
replicas.

We use a method for optimal selection of master server that re-
sults in the least average write-latency. Letwi,j be the number of
write access requests received by edge serverRj for clusteri and
ljk be the latency between edge serverj andk (we assume that la-
tency measurements between servers are symmetric, i.e.,lkj=ljk).
The average write latency for data clusteri whose master isk is
given by: wlki = (

∑m
j=1 wi,j ∗ ljk)/(

∑m
j=1 wi,j). The origin

server selects the server with lowest average write latency as the
master for a data cluster .

6. IMPLEMENTATION AND ITS PERFOR-
MANCE

In this section, we discuss the salient components of our pro-
totype system and also present performance measurements on the
overhead that the data driver introduces to a single edge server.

Apache

Clustering
Service

Access table

Placement
Service

Stores/reads access table
for clustering

Origin Server

Read access
table for
placement

Edge Server

Data Driver

Database
 Server

Database

Logger

 Server

Service

Figure 4: Salient components of the system

6.1 Implementation overview
The salient components of our prototype system are shown in

Figure 4. We implemented our data driver by modifying the ex-
isting Apache PHP driver for PostgreSQL, by adding new query
interfaces to the existing PHP driver. This driver can be added as a
module to the Apache Web server.

Each edge server runs alogger service, which is responsible for
collecting information regarding which cluster was accessed by the
Web clients. The logger is implemented as a stand-alone multi-
threaded server that collects information from the driver and peri-
odically updates the access database.

As seen in the figure, the origin server runs two special services,
clusteringand replica placementservices. The clustering service
performs the clustering of data units during the initial stages of
system deployment. It periodically collects access patterns from
the edge servers and stores it in its database. Subsequently, it per-
forms clustering with the algorithm described in Section 5. The
origin server only acts a backend database so it does not need to
have a Web server or logger service.

Thereplica placementservice in the origin server finds the “best”
locations for hosting a replica and master for each cluster. It does
so by evaluating the cost obtained by different replica placement
strategies and master selection for the cluster’s access pattern in the
previous period. Note that once data units are clustered, the logger
service in the edge servers starts collecting access patterns at the
cluster level. This information is then used by the replica place-
ment service to place the replicas. Upon deciding which servers
would host which clusters, the placement service builds the cluster-
property table for each cluster and copies it to all edge servers.

To perform periodic adaptation, the replica placement service is
invoked periodically. We note that the period of this adaptation
must be set to a reasonable value to ensure good performance and
stability. We intend to study the need and support for continuous
adaptation and effective mechanisms for them in the future.

The clustering service is also run periodically. The bulk of its
work is done during the initial stages when it has to cluster large
numbers of data units. Later, during every period, it performs in-
cremental clustering of newly created data units. The current pro-
totype does not perform any kind of re-clustering.

6.2 Measuring the overhead of the data driver
The data driver receives SQL queries issued by the application

code and is responsible for locating the relevant data unit from the
local server or from a remote server. It does so by checking ap-
propriate cluster-membership tables for each request. Performance
gains in terms of latency or update traffic occur when the clusters
accessed by a given edge server can be found locally. However, it

is important to ensure that the gain obtained by replication is not
annulled by the overhead due to checking the cluster-membership
table for each data access. To analyze this, we study the response
time of our driver when executing a query on a local replicated data
in comparison to the response time of the original PHP driver.

In our experimental setup, we ran the Apache Web server on a
PIII-900MHz Linux machine with1 GB main memory. The Post-
greSQL database also runs on an identical machine. We created a
book table with fields such as book id, book name, author id, stock
quantity and5 other integer fields. The database was populated
with 100, 000 random records.

We measured the execution latencies of read and write queries
using the original PHP driver and the GlobeDB PHP driver for dif-
ferent throughput values. In both cases, the requested data is avail-
able locally; the only difference is that the GlobeDB driver needs
to check its cluster membership and cluster-property tables before
each data access. Read queries read a random database record us-
ing a simple query. Write queries increment the stock field of a
randomly chosen book record. To make sure that each access is
local, the server is assumed to be the master for all clusters. We
computed the execution latency as the time taken by the server to
generate the response for a request. We do not include the network
latency between the client and server as the objective of this exper-
iment is only to measure the overhead of our driver in processing
the request.

