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Abstract

Replication in the World-Wide Web covers a wide range of techniques. Often, the redirection of a client browser

towards a given replica of a Web page is performed after the client�s request has reached the Web server storing the

requested page. As an alternative, we propose to perform the redirection as close to the client as possible in a fully dis-

tributed and transparent manner. Distributed redirection ensures that we find a replica wherever it is stored and that the

closest possible replica is always found first. By exploiting locality, we can keep latency low.

� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Replication in the World-Wide Web encom-

passes a wide range of techniques from proxy ca-

ches to mirrors and content distribution

networks (CDNs). One goal of these replication
mechanisms is to allow clients to use the replicas

that best suit their needs in terms of network dis-

tance, consistency or security. Nevertheless, the

use of location-dependent URLs in today�s
World-Wide Web does not facilitate transparent
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access to replicated Web pages. Instead, it is often

necessary to explicitly pass a replica�s URL to the

client from where another attempt to access the

document can be made.

Redirection in the case of proxy caches occurs

in an implicit way: each HTTP request is routed
through the cache or the hierarchy of caches

and, in the best case, the replica of the requested

Web page is retrieved directly from the cache stor-

age space. In the case of mirrors or CDNs, the cli-

ent browser has to be explicitly redirected to a host

that is normally not on the route followed by the

request. Redirection is, in most cases, achieved

only after a client�s request has reached the home
server of a document, that is to say, the host
ed.
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named in the document�s URL. The decision

where to redirect a client to is therefore

centralized.

One important disadvantage of centralized redi-

rection is the induced latency. Another is that the
home server may become overloaded. Ideally, a

client request should not be forced to go all the

way to the home site in order to be redirected to

a close-by replica. On the contrary, the redirection

should take place as soon and as close to the client

as possible. We have devised a distributed redirec-

tion scheme in which the redirection decision can

be taken locally at the client machine or, in the
worst case, before the HTTP request leaves the cli-

ent�s network. In this paper, we present our design

and show how it can be transparently integrated

with the current Web.

The paper is organized as follows. Section 2

gives a brief overview of the existing redirection

methods for the World-Wide Web. It outlines the

advantages and disadvantages of each method.
Section 3 presents the principles of our distributed

redirection scheme. Section 4 details the design of

the redirection server. Section 5 describes aspects

concerning client and redirection server interac-

tion. Section 6 presents simulation results of the

distributed redirection mechanisms. Section 7 dis-

cusses some of our design choices. And finally,

Section 8 concludes and gives some future work
directions.
2. Alternatives for redirecting clients in the Web

Redirection in today�s World-Wide Web is

achieved in three different ways: application-level

redirection, DNS-based redirection and trans-
port-level redirection [5].

HyperText Transfer Protocol (HTTP) features

can be used to achieve application-level redirec-

tion. Whenever a client browser requests a Web

page, it contacts the Web server named in the

URL of the page. Instead of directly sending back

the contents, the Web server can decide to redirect

the client browser to another server. This redirec-
tion takes the form of another URL naming the

server where a replica of the requested page can

be found [5,8]. The browser then issues a new
HTTP request to fetch the Web page at the replica

site. HTTP is widely used for communication with

browsers, servers and proxy caches [8]. As a conse-

quence, HTTP-based redirection has the merit of

being simple and easy to deploy.
The Transmission Control Protocol (TCP) can

also be used to redirect clients [5,12,20] and be-

longs to the group of transport-level redirection

mechanisms. In TCP, communicating parties are

identified by an end point: the network address

of the machine on which the party resides and

the port number it uses. The data exchanged be-

tween two communicating parties are sent in por-
tions called segments. The origin end point can

be falsified when producing TCP segments. Using

this feature, a third party such as a Web server

hosting a replica of the requested Web page can

let the requesting client believe that the segment

originates from the original Web server. The client

browser keeps sending its requests to the original

Web server. The requests are intercepted by the
original Web server�s gateway, which forwards

the requests to the Web server holding the replica.

This Web server can respond directly to the client

(with falsified origin end points) or indirectly

through the original Web server�s gateway. The

former approach for redirection at the transport-

layer level is known as TCP handoff, the later as

TCP splicing.
Finally, the Domain Name System (DNS) can

be used for redirection purposes [5,10,18]. DNS-

based redirection exploits the fact that a browser

needs to resolve the domain name contained in a

URL to a network address. Unless the name-to-

address mapping is already cached at the client�s
DNS, the client�s DNS request eventually reaches

the DNS server responsible for the Web server�s
domain (i.e., the authoritative DNS server). As a

reply, the authoritative server can decide to send

any appropriate network address and not only

the address of the Web server designated in the

URL. In particular, the DNS server can respond

with the address of a Web server holding a replica

of the Web page. The returned address is cached at

the client�s DNS. The subsequent DNS requests
for this domain are therefore resolved to the rep-

lica�s network address until the address is flushed

from the DNS cache. A similar approach, used
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for example in the Akamai Content Distribution

Network [7], redirects a client in two steps. The cli-

ent�s DNS request reaches first the DNS server

responsible for the Web server�s domain, as in

the previous case. It is asked to contact a close-
by DNS server which chooses the replica to which

the client is redirected. Until the DNS cache get

flushed, the client keeps contacting the close-by

DNS server. This approach is known as two-tier

DNS-redirection.

Each of these three methods for Web redirec-

tion has its own characteristics that make it not en-

tirely satisfactory. Most importantly, the three
methods require that the actual redirection is done

by a server close to the Web server hosting the re-

quested page. Either it is the Web server itself, the

front end to the Web server (in the case of a Web

cluster) or the Web server�s DNS server. As a con-

sequence, a large number of requests travel up to

the server side before the redirection takes place.

DNS-based and two-tier DNS redirection tackle
this problem by using DNS caches. While each

first request for a particular domain has to travel

to that domain�s DNS server before being redi-

rected, subsequent requests can in the best case

be treated locally using the client�s DNS or a

close-by one in the case of two-tier DNS redirec-

tion. In fact, DNS-based redirection mechanisms

rely heavily on temporal locality in accessing doc-
uments. Whenever DNS cache entries get flushed

due to staleness or replacement in the cache, a re-

quest has to travel all the way to the Web server

side again. CDNs like Akamai make use of two-

tier DNS-redirection and are therefore subject to

these limitations.

The worst case with respect to not benefiting

from locality is HTTP-based redirection, where
each single request has to be redirected indepen-

dently of the others. Latency is thus an important

disadvantage of HTTP-based redirection [5]. How-

ever, since subsequent redirections are indepen-

dent from each other, HTTP-based redirection

provides a fine granularity that TCP- and

DNS-based redirection cannot offer. For both

DNS-based and two-tier DNS redirection, the
granularity of the redirection is the DNS domain

name. This makes the use of different replica

repositories for different (sub)directories in a given
domain impossible. For example, one may like to

replicate the �Bioinformatics� and the �Computer

Systems� pages from the Vrije Universiteit Web

server http://www.cs.vu.nl separately. However, a

given Web server, accessible through a given do-
main name such as www.cs.vu.nl has to be repli-

cated as a whole or make use of virtual domains

at the Web server level. This coarse granularity

also makes it difficult to use different replication

policies for different documents of the same do-

main as advised in [16].

