Replicating Web Applications On-Demand

Swaminathan Sivasubramanian Guillaume Pierre Maarten van Steen
Dept. of Computer Science, Vrije Universiteit, Amsterdam
{swami,gpierre,stegi@cs.vu.nl

Abstract at servers located close to the clients [1, 11]. However, this
solution relies on the assumptions that the temporal local-
Many Web-based commercial services deliver their con- ity of requests is high and the requests that lead to data up-
tent using Web applications that generate pages dynami-dates are infrequent. Unfortunately, this assumption is of-
cally based on user profiles, request parameters etc. Theten not valid for applications that receive a large number
workload of these applications are often characterized by of unique requests or a significant number of requests that
a large number of unigue requests and a significant frac- lead to data updates. Such applications can be distributed
tion of data updates. Hosting these applications drives the only through replication, where the application code is ex-
need for systems that replicates both the application codeecuted at the replica servers. This avoids the wide-area net-
and its underlying data. We propose the design of such awork latency for each request and ensures quicker response
system that is based on on-demand replication, where datatime to clients.

units are replicated only to servers that access them often. Rep“cating a Webh app"cation requires rep"cating both
This reduces the consistency overhead as updates are sefhe application code (e.g., EJBs, CGl scripts, PHPs) and the
to a reduced number of servers. The proposed system algata that the code acts upon (databases or files). This can re-
lows complete replication transparency to the application, duce the latency of requests, as the requests can be answered
thereby allowing developers to build applications unaware py the application hosted by the server located close to the
of the underlying data replication. We show that the pro- clients. Replicating applications is relatively easy provided
posed techniques can reduce the client response time by ahat the code does not modify the data [14]. However, most
factor of 5 in comparison to existing techniques for a real- applications do modify their underlying data. In this case,

world e-commerce application used in the TPC-W bench- it pecomes necessary to manage data consistency across all
mark. Furthermore, we evaluate our strategies for a wide replicas.

range of workloads and show that on-demand replication
performs better than centralized and fully replicated sys-
tems by reducing the average latency of read/write data ac-
cesses as well as the amount of bandwidth utilized to main-
tain data consistency.

Propagating every data update to all servers can lead to
a significant overhead in terms of update traffic if the ap-
plication generates many data updates. Such overhead can
be reduced by adopting weak consistency models, but this
requires significant expertise from the application develop-
ers. In our system, we made the opposite choice and focus
on scalable solutions that guarantee full replication trans-
1. Introduction parency for Web applications while maintaining strong con-

The Web is the leading platform for hosting commercial S|stenc¥.))
services, such as book shops and music stores, in the Inter- In this paper, we propose to not replicate all applica-
net. The Web sites hosting such services often do not delivertion data at all servers. Instead, data are segmented into data
static Web pages, but are made of applications that generlnits and each data unit s replicated only to the servers that
ate pages based on request parameters, individual user préiccess it frequently. We call this approasirdemand repli-
files, etc. Dynamic document generation for a request usu-cation This approach can reduce the synchronization over-
ally requires, in turn, to issue read or write accesses to ahead as consistency updates for a given data unit must be
database. sent to a reduced number of servers. Furthermore, we pro-

Hosting such applications in a centralized server (or clus- POSe to combine our technique with fragment caching. As
ter of servers) may result in poor response time for Web We later show in our performance studies, this combination
clients due to the wide-area network latency introduced ¢an perform well for a wide range of application workloads.
for each request. An obvious solution, known as fragment We believe that on-demand application replication is
caching, is to cache the pages generated by the applicationaseful for general e-commerce applications, as it allows

the system to exploit the location-specific interests in re-
guest patterns. For instance, a worldwide e-commerce ap- ==/

plication does not need to replicate its customer database \
to all its replicas. North American customer records can be g

stored primarily in servers in North America and need not PR
be replicated to Asian servers. Though storage is not an is- 5

sue with sharp decline in storage costs, the synchronization /
costs would then be reduced when a customer record is up-

dated. As we show later in our performance evaluations, on- ~ Client

demand data replication can reduce the update traffic by Figure 1. Application Model
to 2 orders of magnitude in comparison with other existing
techniques. In addition, for the TPC-W e-commerce bench- o))]
mark [16], on-demand replication can reduce the client la- repllcatlon issues byt only st!cks to fu.nctl'onal issues. The
tency by a factor ofs in comparison with other existing system will autqmatlcally derlye a replication strategy, and
techniques. possibly adapt |'t uqder changing access pattgrns:

The contributions of this paper are as follows: (i) we To keep repllcatlon transparent to the appllpatlon devel'—
propose an architecture for a system that performs on-CPers, we decided thgt our system should provide sequential
demand replication of Web applications; (i) we show that consistency [12]. This consistency model enables the de-
such on-demand replication can provide significant perfor- VElOPer to write applications as if the underlying data were
mance gains using a real world e-commerce application and-oncurrently accessed from a centralized location, thereby
its workload provided by the TPC-W benchmark; and (jii) '9noring distribution issues. o _
we evaluate the potential performance gains of on-demand OUr application model is shown in Figure 1. As seen in
replication for a wide range of workloads, characterized by the figure, an application is made of code and data. The code

different update ratios and data access patterns. is written using standard technologies such as Active Server
The rest of the paper is organized as follows: Sec- ~29€s (ASPs), CGl scripts or EJBs deployed in an applica-

tion 2 presents our application and system model Sec_tion server. The code receives HTTP requests from its Web

tion 3 presents the detailed design of the data ariver clients and issues read/write accesses to the relevant data in

the central component of our on-demand data replica—adatab‘"1se to generate a response. . .

tion architecture. Section 4 discusses our replication ACCess tothe datais realized by a data driver, which acts

and caching techniques. Section 5 evaluates the perfor-as the interface between the code and datae data driver

mance gains due to on-demand replication for the TPC-\ Preserves distribution transparency of the data as it hides the

based e-commerce application. Section 6 evaluates the pe|f_act that data are patrtially replicated. It has a simple JDBC-
formance gains due to on-demand replication for a wide like interface and is responsible for finding the data required

range of application workloads. Section 7 discusses the re-PY the code, either locally or from a remote server, and for

lated work and Section 8 concludes the paper. maintaining data consistency. L _
We assume that the data are split intalata units,Dy,

Dy, --,D,, where a data unit is the smallest granule of

[—

Application

Requests/Responses T
equ =P - Code

2. System Model replication. Each unit is assumed to have a unique identi-
o fier, which is used by the data driver to track it. Examples
2.1. Application Model of data units are database tables, or even records. The sys-

tem replicates each data unit according to its specific pat-
An important issue when replicating an application is tern.
to decide to which extent the application code should be Choosing the right data granularity for replication has
aware of replication. Replication can yield the best perfor- important performance implications. If the granularity is
mance if it is completely tuned to the specific application too coarse, we may lose the benefits of partial replication.
and its access patterns. However, this requires significant ef-On the other hand, if it is too fine, the overhead for han-
fort and expertise from an application developer, for which dling replicas may be high. In our system, we employ an
reason optimal performance of the application is often not approach where the data units are initially defined at a very
reached. Furthermore, changes in access pattern may wafine grain. Data units having similar access patterns are au-
rant changes in replication strategies. This makes the protomatically grouped by the system into a single cluster. The
cess of developing an optimal replication strategy for the system subsequently handles replication at the cluster level,
application next to impossible.
We made the opposite design choice by having a com-1 The data driver we describe is different from conventional JDBC
pletely replication-transparentapplication model. In our drivers as this driver is not just an interface driver but also respon-
system, the application developer need not worry about sible for functional aspects such as replication and location of data.

thereby making the problem of tracking a cluster tractable decisions such as clustering data units and placing clusters

without losing the benefits of partial replication. on edge servers. The origin server performs clustering and
In [8], the authors study a similar problem of clustering placement periodically to handle changes in data access pat-

Web pages to reduce the overhead in handling replicas forterns and the creation of new data units.

each Web page. The authors propose spatial clustering al-

gorithms to group Web pages into clusters. Subsequently, .

the system replicates pages at the cluster level, thereby re?" Data Driver

ducing the cost of replica placement. The authors also pro- .

pose incremental clustering algorithms to handle changing '€ data driver is the central component of our system.

access patterns and creation of new Web pages. The authofé S in charge of clustering data units, replicating them, lo-

show that these clustering algorithms perform well for real- €ating the data units required by the application code and

world Web traces. We plan to use similar spatial clustering Maintaining consistency among replicated data.

algorithms for clustering data units. However, data cluster- ~ The driver maintains two tables. First, theuster-

ing is not the focus of this paper hence, throughout this pa_membershipable stores the identifiers of data units con-

per, we assume the data units are already clustered. tained in each clustef. Second, theluster-propertytable
contains the following information for each data clus-

ter: the origin server of the cluster, a reference to the
cluster in the local database (if available), the identi-

)) . fier of its master replica and the list of servers that host
The architecture of our proposed system is presented ing copy of this cluster. These two tables are fully repli-
Figure 2. A given application is hosted overedge servers .atad at all edge servers.

spread across the Internet. Each client is assumed to be redi- The driver locates a data unit by first identifying the

rected to its closest edge server using standard te‘:hmloéluster to which the data unit belongs using tHaster-
gies, such as DNS-based redirection [1, 9]. Commun'ca“onmembershinable. Once the appropriate cluster is identi-
betwegn edge SEIVers usually goes through wide-area netﬁed, the driver uses theluster-propertytable to find de-
works Incurring wide-area latency. tails about the location of the cluster and its master.