The results of this experiment are given in Figure 5. As seen
in the figure, even for high throughputs, the overhead introduced
by our implementation is between0 and5 milliseconds for read
accesses, and at most10 milliseconds for writes access. This is less
than4% of the database access latencies incurred by the original
driver.

We conclude that the overhead introduced by our driver is very
low and, as we shall see in the next section, negligible compared to
the wide-area network latency incurred by traditional non-replicated
systems.

7. PERFORMANCE EVALUATION: TPC-W
BOOKSTORE

The experiments presented in the previous section shows that the
overhead introduced by GlobeDB’s driver in a single edge server
is low. However, it does not offer any insight into the perfor-
mance gains of GlobeDB. In this section, we study the performance
gain that could be obtained using GlobeDB while hosting an e-
commerce application. We chose the TPC-W benchmark and eval-
uated the performance of GlobeDB in comparison to other existing
systems for different throughput values over an emulated wide-area
network. As the experiment results presented in this section will
show, GlobeDB can reduce the client access latencies for typical
e-commerce applications with large mixture of reads and write op-
erations without requiring manual configurations or performance
optimizations.

7.1 Experiment Setup
We deployed our prototype across3 identical edge servers with

Pentium III 900 Mhz CPU,1-GB of memory and120GB IDE hard
disks. The database servers for these edge servers were run on sep-
arate machines with the same configuration. Each edge server uses
Apache2.0.49 Web servers with PHP4.3.6. We use PostgreSQL
7.3.4 as our database servers. The origin server uses an identical
configuration as the edge servers except that it acts just as a back-
end database and does not run a Web server. We emulated a wide-
area network (WAN) among servers by directing all the traffic to an
intermediate router which uses the NIST Net network emulator [2].
This router delays packets sent between the different servers to sim-

ulate a realistic wide-area network. In the remaining discussion, we
refer to links via NISTNet with a bandwidth of10Mbps and a la-
tency of100ms as WAN links and100Mbps as LAN links. We
use two client machines to generate requests addressed to the three
edge servers. A similar setup to emulate a WAN was used in [15].

We deployed the TPC-W benchmark in the edge servers. TPC-
W models an on-line bookstore and defines workloads that exer-
cise different parts of the system such as the Web server, database
server etc. The benchmark defines activities such as multiple on-
line browsing sessions using Remote Browser Emulators (RBEs),
dynamic page-generation from a database, contention of database
accesses and updates. The benchmark defines three different work-
load scenarios: browsing, shopping and ordering. The browsing
scenario has mostly browsing related interactions (95%). The shop-
ping scenario consists of80% browsing related interactions and
20% shopping interactions. The ordering scenario contains an equal
mixture of shopping and browsing interactions. In our experiments,
we evaluate GlobeDB for the ordering scenario, as it generates the
highest number of updates. The performance metrics of TPCW-
benchmark are WIPS (Web Interactions Per Second), which de-
notes the throughput one could get out of a system and WIRT,
which denotes the average end-to-end response time that would be
experienced by a client.

The benchmark uses the following database tables: (i)tpcw item
stores details about books and their stocks; (ii)tpcw customer
stores information about the customers; (iii)tpcw author stores
the author-related information; (iv)tpcw order andtpcw orderline
store order-related information. In our experiment, we study the ef-
fects of replication only for thetpcw customer and thetpcw item
tables as these are the only tables that receive updates and read ac-
cesses simultaneously. Thetpcw author table is replicated every-
where as it is never updated by Web clients.

In our experiments, we want to compare the performance of Gl-
obeDB with traditional centralized and fully replicated scenarios.
In principle, a fully replicated system should replicate all tables at
all edge servers. However, each record of ordering-related tables is
mostly accessed by only a single customer. In addition, the entire
order database is used to generate the “best sellers” page. In such
a scenario, full replication of ordering-related tables would be an
overkill as it would result in too much update traffic among edge
servers. Any reasonable database administrator would therefore
store ordering-related database records only in servers that created
them and maintain a copy at the origin server (which would be re-
sponsible for generating responses to “best sellers” queries). So,
for a fair comparison with GlobeDB, we implemented this opti-
mization manually for the fully replicated system.