Another disadvantage of HTTP-based redirec-

tion is that it does not provide support for redirec-
tion transparency. Clients are aware of the fact

that they are redirected since the replica�s address
is passed to the client. This allows a client to cache

and reuse references towards replicas, which may

conflict with the redirection policy of the Web ser-

ver. On the other hand, TCP handoff or TCP splic-

ing are fully transparent but not scalable. The

traffic generated by the segment forwarding in
TCP handoff makes the method more suited for

long-lived sessions such as FTP [5,17] or for use

in local-area networks such as with clusters of

Web servers. In that respect, DNS-based redirec-

tion is more scalable, as messages need not be for-

warded and travel in the best case to local DNS

servers. DNS-based redirection also achieves a rea-

sonable transparency provided the users are refer-
ring to documents using domain names and not IP

addresses. In the latter case, the DNS name resolu-

tion is by-passed and so is the redirection.
3. Principles of distributed redirection

Considering the disadvantages of HTTP-,
DNS- and TCP-based redirection, we would like

to devise a redirection method offering a fine gran-

ularity in redirection without loss of scalability or

transparency. We consider scalability by locality

important. First, a request to look for a replica

of a Web page has to avoid traveling a long dis-

tance. Second, the selected replica should remain

the nearest possible to the client browser. This is
what we refer to as network locality. In addition,

we would like our redirection mechanism to be

as independent as possible of temporal locality,

http://www.cs.vu.nl
http://www.cs.vu.nl


746 A. Baggio, M. van Steen / Computer Networks 49 (2005) 743–765
as used for example in DNS-based redirection

mechanisms. It should also work well for pages

that are frequently updated and as such cannot

simply be replicated everywhere.

To explain, consider a replicated Web page, re-
ferred to as http://www.globule.org/index.html

that is available at four Web servers: Amsterdam

(the ‘‘home’’ location), Naples, San Francisco

and Sydney (see Fig. 1). Assume a client browser

located in San Diego issues an HTTP request for

the Globule page. With the current redirection

mechanisms, the request travels, in principle, to

the home server in Amsterdam and only there is
it redirected to a close-by replica. We propose to

improve locality for client HTTP requests by using

a collection of redirection servers installed close to

the clients. In our example, the browser�s HTTP

request is processed first by its local redirection

server in San Diego.

For preserving locality when looking up repli-

cas, a redirection server knows only about pages
that are available in its own area. Since the Glob-

ule Web page is not locally available, the redirec-

tion server in San Diego has to issue a lookup

request to find a replica. To keep the communica-

tion costs relatively low and preserve locality, a

redirection server always tries first to find a re-

quested Web page in its vicinity and gradually ex-

pands the search area if necessary. The gradual
search expansion is achieved by organizing the col-

lection of servers as a hierarchy and by forwarding
San Francisco

NaplSan Diego

Redirection server with replica address

Redirection server

Amsterdam

Fig. 1. Using distributed redirectio
the lookup requests along this hierarchy. The

organization of the redirection servers is done on

a per-page basis: each page or group of pages

has its own separate hierarchical organization of

servers that assist in redirecting HTTP requests.
To further enforce locality, only leaf servers store

addresses of replicas. The information on which

leaf server holds which replica is distributed to

the relevant intermediate servers so that any rep-

lica can be found when issuing a request at any

point of the hierarchy. Fig. 2 shows the hierarchy

for the page http://www.globule.org/index.html.

The replica lookup request issued by the redi-
rection server in San Diego is further treated as

follows. It reaches the page�s redirection server

for the USA. The intermediate USA server does

not have an address for the Web page. However,

as shown in Fig. 3, it holds a pointer to a child

redirection server, here in San Francisco, which

is known to have information about a replica of

the page. The USA server further forwards the
lookup request to the redirection server in San

Francisco. San Francisco replies with the address

of the Web page completing the lookup request.

It is the task of the client�s redirection server in

San Diego to actually retrieve the Web page from

the San Francisco Web server. Finally, the San

Diego server can decide to cache the address.

The client browser will benefit from caching, for
example, when requesting the inline images of

the document.
Sydney

es

HTTP- or DNS-based redirection

Distributed redirection

n to access a close-by replica.

http://www.globule.org/index.html
http://www.globule.org/index.html
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Distributed redirection

Fig. 2. Building a hierarchy of redirection servers.

San Francisco

San Diego

USA

Fig. 3. A forwarding pointer at the USA server.
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This scenario shows that by contacting its local

redirection server, a client browser implicitly initi-

ates a lookup for a replica at the lowest level of the

redirection service. In the best case, the address of

a replica can be found at this server (local replica
or cached address). If not, the forwarding of the

lookup request takes place. Each step up in the

hierarchy of redirection servers broadens the

search. Having lookups always starting locally at

the client site and gradually expanding the search

area guarantees that the potential local and

close-by replicas are found first. This also guaran-

tees us to find a replica wherever it is stored. The
forwarding of the requests along the hierarchy

goes no further than necessary and allows us to

avoid unnecessary communication with parties

that are far apart. In addition, by keeping the

number of levels in the hierarchy relatively small,

we can also keep the latency minimal when for-

warding the requests. Note that this scheme works

well even in the presence of updates. Updates to
the (contents of the) replicas themselves such as

consistency management are of no influence on

the redirection service. Updates related to adding
or removing a replica and therefore its address in

the distributed redirection service are the only vis-

ible updates at the redirection-mechanism level.

They are scalably handled by the forwarding

mechanism.
4. Detailed design

The redirection service relies on two main com-

ponents: a hierarchical collection of redirection

servers and the mechanisms of the redirection ser-

ver itself. This section details what the hierarchy of

redirection servers is and how it is built. It also de-

scribes how a redirection server works and how it

makes use of the hierarchy.

4.1. A hierarchy of redirection servers

The collection of redirection servers is distrib-

uted world-wide and organized hierarchically in

such a way that each part of the desired area is ta-

ken care of by a redirection server. The redirection

servers are themselves organized on a world-wide
collection of redirection hosts. Each redirection ser-

ver belongs to a single domain and operates at one

given level of the hierarchy. In our example, a do-

main corresponds to a geographical region such as
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a city, a country, or a continent, as shown in Fig.

4. A domain therefore carries a notion of locality.

The hierarchy takes the form of a tree and is con-

structed as follow: the leaf domains are aggregated

into larger subdomains, which in turn are aggre-
gated as well and eventually the highest-level do-

main covers the entire network. Each domain is

allocated at least one redirection server. However,

we can expect multiple redirection servers and

hosts per domain. The root domain, for example,

is likely to have thousands of redirection servers

distributed all over the world. For each Web page,

one given server of the collection acts as root ser-
ver and pages originating from different leaf do-

mains will generally have different root servers,

as suggested in [22]. The full redirection service is

therefore organized as a collection of trees of redi-

rection servers rather than as a unique hierarchy.

Note that this full distribution balances the load

across all the servers of the redirection service.