When a client issue an HTTP request to the Web server, The data driver receives two kinds of data access queries.

the server first chepks if the response to the correspondlngwe refer to the queries based on primary keys of a table as
request is present in the cache. If found, the response is re-

turned immediately from the cache. Otherwise, the requestSImpIe queriesExample of a simple query can be “Find

is passed over to the application code residing in the app”'non-primary keys (e.g., secondary key based access) are re-

c?tlonds/er\{;ar. The appllctanfin go?e tuhsuallw.:,rs]ueds ? ngmbe?erred to axcomplex queriesExample of a complex query
of read/writé accesses 1o 1ts data throug € data drver..,, be “Find all customer records whose location is ‘Ams-

The application data are partially replicated, so the local

terdam”.
database hosts only a subset of all data clusters. The data As noted earlier. we assume that each data unit has
driver is responsible for finding the relevant data either lo- 2 uniaue identifier ' For fine-arained data units. such as
cally or from a remote edge server if the requested data aredatab(;se records -we use thg fimary kev as tr’1e record’s
not present locally. Additionally, when handling write data unique identifier fhis allows thepdata grive?/to map simple
accesses, the driver is also responsible for ensuring consis- qt s . . P P
tency with other replicas of the updated data unit gueries onto required data units, which makes the process-

AZ noted earlierpwe want to n?aintain sequential consis- ing of locating data unil(s) relatively straightforward.

tency. We adopted a simple master-slave consistency proto- For answering complex queries, the driver must not only

col: each data cluster has a master server responsible for Sec_heck its local database but also the entire database located

rializing concurrent updates emerging from different repli- across multiple servers, as it does not have the complete in-

cas. Read data accesses are forwarded to the closest Servf&rmatlon on W.h'Ch data units match the query (e._g., there
an be data units on other servers whose location field value

that contains a replica. Write accesses are always forwarded

to the master of the data cluster, which immediately pushesIS Amstf)rdtam I). To d%th'ts’ ;he driver S}eiq n(t)ttC(I)r;]tact etlrl]
the update to all its replicas. Issuing all write operations to Servers but only a Subset of servers that in total have the

a given cluster at a single location effectively serializes up- g(r)'meektar:ir??;abiss?st?hb;ed:tvaedcralIetrgls'nstuhpiier?i?g?eers o
dates, which generates sequential consistency. v qu IVETs | ! v

To perform on-demand replication, the system must clus- execute the query, merges their responses and returns the re-

ter data units, decide on the placement of replicas for eachSUIt to the application code.

cluster and choose its master according to its access pat
tern. To this end, each application is assigned Onigjin 2 Anaive representation of this table can lead to a scalability bottleneck.
server which is responsible for making all application-wide ~ To avoid this, we intend to use Bloom filters [3].

2.2. System Architecture

customer record whose userid is ‘Bob’.” Queries based on

Cache K
! ' Edge Server ,/Web
""""" ‘;‘ Interactions
Web Appln.| | | : \
|- PP <t Data i Read/ Database
Interactions Server| |} | i
/ Derel‘% Server Edge Server Wide-Area Network /
Lo
— g Edge Server Web
Web Application Server - A S . &teractions
Edge Server Data replication/ \

(A detailed look) consistency updates

Figure 2. System Architecture - Edge servers serving clients close to them and interactions among
edge servers goes through Wide-area network. A detailed look of the design of an Edge Server.

Note that there can be more than amén-setand se- 4. Replication and Caching Policies
lecting the right one is important for having a low re-
sponse time. Since queries can be addressed tonthe Replicating an application requires that we replicate its
setin parallel, the response time for answering a complex code and data. For the sake of simplicity, in this paper we as-
query is limited by the maximum round-trip time to any sume that the code is fully replicated at all replica servers.
server in themin-set The problem of finding amin-set In our system, each data cluster is replicated independently.
for a given database table is to determine a set of serverdn this section, we discuss algorithms concerning the selec-
that (i) together have the entire database table and (ii) of-tion of the “best” replication strategy for a data cluster. Fur-
fer the smallest round-trip time from the requesting server. ther, we discuss fragment caching techniques which are use-
To explain this, let us consider the scenario where the sys-ful for application with mostly read-only data accesses and
tem has3 servers{R;,R»,R3} and4 data clusters in total. propose a hybrid strategy that is made of a combination of
Let us assume tha®, contains cluste{C;,Cs>}, Ry con- on-demand data replication and fragment caching.
tains{C3,C4} and R3 contains{C1,Cs}. If serverR; gets
a complex query, then thain-setfor R, will be {R;,R>},
if Ro has smaller round-trip time t&; than R3. Determin-
ing a goodmin-setfor a server is relatively simple. Fur-

ther, it needs to be re-computed only when there is a change A repllcatmn_ strategy descr_|bes three aspemplica
. ; .~ placementconsistency mechanisand, in our casenaster
in the cluster-propertytable, i.e., when an edge server is