We use the open source PHP implementation of TPC-W bench-
mark [19]. We disabled the image downloading actions of RBEs as
we want to only evaluate the response time of dynamic page gener-
ation of the edge server. To account for the geographical diversity
of the customers, we defined3 groups of clients which respectively
issue their requests to a different edge server. We believe this is a
realistic scenario as customers typically do not move often and are
usually redirected to the server closest to them.

Thetpcw item table stores fields such as its unique integer iden-
tifier, author identifier, item name, price and stock. In addition to
these fields, it also stores five integer fields that have identifiers
of books that are closely related to it and have a similar customer
base. These fields are read by the application code to generate
promotional advertisements when a client reads about a particu-
lar book. For example, related fields of a Harry Potter book may
contain identifiers of the other Harry Potter books. In our experi-
ment, we filled these related identifiers as follows: the item records

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

0 2 4 6 8 10 12 14 16
R

es
po

ns
e

T
im

e(
s)

Requests/second

Original
GlobeDB

(a) Read Accesses

0.045
0.06

0.075
0.09

0.105
0.12

0.135
0.15

0.165
0.18

0.195
0.21

0.225
0.24

0.255
0.27

0 2 4 6 8 10 12 14 16

R
es

po
ns

e
T

im
e(

s)

Requests/second

Original
GlobeDB

(b) Write Accesses

Figure 5: A comparative study of GlobeDB driver implementation with original PHP driver for reading and updating local data
units

are classified into three groups and related entries of each item is
assigned to an item in the same group. In this way, the related
field truly reflects books with similar customer base. Furthermore,
TPC-W stipulates that each Web session should start with a book
for promotion. In our experiments, client of edge serveri receive
the starting random bookid only from item groupi. At the outset,
this might look as if each client group request books from only one
item group. However, this is not the case as the RBE clients select
the books to view also from other interactions, such as best-sellers
and search result interactions, which have books spanning across
multiple item groups.

As it can be seen, even though the assumptions we make about
the clients access patterns are realistic, they do not capture all kinds
of client access patterns. To address this issue, in one of our earlier
studies, we simulated our proposed replication techniques for dif-
ferent kinds of access patterns from uniform popularity (all clients
are interested in all data) to very skewed popularity (only a small
set of clients are interested in a particular piece of data) using statis-
tical distributions [25]. We found that our techniques perform well
in all cases compared to traditional fully replicated and centralized
systems. Hence, in this experiment we restrict our evaluations to
only the workload described in this setup and study the relative
performance of different system implementations.

In our experiments, for each run we ran the benchmark for8
hours. After this, the origin server collected the access patterns
from the edge servers and performed clustering and replication.
Analysis of thetpcw customer table resulted in3 clusters. Each
of these clusters were mostly accessed by only one edge server (dif-
ferent one in each case). Analysis oftpcw item accesses led to
4 clusters. 3 out of the4 clusters are characterized by accesses
predominantly from only one edge server (a different one in each
case). However, the fourth cluster represents data units that are
accessed by clients of all the three edge servers.

7.2 Experiment Results
We evaluated the performance of four different systems (shown

in Figure 6): (i) a traditional centralized architecture where the code
and the database is run in a server across a WAN (Centralized), (ii)
a simple edge server architecture where three edge servers run a
Web server and the database is run in a server across the WAN
(SES), (iii) our proposed system with3 edge servers (GlobeDB)
and (iv) a full replication system (Full) which is similar to the Gl-
obeDB setup - the only difference being that thetpcw item and
tpcw customer tables are fully replicated at all edge server unlike
GlobeDB.

As we noted earlier, replication decisions are made through eval-

System

Origin Server

Origin Server

Origin Server

3 Edge servers

3 Edge servers

Full Repl.
 &
GlobeDB

Edge Service
Simple

Centralized

WAN

WAN

WAN

� � �� � �

� � � �� � �

� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �

� � �
� � �
� � �

� � �
� � �
� � �
� � �

	 	 	
	 	 	
	 	 	
	 	 	

� � �
� � �
� � �
� � �

� � � �
� � � �

� � � �� � �

� � � �� � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� � � �� � � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

� � �
� � �
� � �
� � �

 ! ! !