The hierarchy of domains, however, is unique.
Fig. 4 shows the hierarchy of redirection servers

for the Globule page. The page has one redirection

server in each domain of the hierarchy. Together,

they form the hierarchy of redirection servers for

the Globule Web page. The root server World is

run by a host located in Amsterdam, Amsterdam

being the home location of the Web page.

For enforcing locality, a server stores informa-
tion only on replicas that reside in its own domain.

The address of a given replica is therefore to be

found at one redirection server. Moreover, storing

addresses only at leaf servers makes it unnecessary

to maintain consistency within the redirection ser-

vice. For example, if the addresses of a given doc-

ument were stored at random servers––leaf or
USA

Naples

Sydney

World

Americas

Europe
Asia-Pacific

Amsterdam

The Netherlands
Italy

San Francisco

San Diego

City

World

Continent

Country

Fig. 4. The hierarchy of domains and a hierarchy of servers.
intermediate servers––it would be necessary to

search for addresses each time an update would

have to occur. Looking up or deleting an address

would imply a tree-wide search respectively for

finding the address the closest to the client of for
fetching all the copies of the address to be deleted.

In contrast, using a single address location per rep-

lica––in our case a leaf server––preserves the effi-

ciency of access. Storing addresses only at leaf

servers enforces further the locality of accesses

and favor local clients: the address in the leaf is

close to the clients as they query their local leaf

node directly; the address is also close to the rep-
lica that was placed in that particular domain since

the traffic, in terms of client requests, was suffi-

ciently high. As a whole, the world-wide collection

of redirection servers stores the addresses (URLs)

of all the replicas of the Web pages willing to

participate in the service.

In order to be able to find a given address start-

ing from any redirection server in the hierarchy,
intermediate redirection servers store forwarding

pointers to other redirection servers located in

one of their subdomains. The presence of such a

forwarding pointer guarantees that a replica ad-

dress will eventually be found and that the replica

lies in a subdomain of the considered intermediate

redirection server. In our example, the USA server

holds a pointer to a redirection server in the San
Francisco subdomain (see Fig. 3).

The hierarchy of domains of the redirection ser-

vice reflects geographical locality. However, the

locality metrics can also be expressed in terms of

network distance such as latency. From now on,

we assume that geographical and network dis-

tances are equivalent. Of course, this is extremely

inaccurate. However, it has an impact only on
the way the hierarchy is built. Neither does it influ-

ence the locality in the treatment of requests, nor

does it change the way we manage the hierarchy

of domains or the redirection servers. Choosing

another locality metric would only lead us to

building the redirection service hierarchy in a dif-

ferent way (see for example research on latency-

based topologies [11,13,21]).
Finally, for each Web page, the redirection ser-

vice is brought up with an initial configuration for

the hierarchy of domains, for example, a four-level
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hierarchy, as shown in Fig. 4. This initial configu-

ration is a rough estimate of what the redirection

service needs once the entire service is up and run-

ning. It may be that this initial configuration

shows not to be very appropriate and that the
locality has to be improved by creating or remov-

ing domains.

4.2. The redirection server

A redirection server has to handle two kinds of

tasks: answer incoming requests and manage the

location information for the replicas to be found
in its own domain. The following subsections

describe how this is achieved.

4.2.1. Basic request handling

The above scenario showed that a redirection

server can receive requests from client browsers

or from other redirection servers which we call cli-

ent redirection servers. These requests are known
as lookups. They do not modify the information

stored in the redirection service but allow clients

to retrieve addresses of replicas of Web pages. In

order to let the Web servers hosting replicas add

and maintain replica information, a redirection

server also has to support update requests. An up-

date corresponds to either an insert, which stores

the address of a replica in the redirection service
or to a delete, which removes an address from

the redirection service. Each redirection server

has to handle these three types of requests.

The technique for handling requests in the redi-

rection service is the same for both updates and

lookups (for details, see [2,23]). Requests are al-

ways initiated at a leaf redirection server. In the

case of update requests, the request is forwarded
only upwards. For an insert request, the upper do-

main has to be contacted to ask permission to

store an address. If the permission is not granted,

the upper domain has to care for the insertion of

the address itself. This could mean that other ad-

dresses of replicas of this particular document

are already stored at an upper level. This can occur

in the case of mobile documents or objects as ex-
plained in [2]. In the case of the World-Wide

Web, the documents should be fairly static and

the permission should be granted. The upper do-
main then installs a pointer towards its child do-

main. This happens recursively until a server is

reached that already holds information for the

considered Web page. In such a case there is no

need for forwarding the request any further. It
simply means that the upper level already has a

forwarding pointer installed. Installing forwarding

pointers guarantees that any inserted address can

be found following a path of pointers from the

root to the server where the address is actually

stored.

In the case of a delete request, the upper do-

main has to be contacted only if the record for
the Web page at the current redirection server be-

comes empty. In such a case, the pointer at the

next higher-level server has to be deleted. This

recursively happens up to the root redirection ser-

ver if necessary. This mechanism guarantees that

following a path of forwarding pointers always

leads to an address and never to an empty record.

Finally, in the case of a lookup, the request is
forwarded upwards in the hierarchy until it

reaches a redirection server that holds information

about the Web page that is being looked up. In the

best case, this redirection server is the local leaf

redirection server and a replica address is immedi-

ately found. When a pointer is found, the lookup

request is further forwarded downwards to the

redirection server referred to by the pointer and
eventually reaches the leaf redirection server that

stores the address. The presence of a pointer guar-

antees us to find an address in one of the subdo-

mains. This address is eventually sent back to the

requesting client browser. Section 4.2.3 will de-

scribe alternatives for sending back replica

addresses.

Each redirection server acts independently
when dealing with its contents or with the requests

it receives. It makes use of local information as

much as possible in order to reduce the communi-

cation overhead. However, during an update or a

lookup request, another redirection server may

have to be contacted. This redirection server can

be unreachable because of software or hardware

faults. In such a case, the requesting redirection
server can make use of a simple fall-back mecha-

nism. Whenever a lookup request takes too long

to proceed, the initiating server can take the
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decision of contacting directly the home server of

the document (i.e., the server whose address is con-

tained in the URL). This fall-back mechanism pre-

vents a client from indefinitely waiting for a

redirection server that is currently unavailable. In
the case of update requests, the client does not

have to wait until the full completion of the

request but can get an answer directly after the

update has been completed locally.

In addition to the above tasks, a redirection ser-

ver has to handle the registration of Web servers

willing to participate in the service. This encom-

passes registering replicas of Web pages and offer-
ing space for hosting replicas. When a Web server

is participating, we assume that all its Web pages

are registered in the redirection service. This does

not mean that all the Web pages are actually rep-

licated. The replication granularity is not enforced

by the redirection service but chosen by the admin-

istrator of a participating Web site. This adminis-

trator can very well use differentiated replication
strategies on a per-document basis, as suggested

in [16]. However, registering all the pages of a par-

ticipating Web site means that for each Web page

of a participating Web server, there is at least one

reference to the Web page to be found in the redi-

rection service: the original copy of the Web page,

located at the home site. We return to the registra-

tion procedure in more details in Section 5.2.

