Scalable Strong Consistency for Web Applications

Swaminathan Sivasubramanian Guillaume Pierre Maarten van Steen
Dept. of Computer Science, Vrije Universiteit
Amsterdam, The Netherlands
{swami,gpierre,stegi@cs.vu.nl

Abstract latencies. This bottleneck can be avoided by adopting weak

consistency models, which, in turn, requires significant ex-
Web application workloads are often characterized by a lajgertise from the application developers. In this paper, we
number of unique read requests and a significant fractionfofus on scalable solutions to guarantee strong consistency
write requests. Hosting these applications drives the needftarweb applications.

the n_ext generation CDN archit_ectu_re that does_ more tharwe explore an approach based on partial data replication,
caching the results of Web applications but replicates bofhich we call on-demand replication. Data is segmented

the application code and its underlying data. We Propggg, gata units and each data unit is replicated only to servers
the design of a system that guarantssng consistendr - hat access it frequently. So, the entire data set is not repli-

Web applications with higiscalability. The proposed Sys-cateq gt all replica servers. This approach can reduce the

temis based on partial replication, where data units are reglin chronization overhead as consistency updates for a data
cated only to servers that access them often. This reduces he are sent to a reduced number of servers.

consistency overhead as updates are sent to a reduced num-) L L
ber of servers. The novelty of our system is that the proposed//€ Pelieve that on-demand application replication is use-
partial replication is performed by the systemtomatically Ul for general e-commerce applications, as it allows the sys-
by analyzing the system’s access patterns periodically. {8 t0 exploit the location-specific interests in request pat-
explore the design space of this system, find the key iss{fygs. For instance, a worIQW|de €-commerce appllcano.n
that need to be addressed to build it and propose solutiond¢§S Ot need to replicate its customer database to all its
solve them. We further show that the proposed algorithifPlicas. North American customer records can be stored

offer significant performance gains compared to existing ggimarily in replica servers in North America and need not
lutions for a wide range of Web access patterns. be replicated to Asian servers. Though storage is not an is-
sue with sharp decline in storage costs, the synchronization

) costs would then be reduced when a customer record is up-
1 Introduction dated.

A growing number of e-commerce applications can be charAlthough we believe that data segmentation can help to
acterized by a large number of unique read requests ardgRlicate Web applications, it may be difficult for applica-
significant fraction of write requests. Hosting these applion developers or system administrators to come up with
cations in a centralized server (or cluster of servers) m@jicient schemes. We therefore propose that data segmenta-
result in poor response time for Web clients due to widion and replication to be performeditomaticallybased on
area network latency introduced for each access. To if{leir access patterns.
prove their performance, many systems cache the pages geBuilding a system for on-demand application replication
erated by the applications. However, such solutions reBquires addressing many issues such as identifying the
on the assumptions that the temporal locality of requestgianularity and constituents of the data segments, finding
high and the updates are infrequent. Applications that th® optimal placements for each data segment and the code,
not exhibit these characteristics can only be distributed wsanaging partially replicated data, and choosing the optimal
ing replication, where the application code is executed at tmnsistency strategy for each data segment. The contribu-
replica servers. This avoids the wide-area network latertayns of this paper are as follows: (i) We explore the design
for each read/write access and ensures quicker response sipaee of such a system and identify some of the key issues
to clients. that one needs to address to realize such a system and sug-
Replicating a Web application requires replicating botest solutions to solve them, and (ii) we also show that such
the application code (e.g., EJBs, CGIl scripts, PHPs) aptdemand replication can provide significant performance
the data that the code acts upon (databases or files). Tais.
is relatively easy provided that the code does not modify therne rest of the paper is organized as follows: Section 2
data [11]. However, most applications do modify their unsresents our application model. Sections 3 and 4 respec-
derlying data. In this case, it becomes necessary to man@@y discuss data clustering and replication techniques.
data consistency across all replicas. Efficient replication éction 5 evaluates the performance gains due to on-demand

such applications on a worldwide scale is difficult becausgdilication. Finally, Section 6 discusses the related work and
implies significant replica update traffic or high write accegsection 7 concludes the paper.