X . . selection Replica placement decisions concerns the number
added/removed from list of servers holding the replica of a : :) . .
cluster. and location of replicas. Consistency mechanism dictates

the protocol used to enforce data consistency among repli-
cas. Master selection involves choosing a master replica that
is responsible for handling concurrent updates for a data
cluster. As we made the choice of a master-slave consis-
Note that, although queryingrain-setincurs wide-area tency protocol, the selection of the “best” replication strat-
communication, the proposed system does not perform anyegy involves deciding only on replica placement and master
worse than existing systems while answering these com-selection.
plex queries. For instance, in fragment caching systems, an- To select the “best” replication strategy for a data cluster,
swering both simple and complex queries involves wide- the data driver needs to know what the definition of “best”
area traffic. To obtain an idea of the percentage of trans-performance is. One can measure the performance of the
actions that involve simple and complex queries in a real- system with a number of metrics such as the average read
world application, we examined the TPC-W benchmark ap- latency, the average write latency, the amount of update traf-
plication and its different workload mixes [16]. Depending fic, etc. But optimizing the system performance for one of
on the workload mixes, at leaé®% of the transactions are these metrics alone would often result in degrading the oth-
based on simple queries, while the rest use complex queriesers. For example, a system can be optimized for minimiz-
This means that wide-area communication overhead occursng read latency by replicating the data to all replica servers.
in at most40% of the cases. As we show later, this over- However, this can lead to huge update traffic if the number
head can be reduced by fragment caching. of updates is high.

4.1. Data Replication

In general, there is a clear tradeoff between the perfor-4.1.2. Master Selection HeuristicsMaster selection is
mance gain due to replication and the performance loss dueessential to optimize the write latency and the amount of
to consistency enforcement. In our system, we propose tobandwidth utilized to maintain consistency among replicas.
represent the overall system performance into a single abdn our system, we consider two heuristics for master se-
stract figure using &ost function An example of a cost lection. Themost-writerheuristic selects the master as the
function that measures performance of a replication strat-replica server that generates the highest number of write ac-
egy s during a time period is: cesses. This strategy allows the highest fraction of update

cost(s,t) = axr(s,t) + Bxw(s,t) 4+ *b(s,t) accesses to be handled locally. However, if all servers issue
similar numbers of update accesses, this strategy may give
poor write latency because a large fraction of update access
requests will be redirected to the master, which is not nec-
essarily topologically close to the other writers.

wherer is the average read latenay,is the average write
latency,b is the amount of bandwidth used for consistency
enforcement, andv, 3 and v are weights associated to
each metric. Weights must be set by the system adminis-
trator based on system constraints and application require- This problem is avoided by thelosest-writerheuristic,
ments. A larger weight implies that its associated metric haswhich selects the server that offers the least average write la-
more influence in selecting the “best” strategy. Finding the tency as the master. Let be the number of write access re-
“best” system configuration now boils down to evaluating quests received by replica servgy andi;; be the latency

the value of the cost function for every candidate strategy. between replica serveand; (we assume that latency mea-
By definition, the best configuration is the one with the low- surements between servers are symmetric/j;&l;;). The

est cost. average write latency for a data cluster whose mastér is

m

Ideally, the system should treat the master selection and'S 9Ven bywi = (327" ni = lix) /(307 ni). Theclosest-
replica placement as a single problem and select the comMWriter heuristic selects the server with lowest average write
bination of master-slave and replica placement configura-lateéncy as the master.
tion that yields the minimum cost. However, such a solution
would require an exhaustive evaluation28f « m configu-
rations for each data cluster,f is the number of replica)
servers. This makes this solution computationally infeasi- 4-2. Fragment Caching
ble. In our system, we employ the use of heuristics to per-
form replica placement and master s_election._qu each_prob- Data replication is required when an application’s work-
lem, we propose a number of possible heuristics. This re- o, s characterized by a large number of unique requests
duces the problem of choosing replication strategy to eval- 540y significant number of writes. However, if the sys-
uating which combination of heuristics performs the bestin (o, exhibits some temporal locality among requests, then

any given situation. caching techniques are shown to be useful [4].

One of the most widely used techniques for caching re-
4.1.1. Replica Placement Heuristicdn our system, the sults of Web applications is fragment caching [7]. The idea
origin server periodically collects the access patterns of behind this technique is to cache the responses for popu-
each data cluster from all edge servers. Subsequently, ilar requests in the Web server. This avoids the overhead in
places a replica of a data cluster in a server if it generatesregenerating the response for the popular requests. This is
at leastz% of data access requests. This creates a family of suitable for requests that do not modify application data and
heuristicsPz. are not unique (e.qg., request for local weather).