4.2.2. Server selection and placement

The placement of the redirection servers is also

important. Consider the following example. Fig. 4

shows the hierarchy of servers for the Globule

Web page. The root redirection server is best

placed on a host physically located in Amsterdam

and so is the leaf server Amsterdam. Consider a
lookup request for the Globule Web page traveling

up to the root server in Amsterdam. At this point,

the lookup request should follow the forwarding

pointers down to the leaf server in Amsterdam.

It would be counter-productive to have this re-

quest traveling away from Amsterdam to the

European level, hosted for example in Germany,

then to the Dutch level, hosted in Rotterdam and
finally back to Amsterdam where the leaf server re-

sides. Instead, all the redirection servers for the

root, the European level, the Dutch level and the
Amsterdam leaf server should be run on the same

host located in Amsterdam. Forwarding a lookup

along the forwarding pointers on this branch will

have a minimal cost (no networks delays). A given

host can very well run several redirection servers
possibly acting at different levels of the hierarchy.

Moreover, these servers can be implemented in a

single multi-threaded redirection server, if need

be. A given redirection server (or thread) will be

identified by both the IP address of its host and

a server identifier.

4.2.3. Caching

DNS-based redirection makes use of caching

mechanisms to treat subsequent queries on a given

DNS domain more efficiently. Caching mecha-

nisms can also be applied to distributed redirec-

tion. A redirection server can store the address of

a replica it has served for later use. We are consid-

ering here only the caching of addresses of replicas

of Web pages. The caching of the page itself is out
of the scope of this paper.

Depending on whether or not address caches

are in use at the redirection servers, update and

lookup requests can be handled in three ways.

To enable caching at all the levels of the hierarchy,

we can follow what DNS calls a recursive scheme.

The response to a lookup request follows the same

path the query used through the hierarchy. Each
intermediate server can cache the resulting address

on the way back. In order to put less load on the

redirection servers, it is also possible to use an iter-

ative scheme as for DNS. All the requests within

the redirection service are thus initiated by the leaf

server. It is in charge of successively contacting the

redirection servers until the address is found, no

forwarding takes place. This scheme makes cach-
ing possible only at leaf servers. Alternatively, we

can follow a hybrid approach where the query fol-

lows a recursive scheme and the reply follows an

iterative scheme. That is to say, the redirection ser-

ver holding the address answers directly to the ini-

tiating redirection server. This has the advantage

of putting less load on the intermediate servers

when the reply is sent back. It is also cheaper in
terms of messages and distances traveled by the

messages than going through all the intermediate

servers.
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The time-to-live of each address in the cache is a

crucial parameter: a short time-to-live can dramat-

ically reduce the cache hit percentage and make

the cache practically useless. A long time-to-live

will act no better than HTTP-based redirection
when replicas are deleted faster than their ad-

dresses in the cache. The user will not keep refer-

ences to removed replicas, but the cache will

without the user being aware of it. Nevertheless,

in the case of distributed redirection, the time-to-

live value can be provided directly by the Web ser-

ver hosting the replica. Each participating Web

server hosting a replica of a Web page has to fulfill
a contract determining precisely what it should

store, keep up-to-date and how long it should

maintain a replica. This time value can be given

to the redirection server where the address of the

replica is stored and further used as time-to-live

value in the cache of the client redirection server.

The standard lookup procedure can therefore be

short-cut by using the address cache and it can
be guaranteed than an address found in the cache

is always valid. It is important to note that the

contents of a replica can still change without inval-

idating the cached addresses.

Enabling the caching mechanisms in the redi-

rection service appears very appealing. Both

DNS-based or two-tier DNS redirection are using

such caching mechanisms but have the disadvan-
tage that cache entries become stale and that the

home Web server still has to be contacted after

each cache flush. In the case of distributed redirec-

tion, even in the case of a cache miss, we can con-

tinue to exploit locality by gradually letting the

request travel up in the hierarchy.

4.3. Building hierarchies of redirection servers

We mentioned in Section 4.1 that the redirec-

tion service is organized as a collection of hierar-

chies of redirection servers. Therefore, a given

redirection server can be part of several hierar-

chies, serving for different Web pages or sites.

Prior to the forwarding of a request, a redirection

server has to select the hierarchy it will use for the
considered Web page. In other words, a redirec-

tion server has to select the parent to which it will

forward the request. The parent selection is
achieved using a function mapping the URL of a

Web page to a given parent server. The mapping

function can be implemented by means of a map-

ping table or a hash function. This implies that a

redirection server maintains a list of its parent
servers and can select one among those when

needed. Note that the same holds for the child

servers: a server has to maintain a list of child

servers per hierarchy.

Maintaining a list or a cache of parent and child

servers means that the structure of each hierarchy

of redirection servers has somehow to be distrib-

uted. A hierarchy of redirection servers is poten-
tially composed of hundreds of thousand servers.

It is therefore not reasonable to assume that the

positioning of the servers in a given hierarchy will

be broadcast at once by the root to each server

composing the hierarchy. On the contrary, we as-

sume that the hierarchy is constructed on-the-fly.

Whenever a redirection server from domain Di
(with 0 < i 6 3, i.e. leaf or intermediate domain,
D0 being the root domain) receives a request for

a page that is not mapped to a hierarchy yet (i.e.

has no known parent server), the redirection server

in domain Di contacts the root server and gets the

IP address and identifier of the parent server in do-

main Di�1. Once the parent is known, the request

can be forwarded up as described in Section

4.2.1. As an optimization, the requesting redirec-
tion server from domain Di can first select a parent

server in domain Di�1 and then contact the root.

The root will either install the proposed server as

server for the domain Di�1 or, if a server for the

domain Di�1 is already known, reject the proposed

server and send the IP address and identifier of the

correct parent to the server from domain Di. Note

that we assume that the domains are static, i.e. the
domain of a server does not change and that a gi-

ven server from domain Di knows some servers

from domain Di�1 so that it can select parent serv-

ers if need be.

The selection of parent or child servers can be

optimized in two ways. First, whenever the address

of a replica of a Web page is installed at a leaf do-

main D3, the parent and child servers on the path
from the root server to the leaf server in domain

D3 are selected and immediately installed at the

relevant servers. Second, the installation of new
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parent or child servers can be piggybacked with

other messages in order to avoid contacting the

root server as much as possible.

The Web page of a non-participating Web site

can never be mapped to a hierarchy. This means
that a leaf redirection server receiving a client re-

quest for such a page will never have a parent ser-

ver for this given page. In the case of a delete, the

request will simply be rejected. In the case of an in-

sert, the leaf server will contact directly the root

server and the forwarding of the insert downwards

will care for the installation of the forwarding

pointers and the installation of the parent server
wherever it is appropriate. In the case of a lookup,

the leaf redirection server will contact the sup-

posed root of the hierarchy, i.e. the Web page�s
home server. The leaf redirection server can simply

send an HTTP request for the desired Web page.

The non-participating Web server will send back

the page contents as usual. The leaf redirection ser-

ver then acts as a proxy and returns the requested
page to the client browser. Note that the HTTP

protocol can also be used in the case of a partici-

pating Web server, only the answer to the request

will differ. The root server can decide to return di-

rectly the page contents as well as the IP address

and identifier of the parent server, the address of

a close-by replica as well as the IP address and

identifier of the parent server, or only the IP ad-
dress and identifier of the parent asking the leaf

server to contact its parent.