Web Application

HTTP Request

HTTP Response (HTML page)

Web Client

[——Data cluster

Data

D1 D2 D3

Figure 1: Application Model

2 System Model T
2.1 Application Model Figure 2: System Architecture

An important issue when replicating Web data is to decide .] o

to which extent the applications should be aware of reph9arse, we may lose the benefits of partial replication. On
cation. Replication can yield the best performance if it {§¢ other hand, if it is too fine, the overhead for handling
completely tuned to the specific application and its accd§®licas will be high. In our system, we employ an approach
patterns. However, this requires significant effort and expéfhere the data units are initially defined at a very fine grain.
tise from an application developer, for which reason optirraft@ units having similar access patterns are automatically
performance of the application is often not reached. F@©uped by the system into a single cluster. The system
thermore, changes in access pattern may warrant Changééjp§_equently handles rephcgﬂon at the cluster level, thereby
replication strategies. This makes the process of devel§}2king the problem of tracking a cluster tractable without

ing an optimal replication strategy for the application ne@Sing the benefits of partial replication. Clustering is de-
to impossible. scribed in more details in Section 3.

In our system, we made the opposite choice by having
a completelyreplication-transparengpplication model. In 2.2 System Architecture

our model, the application developer need not worry abaqut) . I
replication issues but only stick to functional issues. T N archltgcture of (-)ur.proposed system Is prgsented In Fig-
system will automatically derive a replication strategy for € 2. A given application is hosted over rep.I|ca SEIVers
given application, under possibly varying access patterns.Spr_ead across the I.nternet. .AS seen in the figure, the appli-
For the same reasons, we decided that our system Sh&?]téon data are partially replicated, so each server hosts only

. . . ; . a subset of all data clusters. We assume that Web clients
provide sequential consistency. This consistency model en-

ables the application developer to develop applications -l redirected to their closest replica server using standard

' echnologies, such as DNS-based redirection.
the underlying data were concurrently accessed from a cen;

.) . . T According to an application’s access pattern, the system
tralized location, thereby ignoring distribution issues. . : !
. e - must cluster data units and decide on the assignment of a
Our application model is given in Figure 1. As seen

i .
. Lo licat trat f h cluster. To th d, h ap-
the figure, an application is made of code and data. Tl% cation strategy for each cluster. 7o this end, each ap

code is written using standard technologies such as Act@éaﬂon is assigned or@rigin server which is responsible
. . making all application-wide decisions such as clusterin
Server Pages (ASPs), CGI scripts or EJBs deployed in a0 g ppication-wi 'S ! usterng

- . a units and placing clusters on servers. The origin server
application server. The code receives HTTP requests fr%@o acts as the initial replica for all data clusters.
its Web clients and issues read/write accesses to the relevaﬁt

data (in a datab fil : N h s noted earlier, we want to provide replication trans-
ata (in a database or filesystem) to answer them. parency for which we believe sequential consistency is the

Access to the data is realized by a data driver, which afia; \odel. This choice requires an efficient consistency

as the interface between the code and data. It preserves disq, .o in the presence of concurrent updates. We adopted
tribution transparency of the data as it hides the fact t

. , . X aster-slave consistency protocol: each data cluster has
data are partially replicated. The data driver has a sim

. L . . R%naster server responsible for synchronizing simultaneous
file-system-like interface (for accessing file-based data) dates emerging from different replica. The master for each

JDBC-like interfaces (for databases) and is responsible iof, oster is selected by the origin server. Read requests for
finding the data required by the code, either locally or frofiya cluster are forwarded to the closest server that contains
aremote server. o) areplica (if not present at the replica server that received the
We assume that the data are split int@ata units,D1, client request). Write requests for a data cluster are always
Dy, -+, Dy, where a data unitis the smallest granule of repisyarded to the master. The master pushes the update to
cation. Each unit is assumed to have a unique identifigf, 5|aves each time the contents of the data cluster is modi-
which is used by the data driver to track it. Examples of dafaq. |ssuing all write operations to a given cluster at a single
units are files, database tables, or even records. The sy§iMmion effectively serializes updates, which generates se-
replicates each data unit according to its specific pattem-quential consistency. We chose the protocol primarily for

~ Choosing the right granularity of data for replication hags simplicity and because is is sufficient for clarifying our
important performance implications. If the granularity is togosition.