Obviously, the value of affects the performance of the In fragment caching, the data driver instructs the applica-
system. A high value of will lead to creating no replicaat tjon server to cache a query response, if the write-to-read re-
all besides the origin server. On the other hand, a low valuequest ratio to the underlying data units that were accessed is
of 2 will lead to afu”y replicated C0nfigurati0n. Itis impor- below a threshokﬁ’achenlax_ To ensure the Consistency of
tant to choose the right value ofbased on the access pat- responses, if a fragment response is cached, the data driver
terns of the data cluster. maintains adependency grapbf the fragment responses

Expecting the system administrator to determine the with a particular data unit. An example of this graph is the
right value ofz is not reasonable, as the number of param- dependency between a data unit that contains the stock price
eters that affect the system performance is high. Instead, inof a company and the fragment response that lists the stock
our system, administrators are just expected to define theirprice. Later, if the data unit corresponding to the stock price
preferred performance tradeoffs by choosing the weight pa-is updated, then the relevant fragment is invalidated, thus
rameters of the cost function. The origin server will auto- preventing the Web server from delivering any stale frag-
matically adjust the replication configuration to the one that ment. Similar consistency mechanisms have been shown to
gives the lowest cost. be scalable for Web pages [5, 7].

4.3. Hybrid strategy tions. The transition probabilities for switching between dif-
ferent Web interactions in a user session is dictated by the
Many applications are characterized by a work- the benchmark’s workload mix.
load where a sizeable fraction of requests are cacheable, The benchmark defines three workload mixes: browsing,
while the rest are unique and contain significant number of shopping, and ordering. The browsing mix consist85%
writes. For example, in the TPC-W benchmark, which rep- browsing interactions angf% ordering interactions. The or-
resents an online bookstore applicatiditl0% of the dering mix consists 050% ordering interactions an&%
requests are for the new-products page which lists the lat-browsing interactions. The shopping mix consists8f%
est books. Since updates to the new-products page ochrowsing interactions ar@D% ordering interactions.
cur rarely (0.11% of requests), the fragment responses to The performance of the TPC-W benchmark is measured
this page can be cached. Further, at 1688t of the bench- primarily by two metrics: (i) WIPS (number of Web Interac-
mark’s requests are unique (e.g., pages related to customefons Per Second), which measures system throughput, and
profile) with a considerable fraction of them leading to data (ji) WIRT (Web Interaction Response Time), which mea-
updates (e.g., those for updating shopping carts or for or-sures system efficiency. In our experiments, we are more
dering books). Such scenarios warrant data replication tointerested in the efficiency of the system (i.e., WIRT) than
ensure fast response time with minimum consistency over-its throughput (WIPS). This is because the system through-
head. put can be increased by deploying more hardware resources,
In our system, we propose to use fragment caching andfor instance by deploying a server farm instead of a sin-
on-demand data replication simultaneously, where the frag-gle server. We believe that this does not necessarily result
ment cache is located in the Web server and the on-demangh better WIRT, as the inevitable overhead in Web applica-
data replication is performed by the data driver. We call this tion replication is not the server’s throughput performance

hybrid technique as ODRC (On-demand replication with pbut the network latency incurred for each transaction.
caching). This strategy can reduce the wide-area commu-

nication overhead involved in generating pages with com- 5.2. Simulation setup
plex queries by caching these pages, provided the updates

to the underlying data occur less frequently. Building a fair experiment to simulate an Internet-wide

system hosting a Web application involves two important
challenges: simulating a wide-area network with realistic
5. TPC-W Benchmark: A Test Case network delays between the edge servers placed worldwide;

) o and simulating the diversity of interest among clients in
To study the impact of on-demand replication on each particular piece of data.

real-world applications, we evaluated the performance g simulate a set of servers to host our application,
of our system using a well-known e-commerce transac-ye selectedl00 hosts that visited our department Web

tional benchmarkTPC-W In this section, we present an sjte such that they were spread acréssontinents and
overview of TPC-W, describe our simulation setup and dis- 45 countries, and could represent our edge servers. We

cuss our results. estimated the latencies between each pair of hosts using
SCOLE [17]. SCOLE associates hosts with co-ordinates
5.1. Overview in an N-dimensional space by measuring their latency to

a fixed number of known landmarks. The latency between

TPC-W benchmark is an industry standard transactionaltwo positioned hosts is calculated as the Euclidian distance
benchmark that models an on-line bookstore, where the cusof their co-ordinates in this space. This method of latency
tomers search, shop and order books [16]. It is aimed to rep-estimation is shown to be fairly accurate while requiring rel-
resent a typical e-business Web site. atively few measurements. Latencies between our servers