There is of course a tradeoff between the vol-

ume of information concerning the hierarchies that

we want to disseminate and the latency we add to

the client requests when lacking this information.

As an optimization of the above protocol, the

information concerning the hierarchies can lazily
be distributed to the redirection servers and be

stored in a local database. Doing so allows us to

look for parent servers in the local database thus

offloading the root server and removing the parent

lookup from the critical path, i.e. the client re-

quest. The database can efficiently be implemented

by using a modified DNS server. For example, the

modified DNS server can store a DNS TXT record
along with the domain name of each participating

Web server, similarly to what is described in [4].

The TXT record can, for example, contain a
parent server IP address and identifier to be used

with this particular domain, or a path to the root

server. This means that one (Web server) domain

name is mapped to one unique hierarchy. Another

domain name, for example a virtual server sup-
ported by the same Web server, can use the same

hierarchy simply by having the same IP addresses

and identifiers stored in the DNS TXT record. It

could also be possible use a finer-grain mapping

by storing URL prefixes in the DNS TXT record,

allowing the use of several hierarchies for one gi-

ven domain name. However, we do no think this

is appropriate in the case of the Web servers.
5. Interacting with the redirection server

A redirection server can interact with three kind

of entities: Web clients such as browsers, Web

servers and other redirection servers. In Section

4, we described the possible interactions between
redirection servers. This section presents how a

browser and a Web server can interact with a redi-

rection server and how the redirection server is

integrated into the Web environment, avoiding

as much as possible modifications at the end-user

side.

5.1. Web-client and redirection-server interaction

The client browser interacts with the redirection

server to look for replicas of Web pages. This

interaction has to occur as transparently as possi-

ble. As such, we have decided to use only well-

known and widely-used protocols such as HTTP

and DNS.

First, a client should not be aware it is dealing
with a replica of the Web page it requested. There-

fore the client should not be able to keep an expli-

cit reference towards a replica of a Web page, for

example by letting its user bookmark it. Not pre-

venting this can lead to dangling pointers when

the replica is removed. This is unacceptable if the

original page is itself still accessible. Furthermore,

discovering new replicas closer to the client would
require an explicit action from the end user, which

is also unsatisfying. This is what we call replication

transparency.
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It is the task of the client�s redirection server to

maintain replication transparency. This is achieved

by not displaying the addresses of the replicas to

the client browser. The client sees only the original

location (home location) of a Web page. It has no
way of discovering the address of a replica when

using the redirection service and subsequently can-

not access the replica directly. The redirection

server at the client side therefore takes care of

fetching the replica of the Web page for the client

and acts towards the client as if it were the original

Web server.

Second, a client browser should not be aware its
requests are going through a redirection service.

The end user should have to do the least possible

to take benefit of the redirection service. This

makes the deployment and the use of the redirec-

tion service at client sites easier. We can achieve

this by carefully integrating the components of

the redirection service with the existing environ-

ment, Web applications and protocols. This is
what we call transparency of use.

To satisfy the transparency of use requirement,

we decided to integrate our distributed redirection

scheme with the DNS service at the client site. A

distributed redirection server has therefore to act

as authoritative DNS server. A client browser

automatically accesses the redirection service by

contacting its authoritative DNS server, as it is
Modified
DNS

Client
browser

Redirection
server

San Diego domain

Initial user request for
http://www.globule.org/index.html

DNS name resolution of www.globule.org
HTTP request to supposedly www.globule.org
Lookup request in the redirection service
HTTP request to the Web server hosting the replica
HTTP reply with the contents of the page

Fig. 5. Components used for
the case with today�s DNS-based redirection.

Note, however, that the use of DNS in this context

remains confined to the client site. Fig. 5 shows the

message exchanges between the client browser, its

authoritative DNS server (component of the redi-
rection service) and the local redirection server.

Note that this authoritative DNS server can also

be charged of mapping URLs to hierarchies of

redirection servers.

Let us see how an end-user request for loading

the Globule page is handled when using the redi-

rection service. For loading the page, the browser

must achieve two tasks. First, it has to resolve
the DNS-domain name www.globule.org into the

IP address of a Web server by contacting its

authoritative DNS server. Second, it has to con-

struct an HTTP request for the page and send it

to the Web server whose address was returned.

Since redirection has to take place locally at the

client side, the redirection service has to be inte-

grated in between these two steps. We decided to
act at the DNS level (this choice is discussed in

Section 7). We let the client�s authoritative DNS

server resolve the browser�s DNS request into the

address of its local redirection server (see Fig. 5,

message exchange 1). Without noticing it, the cli-

ent browser is therefore asked to contact the redi-

rection service which it believes to be the Web

server of the Globule page. This approach realizes
San Francisco domain

Amsterdam domain

Home Web
server

Web
server

Modified
DNS

Redirection
server

Modified
DNS

Redirection
server

distributed redirection.

http://www.globule.org
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transparency of use. As for the second step, the

browser sends an HTTP request to its local redi-

rection server (message 2) which looks for a replica

as explained in Section 4 (message exchange 3).

The lookup can recursively lead to several message
exchanges with other redirection servers (not

shown in the figure). The client�s local redirection
server is in charge of fetching the requested Web

page (message exchange 4) and returning it to

the client (message 5). Using an HTTP-redirect

at this stage would violate replication transpar-

ency. The redirection server at the client side there-

fore takes care of fetching the replica of the Web
page for the client and acts towards the client as

if it were the original Web server. Note that Web

proxies display a similar behavior. Moreover, the

HTTP reply the redirection server sends back to

the browser has to use the original URL to desig-

nate the page and thus preserve replication trans-

parency. It also means that the URLs contained

in a replicated Web page are not rewritten to
match the location of the replica. Any subsequent

request goes through the redirection server and is

not bound to a given replica. Rewriting would

even be counter-productive in the presence of

caching at the redirection server side.

Fig. 5 shows the components taking part in the

redirection service as well as the message ex-

changes between these components. Four entities
are used: the Web browser (the client), a modified

DNS server, a redirection server and a Web server.
Client
browser

San Diego domain

Initial user request for
http://www.globule.org/index.html

DNS HTTP

Redirection
server

Fig. 6. Single redirection
The modified DNS server and the redirection ser-

ver are both installed at each participating client

and server sites. A Web server site is said to partic-

ipate if it hosts replicas of Web pages or has repli-

cas hosted at some other sites. A client site is said
to participate if it has a modified DNS server and a

redirection server locally installed. Fig. 5 shows the

case where no Web proxy is installed in the brow-

ser configuration.

The servers necessary for the redirection service

can be integrated into a single component. The

modified DNS server may just be a front-end to

the redirection server, as shown in Fig. 6. The redi-
rection server component has therefore to act as

(1) a DNS server, resolving DNS names; (2) a

Web proxy, receiving client browser requests and

fetching replicas of pages from Web servers on be-

half of client browsers; and (3) a redirection server,

performing lookups in the redirection service.