" " " "
" " " "

#
#

$ $ $
$ $ $
$ $ $
$ $ $

% % %
% % %
% % %
% % %

& & &
& & &
' ' '
' ' '

(((()))

*
*
*
*
*
*
*
*
*
*
*
*
*

+
+
+
+
+
+
+
+
+
+
+
+
+

,
,
,
,
,
,
,
,
,
,
,

-
-
-
-
-
-
-
-
-
-
-

.

.

.

.

.

.

.

.

.

.

.

/
/
/
/
/
/
/
/
/
/
/

0
0
0
0
0
0
0
0
0
0
0

1
1
1
1
1
1
1
1
1
1
1

2
2
2
2
2
2
2
2
2
2
2

3
3
3
3
3
3
3
3
3
3
3

4
4
4
4
4
4
4
4
4
4
4

5
5
5
5
5
5
5
5
5
5
5

6
6
6
6
6
6
6
6
6
6
6

7
7
7
7
7
7
7
7
7
7
7

8
8
8
8
8
8
8
8
8
8
8

9
9
9
9
9
9
9
9
9
9
9

:
:
:
:
:
:
:
:
:
:
:

Figure 6: Architectures of different systems evaluated

uation of the cost function and its weightsα, β andγ as described
in Section 5. In our experiments, we assumed the system admin-
istrator wants to optimize the system for improved response time
and assigned higher weights toα andβ compared toγ. We set
α=2/rmax; β=2/wmax; andγ=1/bmax, wherermax, wmax and
bmax are maximum values of average read latency, write latency,
and number of consistency updates, respectively. These values ef-
fectively tell the system to consider client read and write latency
to be twice as important in comparison to update bandwidth (on a
normalized scale). These weights result in the following placement
configuration: For the3 clusters of the customer table,3 differ-
ent placement configurations are obtained where a different edge
server is the master while hosting a replica of the cluster. Similar
placement configurations are obtained for3 out of the4 clusters of
the book table. The fourth cluster (which contains data units that
were accessed from all edge servers) was automatically placed at
all the3 edge servers as it represents book records that are popular
among all clients.

In our experiments, we study the WIRT for different WIPS until
the database server cannot handle more connections. The results of
our experiments are given in Figure 7. As seen in the figure, even
for low throughputs GlobeDB performs better than the traditional
Centralized and SES architectures and reduces response time by
a factor of4. GlobeDB performs better than SES and centralized
system as it is able to save on wide-area network latency for each
data access as it is able to find many data records locally. Moreover,
this also shows that replicating application code is not sufficient to

0

200

400

600

800

1000

1200

1400

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

W
eb

 In
te

ra
ct

io
n

R
es

po
ns

e
T

im
e

(m
s)

WIPS

SES

Centralized

GlobeDB

Full

Figure 7: Performance of different system architectures run-
ning TPC-W benchmark

obtain good performance.
The difference in WIRT between the GlobeDB and Full setup

varies from100 to 400ms. This is because the GlobeDB system is
capable of performing local updates (the server that writes most to a
database cluster is elected as its master) but the Full setup forwards
all updates to the origin server. These updates constitute30% of
the workload. On the other hand, the Full setup gains in the fact it
can handle some complex queries such as search result interactions
locally, while GlobeDB forwards it to the origin server.

It is obvious that the fully replicated system produces more up-
date traffic than GlobeDB as it propagates each update to all edge
servers. In this experiment, we found that GlobeDB reduces the
update traffic by a factor of6 compared to Full replication. This
is because GlobeDB prevents unnecessary update traffic by plac-
ing data only where they are accessed. Reducing the update traffic
potentially leads to significant cost reduction as CDNs are usually
charged by the data centers for the amount of bandwidth consumed.