3 Data Clustering tate the protocol used to enforce data consistency among

. . . . licas. Master selection mechanism i n the mas-
As discussed before, fine-grained data segmentation m{recE cas. Master selection mechanisms decide on the mas

o9 . . er replica responsible for handling concurrent updates for a
duces a large number of individual data units, posing a sc P P g P

o L . ata cluster. As we made the choice of a master-slave consis-
ability problem for replication algorithms. We propose tP . “ " -
. N . Tency protocol, the selection of the “best” replication strat-
cluster data units with similar usage patterns and repllc%?e involves deciding onlv on replica placement and master
data at the cluster level instead of the data unit level. Subsgy g only P P

. . Selection.
g::Z?:gis;i:jn;&tﬁﬁg?;g]} be efficiently handled throug%ro select the “best” replication strategy for a data clus-

Our system consists of replica serversiy, Ry,...R ter, the system needs to know what the definition of “best”
holding data unitsDy,Ds....D,. We want tc; gr(;up g;taperformance is. One can measure the performance of the
units with similar rea& aryld Wrr;te access patterns HowevS stem with a numbe_r of metrics such as the average read_la-

: ehcy, the average write latency, the amount of update traffic,

for the sake of simplicity, we limit our discussion to onl tc%However, optimizing the system performance for one of
e

;Zas?l agifesns dgztigrgzéo-rr:;;z;?gl\?vﬁ: g;i:gtegttr;?;z 2@ metrics alone would often result in degrading the oth-
y P " ers. For example, a system can be optimized for minimiz-

Each data unit D; has an access patterrilng read latency by replicating the data to all replica servers.

Ai:{m*l'T‘i’2"a’7'i’gl}thher? Tig 13 tf;fe nurgbter ofﬂr}ead However, this can lead to huge update traffic if the number
accesses made by the replica seriigrfor a data unitD;. of updates is high.

VYe \t/van.tflt: grc;u;two dgta}I unit®; and D; into the same It can be seen that there is a clear tradeoff between the
Cf er, I.I i an bl J aref5||m|ar._ has b died bef Ferformance gain due to replication and the performance
. simifar problem ot © u_ster_lng nas been studied betofges ye 1o its consistency enforcement. In our system, we
in the context of collaborative filtering or recommender sy

ropose to represent the overall system performance into a
tems [7]. Recommender systems observe the access pat mﬁe abstract figure usingamst function An example of
of end-users to products, and try to cluster end-users

AN . . Qost function that measures performance of a replication
have similar interests. This allows the system to issue P&frategys during a time period is:

sonalized recommendations for products that can be of mteréost(s’ 1) = axr(s,t) + 8% w(s,t) + 7 b(s,)

est to each particular user. This problem is similar to OU[Sporer is the average read latenay, is the average write

where the role of end users is played by replica servers Ei”é?t‘fncy b is the amount of bandwidth used for consistency
the role of products is played by the data units. !

e : . enforcement, and, 3 and~ are weights associated to each
A s!m|lar|j[y metric fre_qu_en';ly used in _recommender SYS¥netric. Weights must be set by the system administrator
tems is cosme-pased S|_m|Iar|t_y. It considers t_he_ access pled on the system constraints and application require-
terns of da:ja units lasl-dméens[ona.ll vec;ors. Similarity be'ments. A larger weight implies that its associated metric has
tween two data unit®); and ; Is given by more influence in selecting the “best” strategy. Finding the

—
Sim(i, j) = cos(Ai, Aj) = TA“AJ' . “best” system configuration now boils down to evaluating
_ 1Az Asl S the value of the cost function for every candidate strategy.
Data unitsD; and D; are clustered ibim(i,j) > 1 -z, By definition, the best configuration is the one with the low-
wherez is a threshold such that< » < 1. est cost.