In our example, the Globule Web page was

known from the redirection service and a replica
address was eventually found. It may, however,

happen that no replica of the requested Web page

is found in the redirection service. Since all the

Web pages of a participating site are registered in

the redirection service, this can only mean that

the page has disappeared from the home Web ser-

ver. In such a case, the client�s redirection server

simply sends back an appropriate HTTP error
code. In the case of a non-participating Web site,

the lookup never gets initiated and therefore does
DNS name resolution of www.globule.org
HTTP request to supposedly www.globule.org
Lookup request in the redirection service
HTTP request to the Web server hosting the replica
HTTP reply with the contents of the page

server component.



A. Baggio, M. van Steen / Computer Networks 49 (2005) 743–765 755
not lead to a lookup miss. Instead, an HTTP re-

quest is issued and sent to the supposed root (i.e.

the home server). The client�s local redirection ser-

ver then acts as a regular Web proxy and eventu-

ally forwards the reply to the client.
Note that when receiving an HTTP client re-

quest, a redirection server may have to resolve

the domain name contained in the request. This

happens only if this particular domain name can-

not directly be mapped to a hierarchy by the cli-

ent�s local redirection server. This means either

that the home Web server is not participating in

the redirection service or that the parent server
for this hierarchy is still unknown. During the

name resolution, extra information can also be

found about the hierarchy, most likely a parent

server or a path to the root (see Section 4.3). If a

parent server is found, the client�s redirection ser-

ver issues a lookup request in the hierarchy, other-

wise, it uses the resolved domain name to contact

the home Web server.
An optimization can be applied to the basic

redirection protocol. We saw that the DNS, proxy

and redirection servers can be integrated into one

single entity. In such a case, the client browser ex-

changes two sets of messages with the same entity

but using different protocols. We can improve effi-

ciency by relaxing the transparency constraint: we

can let the client browser consider the redirection
S

Modified
DNS

Client
browser

Redirection
server

San Diego domain

Initial user request for
http://www.globule.org/index.html

HTTP request to the proxy
Lookup request in the redirection service
DNS name resolution of  the replica Web server
HTTP request to the Web server hosting the replica
HTTP reply with the contents of the page

Fig. 7. Redirection server c
server as a Web proxy (see Fig. 7). The browser

proxy configuration has thus to be adjusted

accordingly. However, to preserve transparency,

the redirection service could be directly integrated

at the router or switch level, as it is the case for
transparent caches. It would then intercept TCP

traffic for port 80. In the proxy configuration,

the protocol does not fundamentally differ from

previous cases. The browser has only to send an

HTTP request to the redirection server which per-

forms the subsequent lookup and DNS name res-

olution if necessary. For more details about

implementation considerations and deployability,
we refer the reader to [1,14,15].

5.2. Web-server and redirection-server interaction

A Web server has to declare all the pages it

wants to replicate and how much storage space it

is offering for the replicas of other Web servers.

To do so, the Web server has to contact its local
redirection server. The latter is in charge of insert-

ing the addresses of the declared Web pages so that

they can be located by others. We call this proce-

dure registration. At the end of the registration

process, the Web server is considered as a partici-

pating server. This implies that it is to be found in

the database of participating sites which the redi-

rection servers keep, that the Web pages that were
an Francisco domain

Amsterdam domain

Home Web
server

Web
server

Modified
DNS

Redirection
server

Modified
DNS

Redirection
server

onfigured as a proxy.



756 A. Baggio, M. van Steen / Computer Networks 49 (2005) 743–765
declared are automatically replicated and that the

addresses of the replicas can be looked-up at client

request.

In addition to dealing with Web server registra-

tion, a redirection server has to handle update re-
quests concerning the Web servers� pages. That is
to say, the administrator of a participating Web

server may want to let new pages be replicated

and add replicas to the redirection service or in-

stead remove some. This can be achieved using

the update operations described in Section 4. It is

likely that both registration and management of

registered Web pages (update requests) will be
done via a separate management tool serving as

a friendly user interface to the local redirection ser-

ver. The description of this tool is out of the scope

of this paper.
6. Simulating distributed redirection

To validate the distributed redirection mecha-

nism and estimate the overheads and gains of the

method, we conducted a series of simulations.

One important aspect is to evaluate the gain in

user-perceived latency booked with distributed

redirection compared to directly accessing the

home location of a Web page. Another important

point is to show that the load on the home Web
server decreases and that this load is evenly distrib-

uted among distributed redirection servers.

The simulation is trace-driven and uses HTTP

traces from our department Web server

www.cs.vu.nl at the Vrije Universiteit. It spans

more than one year. Based on the IP addresses

found in the HTTP trace, the simulator sets up a

hierarchy of redirection servers rooted at the Vrije
Universiteit for the www.cs.vu.nl Web server.

Beforehand, we estimate the latency between each

pair of parent and child redirection servers using a

modified version of King [9]. The address of each

Web page is inserted at the leaf server for

www.cs.vu.nl. Addresses of replicas are in-

serted at leaf servers where there is enough de-

mand. Finally, each client (i.e. IP address) from
the HTTP trace is associated to its leaf redirection

server. In other words, a client request is assumed

to originate from the client local leaf server. The
simulator does not require to map each client IP

address to a leaf server. A detailed description of

the experiment can be found in [3]. Again we

emphasize that we wish to support a fine granular-

ity in redirection, as HTTP-based redirection does,
while maintaining scalability and transparency. In

that sense, we want to combine the benefits from

both HTTP- and DNS-based redirection mecha-

nisms (DNS or two-tier DNS redirection) into a

single scheme.

Once the hierarchy is constructed and replicas

are placed, the simulator replays the clients re-

quests found in the HTTP trace. For each request,
it logs the latency induced by traversing the hierar-

chy, the number of hops the request traveled in the

hierarchy and at which server the address of the re-

quested document was found. In addition, each

redirection server records the total number of

operations it had to handle during the trace replay.

By operations, we mean either a lookup initiated

directly by a client or a lookup forwarded in the
hierarchy of redirection servers. This gives us an

estimate of the load of each redirection server.

We ran several simulations using the same hierar-

chy but different replica placements.

Fig. 8 shows the results of the simulation for a

trace were all the documents are replicated. The

policy for placing replicas is as follow: each docu-

ment requested two times by the same leaf server
gets replicated at that location. This replication

threshold is of course not realistic in a real envi-

ronment but allows us to get a large number of

replicas from our Web server trace, which is man-

datory for testing the benefits of the distributed

redirection. However, this low replication thresh-

old only influences the placement of the replicas

and not the redirection mechanism in itself. In
addition, once the replicas are placed, we extract

from the HTTP trace all the requests concerning

documents requested just once (i.e. not replicated).

These requests are not replayed during the simula-

tion. We rejected in total close to 6% (3,667,549) of

the requests (over 61,670,630) and 61% (1,596,990)

of the documents (over 2,615,952). In the follow-

ing, we refer to this simulation as ‘‘selected docu-
ments, threshold 2’’.