The centralized and SES systems pay the penalty for making
connections over a WAN link. Note that between these systems the
Centralized setup yields lower response time as each client request
travels only once over the WAN link. In the SES setup, each Web
request triggers multiple data accesses that need to travel across
WAN links thereby suffering huge delays. However, among these
traditional systems, the SES architecture yields better throughput
as it uses more hardware resources, i.e., the Web server and the
database system are running in separate machines. SES yields a
throughput of7.9 req/s, while the centralized architecture yields
much less (1.9 req/s) as it runs both Web server and database on
the same machine.

Replication also affects throughput. GlobeDB attains a through-
put of 16.9 req/sec and is2 WIPS better than the Full setup and
8 WIPS better than SES. It performs better than SES because the
data handling workload is shared among many database servers.
While the Full setup has the same number of database servers as
GlobeDB, the latter sustains higher throughput as a server does
not receive updates to data that it accesses rarely. This reduces
the workload of individual database servers in addition to reducing
overall consumed bandwidth.

In conclusion, the results of the experiments show that the Gl-
obeDB’s automatic data placement can reduce client access laten-
cies for typical e-commerce applications with a large mixture of
read and write operations. With these experiments we have shown
that automatic placement of application data is possible with very
little administration. We believe this is a promising start for real-
izing a truly scalable self-managing platform for large-scale Web
applications.

7.3 Effect of the cost function

200

400

600

800

1000

1200

1400

1600

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

W
eb

 In
te

ra
ct

io
n

R
es

po
ns

e
T

im
e

(m
s)

WIPS

GlobeDB (2,2,1)

GlobeDB (1,1,0)

GlobeDB (0,0,1)

Figure 8: Relative Performance of Autonomic System architec-
tures

In our earlier experiments, we showed that autonomic placement
of data can yield better performance than traditional strategies. As
we noted in Section 5, the underlying decision making tool used
for autonomic placement is thecost functionand its weightsα, β,
andγ.

The objective of the results presented in this section is not to
show what are the right weights for a system. Rather, this exper-
iment is just a guide to show the utility of our cost function and
the simplicity with which it can attain different objectives (latency
optimization, bandwidth optimization or a mixture of it).

We evaluated the relative performance of autonomic systems that
uses three different weight parameters, in effect three different cri-
teria for placement. The three systems evaluated are: (i) GlobeDB(0,
0, 1): a system with weights (α, β, γ) =(0,0,1), which implies the
system wants to preserve only the bandwidth and does not care
about latency, (ii) GlobeDB (1, 1, 0): a system whose weights are
set such that the system cares only about the client latency and does
not have any constraints on the amount of update bandwidth. Effec-
tively, this situation leads to creating more replicas. (iii) GlobeDB(
2, 2, 1): a system that prefers to optimize latency twice as much as
the update bandwidth.

As can be seen, these systems are designed for different condi-
tions. For example, GlobeDB(0, 0, 1) is useful for a system that
cannot afford to pay for the wide-area bandwidth consumed in its
remote edge servers and GlobeDB(1, 1, 0) is useful for a CDN that
values its client quality of service (QoS) more than its maintenance
costs consumed for maintaining consistency among replicas.

The goal of this experiment is to analyze the impact of different
cost function parameters on the client response time of the TPC-
W benchmark and the results are given in Figure 8. As seen in
the figure, GlobeDB(0, 0, 1) performs the worst in terms of WIRT,
as it leads to a placement where the data are not replicated at all.
Furthermore, its throughput is saturated because all transactions
are sent to a single database server. The other two systems per-
form equally well and yield good throughput. With respect to up-
date traffic, GlobeDB(2, 2, 1) performs better than GlobeDB(1, 1,
0) and reduces update traffic by a factor of3.5. Note that, while
GlobeDB(1, 1, 0) and a fully replicated system have similar goals,
the former yields better WIRT as it is able to perform local updates.

8. RELATED WORK
A number of systems have been developed to handle Web appli-

cation replication [4, 7, 22]. These systems replicate code at the
replica servers, but either do not replicate the application data or
cache them at the replica servers. Furthermore, all these systems
also rely on manual administration and the administrator must de-

cide which data must be cached and placed at which server. This is
the most important shortcoming of existing systems.