The TPC-W application stores its datarimables: Book, range from 23 ms to 2700 ms. It must be noted that the po-
Customer, Address, Order, Cart, Orderline and Cartline. It tential inaccuracies of latency estimations are not a prob-
handlesl4 kinds of customer requests (also known as Web lem for our experiments, as we are only interested in a re-
Interactions): Home page, New Products page, Best Sellersalistic set of latencies rather than precise latency measure-
Product Detail, Search Request, Search Results, Shoppingnents between the actual servers.
Cart, Customer Registration, Buy Request, Buy Confirm, Simulating the diversity of client interests for a particular
Order Inquiry, Order Display, Admin Request, and Admin data cluster is harder to solve. This is an important factor as
Confirm. Among these interactions, the first six are brows- the diversity of client interests influences the performance
ing interactions, which lead to read-only data accesses. Theof on-demand replication. For example, if a data unit is of
rest are ordering-related interactions and mostly lead to datanterest to only a small subset of servers, then on-demand
updates. A typical user shopping pattern, referred to as areplication can give huge performance gains in terms of
user session, comprises of number of these Web interacread/write latency and update traffic. On the other hand,

if the data unit is of equal interest to clients of all replica and (iv) ODR with Caching (ODRC). The first system, Cen-
servers, then the performance gains due to on-demand replitralized, has the application server and database server at
cation will not be lower. However, it is important for us to the origin server and hence each request incurs wide-area
study the performance of on-demand replication in the full network traffic. To be fair on the centralized solution, we
spectrum of cases. chose the best possible replica server as the origin server,
Unfortunately, TPC-W does not specify any standard i.e., the server with the minimum average latency to other
pattern regarding the diversity of client interest. In our ex- servers is chosen as the origin server. The second system,
periments, we modelled the diversity of client interests us- FC, has edge servers around the world and uses the frag-
ing statistical distributions. Since, to our knowledge, there ment cache technique with the threshdldche,, . fixed
is no earlier study that has modelled the geographical influ-at 1% (see Section 4.2). Edge server caches are assumed to
ence of client requests to a database, we based our simulahave infinite storage capacitylhe third system, ODR, sim-
tions on a Zipf distribution for generating diversity in client ulates our proposed approach of on-demand data replica-
interest for a particular data cluster. We take the expoment tion with closest-writer master selection aRd placement
in the Zipf distribution as an input parameter for our exper- heuristic. The ODRC system uses the hybrid technique de-

iments3 scribed in Section 4.3 with closest-writer master selection
We clustered the books int0 non overlappind)ook- and P5 placement heuristic.

clusters The geographical preference of a server to a book- We studied the WIRT of thesé systems forl0” user

cluster is modelled as follows. For a book-clusteserveri sessions, divided equally among tt# edge servers. Each

is assigned arank;; =i—j, if ¢ > j, and100—i—j, other- user session consists of at mastWeb interactions and all

wise. Using these rank values, the frequency of occurrenceinteractions are handled by the same server. The time be-
of request from serverfor a book-clusteyj, is generated: tween the interactions in a session was varied betv@een
fij =C- rl.;“ . Then, these frequency values are normal- to 8 seconds. The simulations were warmed up and the re-
ized so that we can derive a series of load valugsvhose sults of the firstl0° sessions were discarded. The simula-
sumis 1 (i.e.L;; = > .-, fi;/m, wherem is the number tions were run repeatedly to gain a confidence interval of
of edge servers). Subsequently, a client request for a boolkg5%.

cluster; is assigned to a serveéwith the probabilityL;;. 5.3. Results

Within a book-cluster, books are selected with equal proba-

bility, as this does not affect the Zipf distribution of servers Figure 3 shows, for each workload mix, the WIRT of

to the book-clusters. all systems for different values of As seen in the figure,

TO study the system using diverse access patterns, Weyprc performs the best for all workload mixes while Cen-
varied the parameter. A trace generated with a low value tralized performs the worst

of a implies that each server is equally likely to access a For the ordering mix, which has the highest fraction of

book-cluster i.g., the distribution of client interests is flat. ordering interactions, ODR and ODRC outperform FC and
In contrast, a h'gh value af generates a trace where each centralized systems by a factor®fThis clearly illustrates
book-clu_ster s of interest only to asr_nall numb_er .Of SEIVETS e advantage of on-demand data replication, as it enables
(those with the lowest rank values) i.e., the distribution of the system to perform local updates without incurring wide-

pll(;antt:n:erest 'g mc()jres S\ll(\?wgg' Intour S|.mtulat|ct)ns, we vtar- area traffic. Note that the gain in WIRT by ODRC in com-
leda between U and 5. Ve did not vary INterest parameters .., 15 OpR is low. This is because this workload mix

B
for other database tap les as they are usually not accesseﬂas a very small fraction of popular cacheable requests and
by requests from multiple users (e.g., customer records - ance the gain due to caching is not significant.