In general, clustering a large number of data units is com-jgeally, the system should treat the master selection and
putationally expensive, of orde€?(m x n). However, since repjica placement as a single problem and select the combi-
the access vectors of data units are sparse in nature, it §8flon of master-slave and replica placement configuration
effectively be reduced t0(m + n). that yields the minimum cost. However, such a solution

Another important step is to handle the run-time creatigfpuld require an exhaustive evaluation 23t « m config-
of a new data unit. In our system, new data units are alwaygtions for each data cluster,if is the number of replica
created at the origin server. They are not replicated imm@srvers. This makes this solution computationally infeasible.
diately: the Origin server first collects the access pattern tﬁrour System, we emp|oy the use of heuristics to perform
the new data unit and determines which cluster should h%“ca p|acement and master selection. For each pr0b|em'
it. If no suitable cluster is found, the origin server createsyg@ propose a number of possible heuristics. This reduces the
new cluster containing the new data unit. A new data unitdgoblem of choosing replication strategy to evaluating which
replicated as soon as it is inserted into a cluster. combination of heuristics performs the best in any given sit-

4 Replication Policies uation.

Replicating an application requires that we replicate its coge,l
and data. For the sake of simplicity, in this paper we assume
that the code is fully replicated at all replica servers. In this our system, the origin server periodically collects the ac-
section, we discuss algorithms concerning the selectionceks patterns of each data cluster from all replica servers.
the “best” replication strategy for a data cluster. Subsequently, it places a replica of a data cluster in a replica
A replication strategy describes at least three aspedistver, if it generates at leas? of data access requests.
replica placementconsistency mechanismaind, in our case, This creates a family of heuristid3z.
master selectionPlacement mechanisms dictate the numberObviously, the value of affects the performance of the
and location replicas, while consistency mechanisms dgystem. A high value of will lead to creating no replica at

Replica Placement Heuristics

all besides the origin server, therefore to lose the advantalgésd as the Euclidian distance of their co-ordinates in this
of replication. On the other hand, a low valuexoWill lead space. This method of latency estimation is shown to be
to a fully replicated configuration, losing the advantages faiirly accurate while requiring relatively few measurements.
partial replication. Hence, it is important to choose the righaitencies between our servers range from 23 ms to 2700 ms.
value ofz based on the access patterns of the data cluster. Simulating the diversity of client interests for a particular
Expecting the system administrator to determinis not data cluster is harder to solve. This is an important factor as
reasonable, as the number of parameters that affect the ffer-diversity of client interest influences the performance of
formance is high. Instead, administrators are just expecteddemand policies. For example, if a data item is of interest
to define their preferred performance tradeoffs by choosittgonly a small subset of servers, then on-demand replication
the weight parameters of the cost function. The system wilin give huge performance gains in terms of read/write la-
automatically adjust the replication configuration to the otency and update traffic. On the other hand, if the data is of

that gives the best cost. equal interest to clients of all replica servers, then the perfor-
. L. mance gains due to on-demand replication will not be high
4.2 Master Selection Heuristics as the data is required everywhere. However, it is important

Careful master selection is essential to optimize the wrff US to study the performance of on-demand replication in
latency and the amount of bandwidth utilized to maintati€ full spectrum of cases. o , -
consistency among replicas. In our system, we consider twd/ve modelled the diversity of client interest using statisti-
heuristics for master selection mechanisms. iost-writer €@l distributions. Since, to our knowledge, there is no earlier
heuristic selects the master as the replica server that gefifdy that has modelled the geographical influence of client
ates the highest number of update requests. This strafiRf}Hests to a database, we based our simulations on a Zipf
allows the highest fraction of write requests to be handled @stribution for generating diversity in client interest for a
cally. However, if all servers issue similar numbers of wriearticular data cluster. We take the exponer the Zipf
requests, this strategy will give poor write latency becaus@igtribution as an input parameter for our experiménta

large fraction of write requests will be redirected to the ma3iUdy our system in diverse access patterns, we vary the pa-

ter, which is not necessarily topologically close to the othE¥Metera. A trace generated with a low value efimplies
writers. that each server is equally likely to access a data cluster i.e.,

This problem is avoided by thelosest-writer heuris- the distribution of client interest is flat. In contrast, a high

tic, which selects the server that offers the least averaffUe ofa generates a trace where each data cluster is of
write latency as the master. #; is the number of write interest only to a small number of servers (those with the
requests by replica serve; and l;; is the latency be- highest rank) e, the Q|str|but|on _of client interest is more
tween replica serverand;j, then the average write latencyskewed. In our simulations we variedetween 0 and 3.
for a data cluster whose masterfisis given by: w;, = Wg measure the system performance using the following
(™ m * L) /(0™ ns). Theclosest-writetheuristic se- metrics: (i) Average Read latency (ARL):the average la-

lects the server with lowest average write latency as the m&Icy incurred by read requests for a data cluster@er-
ter. age Write latency (AWL): the average latency incurred by

write requests for a data cluster and (Number of con-
. sistency messages (NCM}he number of update messages