Commercial database caching systems such as DBCache [6] and
MTCache [17] cache the results of selected queries and keep them
consistent with the underlying database. Such approaches offer per-
formance gains provided the data accesses contain few unique read
and/or write requests. However, the success of these schemes de-
pends on the ability of the database administrator to identify the
right set of queries to cache. This requires a careful manual analy-
sis of the data access patterns to be done periodically.

In [15], the authors propose an application-specific edge service
architecture, where the application itself is supposed to take care of
its own replication. In such a system, access to the shared data is ab-
stracted by object interfaces. This system aims to achieve scalabil-
ity by using weaker consistency models tailored to the application.
However, this requires the application developer to be aware of an
application’s consistency and distribution semantics and to handle
replication accordingly. This is in conflict with our primary design
constraint of keeping the process of application development sim-
ple. Moreover, we demonstrated that such an awareness need not
be required, as distribution of data can be handled automatically.

Recently, database researchers have built middleware systems
such as C-JDBC [8] and Ganymed [21] for scalable replication of a
database in a cluster of servers. However, the focus of these works
is to improve the throughput of the underlying backend database
within a cluster environment, while the focus of our work is to im-
prove the client-perceived performance and reducing wide-area up-
date traffic. We also note that these works can be combined with
GlobeDB to scale the database in a single edge server.

9. CONCLUSION
In this paper, we presented GlobeDB, a system for hosting Web

applications that performs efficient autonomic replication of appli-
cation data. We presented the design and implementation of our
system and its performance. The goal of GlobeDB is to provide
data-intensive Web applications the same advantages CDNs offered
to static Web pages: low latency and reduced update traffic. We
demonstrated this with experimental evaluations of our prototype
implementation running the TPC-W benchmark over an emulated
wide-area network. In our evaluations, we found that GlobeDB
significantly improves access latencies and reduces update traffic
by a factor of6 compared to a fully replicated system. The major
contribution of our work is to show that the process of application
development can be largely automated and in such a way that it
yields substantial improvement in performance.

We note that our current prototype assumes that the system is
free of server and network failures. However, such failures may
create a consistency problem if the master for a data unit is un-
reachable. We plan to address these issues in the near future.

The system presented in this paper is the first step in achiev-
ing the goal of complete autonomic system for replication. There
are several open issues that need to be addressed to realize an auto-
nomic CDN we envisage. These issues include effective re-clustering,
continuous adaptation of placement configurations and fault toler-
ance. We plan to address them in our next steps.

10. ACKNOWLEDGEMENTS
We thank Christian Plattner (ETH Zurich) and Arno Bakker (VU)

for their helpful discussions and helping us with the setup of the
emulator test bed. We also thank the anonymous reviewers for their
insights and comments that helped in improving the clarity of the
paper.

11. REFERENCES
[1] Java TPC-W Implementation Distribution,

http://www.ece.wisc.edu/˜pharm/tpcw.shtml .
[2] NISTNet: A Network emulation tool,

http://snad.ncsl.nist.gov/itg/nistnet/ .
[3] PostgreSQL,http://www.postgresql.org/ .
[4] Akamai Inc. Edge Computing Infrastructure.
[5] B. H. Bloom. Space/time tradeoffs in hash coding with allowable errors.

Communications of the ACM, 13(7):422–426, 1970.
[6] C. Bornhvd, M. Altinel, C. Mohan, H. Pirahesh, and B. Reinwald. Adaptive

database caching with DBCache.Data Engineering, 27(2):11–18, June 2004.
[7] P. Cao, J. Zhang, and K. Beach. Active cache: Caching dynamic contents on

the Web. InProceedings of the Middleware Conference, pages 373–388, Sept.
1998.

[8] E. Cecchet. C-JDBC: a middleware framework for database clustering.Data
Engineering, 27(2):19–26, June 2004.

[9] J. Challenger, P. Dantzig, and K. Witting. A fragment-based approach for
efficiently creating dynamic web content.ACM Transactions on Internet
Technology, 4(4), Nov 2004.