ble, shopping cart table). . . : . .
While evaluating the WIRT, we just took into account the For the bro_wsmg m|x,.wh|ch conS|st_s 05% browsing
and5% shopping interactions, the caching systems perform

wide-area network latency incurred by a reque_st. Th|§ is be est. Among the caching systems, ODRC performs better
cause we assume that the latency between client to its locall ~~ ;
: . as it performs not only caching of responses but also data
edge server and the request processing overhead in an edge . " . -))
- ! . téplication, though the gain in WIRT in comparison to FC
server are negligible compared to the latency incurred in. . o
L . is only by a margin 0650%. This is due to the fact that re-
communicating with servers that must be reached through a .)
X L guests are mostly read-only and caching suffices for such
wide-area communication.

. scenarios. Among the rest, FC outperforms its ODR coun-
In our experiments, we study the performance of four terpart, as ODR does not capture the temporal locality of
different system configurations: (i) Centralized, (ii) Frag- part, b b y

ment Caching (FC), (iii) On-Demand Replication (ODR) requests (exhibited for high values @f. ODR also incurs

3 AZipfdistribution states that the frequency of occurrence of a partic- 4 It must be noted that an infinite cache size is not a realistic assump-
ular value i is given byf; = C - r; ® wherer; is the rank ofi's oc- tion. However, this was done to compare our proposed system with the
currence. best possible caching configuration.

600 | Centralized 1 600 | Centralized 600 Centralized
FC

_. 500 {1 _. 500t __ 500
(%] [} [
E 400 f / 1 E 400 E 400
= N SN = — FC
X 300 1 @ 300 x 300
= ODR = ODRC = ODRC

200 | ODRC 1 200 x = B T 200 1 Cx

100 | sy : 100 | = 100

0 0 0
0 05 1 15 2 25 3 0 05 1 15 2 25 3 0 05 1 15 2 25 3
a
(a) Ordering Mix (b) Browsing Mix (c) Shopping Mix

Figure 3. Effect of « on WIRT for different TPC-W workload mixes

wide-area network traffic to generate responses to interac- In this section, we examine the performance of our tech-

tions involving complex queries, such as Best Sellers andniques for a wide range of workloads with full spectrum

New Products interactions (which constitutz®% of the of write ratios and geographical interest distributions. To

workload). This overhead is avoided by ODRC as it cachesthis end, we simulated a data driver which receives read

the responses to these interactions. and write access requests to its data units. In this section,
For the shopping mix, which constitut88% browsing we limit our study to replication strategies only as frag-

and20% ordering interactions, ODRC outperforms all its ment caching does not influence the performance of the data

counterparts by at 1ea200%. Among the rest, the gain in driver.

WIRT by ODR in comparison to FC is not very high. This We selected the origin server an@0 edge servers as

is because the gain of performing local updates in ODR in the previous experiment. Similar to the previous experi-

is compensated by the penalty incurred for computing the ment, we varied the interest pattern of clients using Zipf dis-

complex query for interactions, such as Best sellers andtributions. We measured the system performance using the

New Products, each time. While the FC avoids the latter following metrics: (i) Average Read latency (ARL):the

problem by caching the responses, it incurs wide-area la-average latency incurred by read requests for a data clus-

tency for all update requests. ODRC enjoys the benefits ofter, (ii) Average Write latency (AWL): the average latency

these two systems, as ODR and FC optimize different sub-incurred by write requests for a data cluster and Nijm-

sets of requests, thereby leading to a significant improve-ber of consistency messages (NCMihe number of update

ment in WIRT. messages sent among replica servers to keep the data con-
It can be seen from the figures that the Zipf variable sistent (excluding the client-to-replica traffic). NCM serves

does not have a major influence on the WIRT. This is due as an indicator of the amount of bandwidth utilized by the

to the fact that the requests to individual book records con-system just for maintaining data consistency.

stitute at mos20% for browsing mixes and even less for

other workloads. For higher values of caching systems g 2 |nfluence ofa on performance

perform well as it implies high temporal locality among re-

quests. Even then, the gain in WIRT is low because book |n our first set of experiments, we study the effect of

detail interactions constitutes only at masts of the aver- client interest pattern on system performance. We fixed the

age WIRT. write ratio at0.5. Each simulation consists df 000, 000
6. Performance Evaluation of Replication requests. We study the performance of the following strate-
Strategies gies: (i) centralized solution, (ii) fully replicated solution
with origin server as the master (Full), (iiy5 — closest
6.1. Simulation Setup (ODR technique withP5 placement andlosest — writer

master selection heuristic), (N)10 — closest, (v) P15 —

In the previous section, we studied the performance gainsclosest and (vi) P5 — most. Due to the lack of space, we
obtained due to on-demand replication techniques for a wellpresent only some of our simulation results. For a detailed
known e-commerce application by varying the access pat-performance evaluation, please refer to [15].
tern for the book records. However, that study was quite re- Figure 4 presents the effect of varying the value @i
strictive as the update ratio to the book records is at mostthe system performance. As can be seen, on-demand repli-
0.11%, with requests to these records constituting no more cation produces a significant gain in terms of read/write la-
than30% of the total workload. tencies (by a factor of) and reduced update traffic (by two