Fig. 8 shows that more that 34% of the docu-

ments addresses are served locally (latency equals

http://www.cs.vu.nl
http://www.cs.vu.nl
http://www.cs.vu.nl
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Fig. 8. Proportion of requests serviced within a given latency for the ‘‘selected documents, threshold 2’’ experiment.
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zero) and that close to 43% of the addresses are

found with a latency less than 4000 ls. Past this la-
tency threshold, distributed redirection and HTTP
redirection (i.e. direct access to the home Web ser-

ver) perform similarly. Note that only the latency

necessary to the redirection is taken into account

and not the latency necessary for fetching the doc-

ument. The latter depends on the location of the

selected replica. In the case of HTTP-based redi-

rection, the redirection part boils down to a direct

access to the home Web server; with distributed
redirection, to a direct access to the closest distrib-

uted redirection server holding a replica address

for the requested document.

We compare our approach to HTTP-based

redirection for two reasons. First, we wish to com-

pare our approach to one that offers redirection at

the granularity of Web pages, just like ours. Only

HTTP redirection does this. Second, HTTP redi-
rection provides the minimal number of hops,

namely only one hop to the home Web server,

after which the document can be returned. If our

approach performs better in terms of latency, we

will certainly demonstrate an improvement.

In order to evaluate the effect of rejecting re-

quests, we performed a simulation with the same
replica placement as used in ‘‘selected documents,

threshold 2’’ but without rejecting any HTTP re-

quests from the trace. In the following, we refer
to this simulation as ‘‘all documents, threshold 2’’.

Fig. 9 compares the output of ‘‘selected documents,

threshold 2’’ with ‘‘all documents, threshold 2’’. It

shows that including documents having no replica

and being requested only a few times (approxima-

tively 6% of the total number of requests) does not

affect the overall performance of the distributed

redirection.
Fig. 10 shows the result of a simulation in which

we increased the replication threshold to five re-

quests. It leads to a simulation setting where close

to 90% of the documents are not replicated. With

respect to the distributed redirection mechanism,

this is a worst-case scenario. The majority of re-

quests will travel through the hierarchy, up to

the root server, thus accumulating latencies. In
the following, we refer to this simulation as ‘‘all

documents, threshold 5’’.

Fig. 10 shows that even with a small number of

replicated documents, the distributed redirection

performs better than HTTP redirection up to

3000 ls. Close to 16% of the documents addresses

are served locally (latency equals zero) and at
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3000 ls, 23% of the requests have been served

against 24% for HTTP redirection.
Fig. 11 shows the number of hops for the differ-

ent simulations. We count hops as follow: one hop
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is counted for transferring the HTTP request from

the client browser to its leaf redirection server.

After that, each time a redirection server forwards

the lookup request to its parent server, one extra
hop is added. In the case of HTTP redirection,

the number of hops is always one.

The conclusions we can draw from the different

simulations is that most of the requests served in

few hops (one or three) show a redirection latency

smaller than the one of HTTP redirection. They

are likely to improve the user perceived latency,

assuming the Web server of the target replica
serves the request with a reasonable latency. The

lookups requiring more hops in the hierarchy of

redirection servers are too costly and do not really

improve the performance experienced with a direct

access to the home Web server.

Figs. 12 and 13 show the latency for the ‘‘se-

lected documents, threshold 2’’ simulation when

including server time. As an estimate for the server
time, we use either 1000 ls or 3000 ls, respectively
referred as optimistic or pessimistic. For each re-

played request, we multiply the number of hops

by the server time.

Fig. 12 shows the output in the case of an opti-

mistic server time. The curves are slightly shifted
compared to Fig. 8. Close to 34% of the requests

are now serviced in 1000 ls. The distributed redi-

rection still performs better than HTTP redirection

up to 5000 ls (more than 42.3% of the requests in
the case of distributed redirection, 41.8% in the

case of HTTP redirection). As previously, past this

point, distributed redirection and HTTP redirec-

tion perform similarly.

Fig. 13 shows the output in the case of a pessimis-

tic server time. The client-perceived redirection la-

tency still remains interesting for the requests

served locally (34%).However, the curves show that
the server time affects the results quite heavily when

a request has to visit several redirection servers.

Let us now concentrate on the overall load

placed on the distributed redirection servers. In

the following, we consider the ‘‘selected documents,

threshold 2’’ simulation. Our simulations show

that the load on the various distributed redirection

servers is not balanced. The load here is measured
in terms of number of processed operations. The

imbalance comes from the fact that the clients�
HTTP requests in our Web server trace are them-

selves not balanced. The most loaded leaf redirec-

tion server is the VU leaf server since most of the

clients are located at the Vrije Universiteit and
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because we did not replicate documents within the

Vrije Universiteit�s network. However, the load on
the distributed redirection servers is decreasing

when we reach higher levels (root, continent) in



 0

 10

 20

 30

 40

 50

 60

 70

Root Continent AS

P
er

ce
nt

ag
e 

of
 p

ro
ce

ss
ed

 o
pe

ra
tio

ns

Level in the hierarchy

Number of operations

Leaf

Fig. 14. Distribution of operations among the different levels for the ‘‘selected documents, threshold 2’’ experiment.

A. Baggio, M. van Steen / Computer Networks 49 (2005) 743–765 761
the hierarchy. The root server gets to see only a

small proportion of the client requests, namely

0.12%. Fig. 14 shows the repartition of operations

in the different levels of the hierarchy.

The conclusions we can draw from the above

figures is that while the load is not evenly distrib-

uted among the (leaf) redirection servers, we still

offload the root server. Getting the overall load
evenly distributed may mean reconfiguring the dis-

tributed-redirection servers hierarchy on the fly:

some domains are clearly too large (in number of

clients) and some others are too small. This comes

from the fact that the hierarchy of redirections

servers has been built using geographic and rout-

ing properties and not by looking at the access pat-

terns of the clients. The placement of the replicas
of course also has an impact on the distribution

of the load. This means that installing a new

replica close to a set of clients may trigger a recon-

figuration of the hierarchy in that particular

zone.
7. Discussion concerning the design

In the context of the Web, there are a number of

alternatives for intercepting and redirecting que-
ries. The level at which the redirection is per-

formed can also vary: browser, proxy, DNS,

home Web server. This section justifies why we

have opted for the DNS level.

One of our goals is to achieve transparency of

use. An end-user should have to do the least to

benefit from distributed redirection. In addition,

it should be easy for the administrator of a local
network to install and maintain the distributed

redirection components.

Integrating the redirection mechanisms in a

browser is not an option with respect to transpar-

ency of use: forcing users to install a customized

browser is anything but transparent. Moreover,

customizing a browser implies a major effort in

developing and releasing new versions, whether
the browser is developed from scratch or based

on existing publicly available source code. For

these reasons, our redirection service is not directly

integrated into a browser. However, this would be

the best option with respect to efficiency and inte-

gration in the current Web. It would also be the

best solution to accurately position the client hosts

and therefore to enforce a better locality when redi-
recting requests (in our design, the location of the

client is assimilated to the location of its authorita-

tive DNS server).
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Since we want the redirection decision to be ta-

ken as close to the client as possible, redirecting at

the home Web server is not ideal as the home ser-

ver can be located far away from the client. More-

over, a home Web server can redirect client
requests to any suitable replica and not necessarily

the closest. This depends on the home Web server

own redirection policy. We consider that redirect-

ing at the home Web server side is already ‘‘too

late’’. This method, therefore, does not provide a

satisfactory solution. It can, however, be used as

a fall-back mechanism if a redirection server

becomes unreachable.
Working at the DNS level has the advantage

that no end-user has to take special actions to

use the redirection service. The authoritative

DNS server for the client�s domain is a modified

server that takes care of the redirection or redirects

the client to a separate process. The disadvantages

are that any DNS request at the client side will go

through the modified DNS and that the client side
administrator has of course to install the redirec-

tion server components and configure them as

authoritative DNS server.