[10] Y. Chen, L. Qiu, W. Chen, L. Nguyen, and R. H. Katz. Clustering web content
for efficient replication. InProceedings of 10th IEEE International Conference
on Network Protocols (ICNP’02), pages 165–174, 2002.

[11] A. Datta, K. Dutta, H. Thomas, D. VanderMeer, Suresha, and
K. Ramamritham. Proxy-based acceleration of dynamically generated content
on the world wide web: an approach and implementation. InProceedings of
the 2002 ACM SIGMOD international conference on Management of data,
pages 97–108. ACM Press, 2002.

[12] J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and B. Weihl. Globally
distributed content delivery.IEEE Internet Computing, 6(5):50–58, 2002.

[13] F. Douglis, A. Haro, and M. Rabinovich. HPP: HTML macro-preprocessing to
support dynamic document caching. InUSENIX Symposium on Internet
Technologies and Systems, 1997.

[14] Z. Fei, S. Bhattacharjee, E. W. Zegura, and M. H. Ammar. A novel server
selection technique for improving the response time of a replicated service. In
Proceedings of INFOCOM, pages 783–791, March 1998.

[15] L. Gao, M. Dahlin, A. Nayate, J. Zheng, and A. Iyengar. Application specific
data replication for edge services. InProceedings of the Twelfth International
World Wide Web conference, pages 449–460, May 2003.

[16] J. Gray and A. Reuter.Transaction Processing: Concepts and Techniques.
Morgan Kaufman, San Mateo, CA., 1993.

[17] P. Larson, J. Goldstein, H. Guo, and J. Zhou. MTCache: Mid-tier database
caching for SQL server.Data Engineering, 27(2):27–33, June 2004.

[18] W.-S. Li, O. Po, W.-P. Hsiung, K. S. Candan, and D. Agrawal. Engineering
and hosting adaptive freshness-sensitive web applications on data centers. In
Proceedings of the Twelfth international conference on World Wide Web, pages
587–598. ACM Press, 2003.

[19] PGFoundry. PHP Implementation of TPC-W Benchmark,
http://pgfoundry.org/projects/tpc-w-php/ .

[20] G. Pierre, M. van Steen, and A. S. Tanenbaum. Dynamically selecting optimal
distribution strategies for Web documents.IEEE Transactions on Computers,
51(6):637–651, June 2002.

[21] C. Plattner and G. Alonso. Ganymed: Scalable replication for transactional
web applications. InProceedings of the International Middleware Conference,
Toronto, Canada, Oct. 2004.

[22] M. Rabinovich, Z. Xiao, and A. Agarwal. Computing on the edge: A platform
for replicating internet applications. InProceedings of the Eighth International
Workshop on Web Content Caching and Distribution, pages 57–77,
Hawthorne, NY, USA, Sept. 2003.

[23] M. Rabinovich, Z. Xiao, F. Douglis, and C. Kalmanek. Moving edge-side
includes to the real edge- the clients. InUSENIX Symposium on Internet
Technologies and Systems, 1997.

[24] S. Sivasubramanian, G. Pierre, and M. van Steen. A case for dynamic selection
of replication and caching strategies. InProceedings of the Eighth
International Workshop Web Content Caching and Distribution, pages
275–282, Hawthorne, NY, USA, Sept. 2003.

[25] S. Sivasubramanian, G. Pierre, and M. van Steen. Scalable strong consistency
for web applications. InProceedings of ACM SIGOPS European Workshop,
Leuven, Belgium, Sept. 2004.

[26] S. Sivasubramanian, M. Szymaniak, G. Pierre, and M. van Steen. Replication
for web hosting systems.ACM Computing Surveys, 36(3), Sept. 2004.

[27] W. Smith. TPC-W: Benchmarking an e-commerce solution.
http://www.tpc.org/tpcw/tpcwex.asp.

[28] Speedera Inc.http://www.speedera.com .
[29] D. Terry, A. Demers, K. Petersen, M. Spreitzer, M. Theimer, and B. Welsh.

Session Guarantees for Weakly Consistent Replicated Data. In3rd
International Conference on Parallel and Distributed Information Systems,
pages 140–149, Austin, TX, Sept. 1994. IEEE.