5 Performance Evaluation sent among replica servers to keep the data consistent (ex-
In this section, we show that on-demand data replication cauding the client-to-replica traffic). NCM serves as an indi-
provide considerable performance gains. Moreover, depegator of the amount of bandwidth utilized by the system just
ing on the access patterns, different policies perform bdst. maintaining data consistency.
This demonstrates that our system should dynamically adaptach simulation consists df 000,000 requests, half of
its policies when the access patterns change. which are write requests. We study the performance of

Ideally, we would perform experiments based on redhe following policies: (i) centralized solution, (ii) fully
world traces of data accesses from a global dynamic Welplicated solution with origin server as the master (Full),
site. However, the lack of such publicly available traces ré#i) P5 — closest, (iv) P10 — closest, (v) P15 — closest
stricted us to simulating the system with synthetic traces.and (vi) P5 — most. To be fair on the centralized and

Building a fair experiment that simulates an Internet-widelly replicated solutions, we chose the best possible replica
CDN has two important challenges: (i) simulating a wideserver as the origin server. That is, when assuming that all
area network with realistic network delays between servegsvers have the same access pattern, the server with the min-
placed worldwide; and (ii) simulating the diversity of interimum average latency to other servers is chosen as the origin
est among clients in each particular piece of data. server.

To simulate a set of servers to host a Web application, weDue to the lack of space, we present only some of our
selected 00 hosts that visited our department Web site, susimulation results. For a detailed performance evaluation,
that they are spread across 6 continents and 66 countires,@agse refer to [12t].

can represent our replica servers. We estimated the latenciéd9ure 3 presents the effect of varying the value oh the

between each pair of hosts using SCOLE [14]. SCOLE System perforr_n'ance. As can be seen, on-dgmand replication
sociates hosts with co-ordinates in Ardimensional space produces significant gain in terms of read/write latencies (by

by measuring their Iatency to a fixed m_meer of known land- 1A Zipf distribution states that the frequency of occurrence of a particu-
marks. The latency between two positioned hosts is calGuvalue i is given byf; = C - 7, * wherer; is the rank ofi's occurence.

1e+08

500 ‘ ‘ ‘ ‘ ‘ 500
450 \ 1 450} z
400 / Centralized] 00l // cont @ \F““ ; .
350 1 2 3500 2 1e407;
£ 300 g g 7
2 P15-closest = 300 P10—closest R 3 P5—closest
= 250 = 1 I P15-closest g P5-most
= P10-closest 2 250 9 2
g 200 1 =) - P10-most
= . = 200} s £ 1e+06} |
150 . PS-most P5-closest, K] °
100} P5-closest 150+ 3 .
50 Full 100} P5 most “ Centralized P15-closest
0 o, . 0L ‘ ‘ ‘ ‘ ‘ 100000
0 0.5 1 15 2 25 3 0 0.5 1 15 2 25 3 0 05 1 15 225 3
Flat a Skewed Flat a Skewed Flat a Skewed
(a) Effect ofa on the Average (b) Effect ofa on the Average (c) Effect ofa on the Number
Read Latency Write Latency of Consistency Messages

Figure 3: Effect of distribution skew on system performance

0wl OO0 o000 O0 QD [Centralized is flat, as in such cases placing less replicas yields reduced

Ml 00000000000 c W Ful update traffic. On the other hand, when a small number of
06! 00D 0O RKKKKERE B Pscosest servers generate most of the requests (be it reads, writes, or a
£041 ODOONKKEBESEESR KX Pldse combination thereof) it is preferable to place more replicas,

MIOOOREHBEREERE O Pide and each close to where the requests come from.