Finally, the Web proxy approach offers a

slightly less transparent solution. An end user

has to configure his browser: either he explicitly

sets its proxy or he specifies that he wants to use

the standard proxy configuration at his site. The
administrator has of course to install the redirec-

tion server as proxy. As presented in Section 5.1,

the DNS and proxy approaches can be easily com-

bined. The end user is then free to choose whether

he wants to configure his browser or benefit from

a fully transparent distributed redirection

mechanism.
8. Conclusion and future work

The redirection mechanisms used in today�s
World-Wide Web such as HTTP-based redirec-

tion, DNS-based redirection or TCP handoff exhi-

bit characteristics that make them not fully

satisfactory. The main concern is that with any
of these methods, a home-based approach is used.

The request of a client is in most cases redirected

only after it has reached the Web page�s home
location. Not only does this put a load on the

home Web server and does it generate traffic on

the network, it also induces latency that can be

perceived by the end user.

We devised a scheme where the redirection is
fully distributed and combines the benefits of

HTTP- and DNS-based redirection. An important

aspect is that network locality is preserved: the

redirection decision takes place as local to the cli-

ent as possible and the selected replica of the re-

quested Web page remains close to the client. In

such a way, we avoid unnecessary communication

for both finding a replica and contacting it. La-
tency is kept low. This lets the system scale well,

while there is no need for temporal locality any-

more as it is the case with DNS-based redirection

schemes. Distributed redirection also provides a

fine-grained redirection mechanism as HTTP-

based redirection does, while preserving transpar-

ency: a user is never aware that his requests are

being redirected.
Distributed redirection makes use of a world-

wide collection of redirection servers organized

as a collection of trees, one per Web page or group

of Web pages from the same leaf domain. Leaf

servers store addresses of replicas and perform

lookup requests on behalf of clients. A redirection

server supports both DNS and HTTP protocols

for interacting with clients, as well as its own pro-
tocol for looking up and updating addresses of

replicas. Each participating client or server site

has to run its own redirection server.

Future work encompasses additional experi-

ments and performance measurements of our redi-

rection scheme, for example, by comparing it with

DNS redirection and two-tier DNS redirection.

DNS redirection mechanisms benefit from cach-
ing. This means that we need to enable the cach-

ing of replica addresses in the distributed

redirection service as well as in the simulator.

Experiments will include various scenarios with

which we will evaluate the influence of the time-

to-live of the DNS cache entries for DNS-based

and two-tier DNS redirection. We will compare

these results with the ideal time-to-live value used
in distributed redirection (the real time-to-live of

the replica of the document specified at installa-

tion time). Using a simulation again, we will coun-
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ter the non-reproducibility effect implied by using

caches. We expect to show that using the real

time-to-live value of a replica significantly benefits

to the user.

Further extensions relate to making the hierar-
chy of distributed redirection servers more dy-

namic, for example to let the redirection servers

adapt their load. Our experiments have shown that

the load is not balanced among the servers, simply

because the requests are not balanced. This comes

from the fact that the hierarchy of redirection serv-

ers has been built using geographic and routing

properties and not by looking at the access pat-
terns of the clients. The placement of the replicas

of course also has an impact on the distribution

of the load. This means that installing a new rep-

lica close to a set of clients may trigger a reconfig-

uration of the hierarchy in that particular zone.

The distributed redirection mechanisms have to

integrate seamlessly in the current World-Wide

Web. A redirection server will run as an Apache
module and be used transparently by being config-

ured as an authoritative DNS server. We are cur-

rently in the process of implementing such a

module, which aims at being integrated with an-

other Apache module supporting document repli-

cation currently in development within the

Globule project [14]. The replication module is

using a more peer-to-peer approach. This is an-
other motivation for making the hierarchy more

dynamic and trying to avoid as much as possible

to distribute information about the hierarchy.

Hints about bringing dynamicity into the hierar-

chy are given in [1].

Integration with the current World-Wide Web

also encompasses supporting dynamic Web docu-

ments. Commercial services such as online stores
do not deliver static Web pages but generate them

based on history of requests, client profiles and re-

quest parameters. Such dynamic Web documents

are composed of both code (e.g. EJBs, CGI scripts,

PHP, ASPs) and data stored either in databases or

files. Replicating such pages requires replicating

both the application code and its data.

The complexity of the replication mechanism
lies in the trade-off between fast access to a dy-

namic page and maintenance of the consistency

of the replicated data. In other words, the over-
head of maintaining the consistency of the data

should not counter-balance the benefits of replicat-

ing the dynamic page. As such, replicating the data

everywhere is not suited for applications with a

high percentage of data updates.
Akamai, for example, tackles this problem by

enabling fragment caching [6]: the responses for

popular requests are cached, which means that

the dynamic document need not be regenerated

but is simply retrieved from the cache. This mech-

anism is suitable for requests that do not modify

the application data and are not unique. An alter-

native to fragment caching is to use on-demand
application replication as proposed in [19]. On-

demand application replication replicates (chunks

of) data only where frequently accessed. This re-

duces the data-consistency management overhead

while improving the user-perceived latency. The

mechanism ensures strong consistency between

the replicas (code and data) and is fully transpar-

ent to both the user and the application program-
mer. On-demand application replication can be

further combined with fragment caching as sug-

gested in [19] allowing the system to perform well

for a wide range of application workloads and ac-

cess patterns.

Our redirection technique is orthogonal to rep-

lication mechanisms. On-demand application rep-

lication as proposed in [19] uses a DNS-based
redirection mechanism that can be combined with

distributed redirection to retrieve code, data or

even fragments. It is, however, important to note

that the time-to-live of a fragment and therefore

its address in the distributed redirection service

will be considerably shorter than regular replicas

of static or dynamic pages. As such, fragment ad-

dresses will generate more update traffic in the dis-
tributed redirection service. Furthermore, the

naming scheme for accessing fragments or replicas

(both code and data) in the distributed redirection

service has to take the structure of the URLs of

dynamic pages into account. As such, the redirec-

tion service does not access a document using its

full URL anymore but only its program name

(e.g. CGI, PHP). The parameters of the program
listed in the URL are not considered for retrieving

or inserting pages in the distributed redirection

service.
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Finally, another possible extension of the dis-

tributed redirection scheme would be to support

replica or object mobility. In such a case, it could

be necessary to store addresses also at intermediate

nodes and not only at leaf servers. For a highly
mobile object, the mobility pattern can be ana-

lyzed and the intermediate server storing its ad-

dress be strategically chosen on the path of the

object, as proposed in [2]. Internal mechanisms

for supporting mobility are partly present in the

distributed redirection service, for example when

a leaf server willing to install the address of a rep-

lica in the redirection service requires permission
to store the address. Additional mechanisms for

moving addresses in the hierarchy and gathering

information about mobility patterns are described

in [2].
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