" - This result also suggests that replication policies should

0 02503075 10125 13175 20 225 25 275 0 be selected on a per-data cluster basis according to their
Figure 4: Best Replication Policy for Different Access Paficcess patterns. \We propose th.aj[our system periodically
terns e\r/1aluatets the cotsr: of glfferer_n plt)hcgas ftO;' eaclh Qata cluster.
i The system can then dynamically adapt its policies on a per-
a factpr of4) and reduced update.trafﬁc (by two or ders cE:quster basis to provide optimal performance.
magnitude) compared to fully replicated or centralized sys-
tems. The more the client diversity increases, the best our
system performs. However, even in the case of a flat dis§- Related Work
bution of interests (low values af), on-demand replication
policies give low write latencies and reduced update traffi.or the past decade, numerous solutions have been proposed
It must be noted that gaining two orders of magnitude in the context of caching systems for delivering Web con-
network traffic is of immense significance to a worldwidgent [13]. Most of these systems assume that the temporal
CDN, as the Internet is often affected by network congéscality of the client requests is high, as these systems were
tion. Reduced number of consistency messages also Wilfially built for delivering static Web documents. Systems
lead to improved write latency of the system and less casitich as Akamai's ESI and WebViews [9] rely on this as-
as CDNs are usually charged by ISPs and data centers basgaption and cache the results of the Web application. Un-
on the amount of traffic they generate. fortunately, this assumption is often not true for applications
We now address the question: which policy performs bestaracterized by a large number of unique reads or a signifi-
for a given access pattern? In the following experiment, want number of writes. Such applications can be distributed
vary botha and the ratio of write requests among the totahly using replication (of both code and data), where the ap-
1,000,000 requests. For each such defined access pattermplization code is executed at the replica servers.
simulated each replication policy and selected the best one a& number of systems have been developed to handle Web
the one with the lowest cost. We normalized the weights &pbplication replication [1, 2, 5]. These systems replicate the
the cost function such that each parameter has roughly equale at the replica servers, but either do not replicate the
significance: a=1/7mqaz; B=1/Wmaz; andy=bnq., Where application data or cache them at the replica servers. This
Tmazy Wmaz 8Ndby,q, are maximum values of average realiinits the system performance as all write requests need to
latency, write latency, and number of consistency messapedorwarded to a single remote location.
respectively. Figure 4 shows which policy performs best forin [6] the authors propose an application-specific edge
each request pattern. service architecture, where the application itself is supposed
As seen in the figure, depending on the access pattéontake care of its own replication. In such a system, access
different policies perform best. For example, an applicatitm the shared data is abstracted by object interfaces and each
with no updates (write-ratid3) performs best with full repli- replica communicates to another using a persistent messag-
cation, as all requests will then be served locally. Similarlyg layer. This system aims to achieve scalability by using
if there is a flat distribution of clients and only write requestgseaker consistency models that suits the application. How-
(e = 0 and write-ratio), the centralized solution performsever, this requires the application developer to be aware of
the best as it has a replica only at the origin server theredy application’s consistency and distribution semantics so
giving the best average write latency without any update tréfiat this knowledge can be used while developing these ob-
fic overhead (note that the origin server was selected asjws. This is in conflict with our primary design constraint
server that gives the least average latency). For all otlékeeping the process of application development simple.
values, on-demand replication performs best. Policies withOur work has strong ties to partitioning in distributed
higher threshold perform best when the request distributidatabases [10], a distinction being that fragments are usu-

ally not created based on runtime analysis of access patterf3. BLooM, B. H. Space/time tradeoffs in hash coding
Partitioning traditionally leads to problems when applica- with allowable errors. Communications of the ACM
tions need different fragments of the same relation, such as 13, 7 (1970), 422—-426.
in ajoin. In our approach, we expect to circumvent this prob-
lem through proper data clustering by first choosing a fin&H
granularity (e.g., a single row in a relation) and subsequently
clustering rows into fragments based on actual access pat-
terns. However, further research is needed to substantiate
our claim of scalability for real Web appllcat]ons. [5] CAO, P., ZHANG, J.,AND BEACH, K. Active cache:
Recently, database sesearchers have built systems such aSCaching dynamic contents on the Web.Aroc. of the
DB-Cache [4].and MTCache [8], wh|ch cache_the results of Middleware ConferencéSept. 1998), pp. 373-388.
selected queries and keep them consistent with the underly-
ing database. Such approaches will offer performance gaif] GAo, L., DAHLIN, M., NAYATE, A., ZHENG, J.,
provided that the access patterns contain few unique read AND IYENGAR, A. Application specific data replica-
and write requests. However, the success of these schemes tion for edge services. IRroc. of the Twelfth Interna-
depends on the ability of the database administrator to iden- tional World-Wide Web Conferen¢2003), pp. 449—
tify the right set of queries to cache. This requires careful 460.

manual analysis of the data access patterns to be done peri-
odically to identify the current "hot” requests. [7] HERLOCKER J. L., KONS_TAN’,‘]' A., BORCHERS
A., AND RIEDL, J. An algorithmic framework for per-

forming collaborative filtering. IrProc. of the 22nd
7 Conclusions and Future Work ACM SIGIR conference on Research and development

_ _ ~ininformation retrieval(1999), pp. 230-237.
This paper explores the design space of a scalable Web appli-

cation replication system that guarantees strong consistent§] KE LARSON, P., GOLDSTEIN, J., QUo, H., AND
We adopt a simple application model for the system, which ZHou, J. MTCache: Mid-tier database caching for sql
we expect will ease the process of application development. server.Data Engineering 2,72 (June 2004), 27-33.
The novelty of our approach is that it employs partial replica- .
tion where the data is dynamically replicated only to servergg] LABR'.N'.D'S.’ A., AND ROU.SSOPOULOSN' Webview
that access them. This allows the system to exploit location- mater_|a||zat|o_n. IrProceedings of the 2000 ACM SIG-
specific interests in request patterns. MOD international conference on Management of data

We show that on-demand replication performs better than (2000), ACM Press, pp. 367-378.
centralized and fully replicated systems by reducing the a8y0] Ozsu, T., AND VALDURIEZ, P. Principles of Dis-
erage latency of read/write data access as well as the amount triputed Database Systenrznd ed. Prentice Hall, Up-
of traffic to maintain replicas consistent. Moreover, the best per Saddle River, N.J., 1999.
replication strategy depends on the data cluster’s access pat-
tern. Our system will automatically select the best replicEll] RABINOVICH, M., XIAO, Z., AND AGARWAL, A.
tion strategy for a given situation through run-time evalua- Computing on the edge: A platform for replicating in-
tion of a cost function. ternet applications. IRroc. of the Eighth International

We have implemented the proposed system as a PHP Workshop on Web Content Caching and Distribution
driver for PostgreSQL database and are in the process of (Hawthorne, NY, USA, Sept. 2003).
measuring its performance.

The proposed cluster-based replication is suitable
large scale databases where the access patterns of individual o .
data units do not change often. However, if they do, then it repycatlon, Dec. 2003. http:/iwww.globule.
is necessary to re-cluster each cluster periodically to ensure 9
that a cluster does not contain data units with different accgss] SivASUBRAMANIAN , S., SYMANIAK , M., PIERRE,
patterns. To avoid the problem of periodic re-clustering, we G., AND VAN STEEN, M. Web replica hosting sys-
plan to explore the design of fine-grained data replication tems. Tech. Rep. IR-CS-001, Vrije Universiteit, Ams-

BORNHVD, C., ALTINEL, M., MOHAN, C., RRA-
HESH, H., AND REINWALD, B. Adaptive database
caching with DBCacheData Engineering 2,72 (June
2004), 11-18.

%rZ] SIVASUBRAMANIAN, S., RERRE, G., AND VAN
STEEN, M. A system for on-demand Web application

that performs data replication at fine-grained level. terdam, The Netherlands, May 2003.
[14] SzYMANIAK , M., PIERRE, G., AND VAN STEEN, M.
References Scalable cooperative latency estimation. Piroceed-
ings of the 10th International Conference on Parallel
[1] AkAMAI INC. Edge Computing Infrastructure. and Distributed Systems (ICPAD8)Jewport Beach,

CA, USA, July 2004).
[2] AWADALLAH , A., AND ROSENBLUM, M. The vMa-

trix: A network of virtual machine monitors for dy-
namic content distribution. IfProc. of the Seventh
International Workshop on Web Content Caching and
Distribution (Aug. 2002).