1e+08

500 T T T T T 500
450 - 450 - o)
400 - / Cen;\ralized 400 // Centlﬁ; Full —§ Full
L3501 g 35 :3» 1e+07}
§ 300 P15—closest ‘_": 300+ P10-closest 1 g P5—closest
= 2501 o = closes P15-closest ; P5-most
g 200 " P10—closest b 2
£ le+06 .
1507 P5-most | P5-closest/ “5. s T
100 $,
50 1000 P35 most . Z Centralized P15—closest
0 — o~ - sobs ‘ ‘ ‘ ‘ ‘ 100000
0 0.5 1 15 3 0 0.5 1 15 2 2.5 3 0 0.5 1 15 2 2.5 3
Flat a Skewed Flat a Skewed Flat a Skewed
(a) Effect ofa on the Average Read La- (b) Effect of a on the Average Write (c) Effect ofa on the Number of Con-
tency Latency sistency Messages
Figure 4. Effect of distribution skew on system performance
age read latency, write latency, and number of consistency
wi 000000000 000G [Centralized messages, respectively. Figure 5 shows which policy per-
Mrdob0o0ddodgOogg mFa forms best for each request pattern.
2001 00000 KKKIKIKESSE B Pscosest . ' :
f ol DD O DN NN @ EE EEE X Plodss _As seen in the figure, depending on the access pattern,
F el DR EEEmmEmmEEE O Plsdosst @ffere_nt policies perform be;t. For example, an applica-
Wi EEEEEEEEEEEEN tion with no updates (write-ratid® performs best with full
e A S replication, as all requests will then be served locally. Sim-
0 02505075 1.0 1.25 1.5 1.75 2.0 2.25 2.5 2.75 3.0
a ilarly, if there is a flat distribution of clients and only write

requests{ = 0 and write-ratioZ), the centralized solu-

tion performs the best as it has a replica only at the origin
server thereby giving the best average write latency without
any update traffic overhead (note that the origin server was

: . selected as the server that gives the least average latency).
orders of magnitude) compared to fully replicated or cen- o
For all other values, on-demand replication performs best.

tralized systems. The more the cl|entdlver5|ty_|ncreases, thePoIicies with higher threshold perform best when the re-
better our system performs. However, even in the case of T) . .
guest distribution is flat, as in such cases placing less repli-

a flat distribution of interests (low values @f, on-demand . .
o . : . . cas yields reduced update traffic. On the other hand, when
replication policies give low write latencies and reduced up-
i a small number of servers generate most of the requests (be
date traffic. . . 2 o
it reads, writes, or a combination thereof) it is preferable to

It must be noted that gaining two orders of magnitude)
. L : .- place more replicas, and each close to where the requests
in network traffic is of immense significance, as the In- come from

ternet is often affected by network congestion. A reduced Thi it al s that replicat lici hould
number of consistency messages also will lead to improved IS result also suggests that replication policies shou

write latency of the system and less cost, as content delivery?€ S€lected Onv?l per-data CIESter basis accordl_n%.to '?Ihelr af'
systems are usually charged by Internet Service Provider<€SS patterns. We propose that our system periodically eval-

(ISPs) and data centers based on the amount of traffic they2t€S the cost of different policies for each data cluster. The
generate system can then dynamically adapt its policies on a per-

cluster basis to provide optimal performance.

Figure 5. Best Replication Policy for Different
Access Patterns

6.3. Best Performing Strategy

_ _ _ 7. Related Work
We now address the question: which policy performs

best for a given access pattern? In the following experi- A number of systems have been developed to handle
ment, we vary bothu and the ratio of write requests. For Web application replication [1, 2, 6, 14]. These systems

each access pattern, we evaluated the value of the cost funaeplicate the code at the replica servers, but either do not
tion for each replication strategy and selected the best onaeplicate the application data or cache them at the replica
as the one with the lowest cost. We normalized the weightsservers. This limits the system performance as all write ac-
of the cost function such that each parameter has roughlycesses need to be forwarded to a single remote location irre-
equal significancey=1/7,42; =1/ Wmaz; aNAY=1/bmaz, spective of their update patterns. In contrast, we propose to
wherer,,qz, Wmazr andb,, .. are maximum values of aver- select the master replica for each data unit based on its in-

dividual update pattern, which potentially results in a low [2] AWADALLAH, A., AND ROSENBLUM, M. The vMatrix: A

write latencies. network of virtual machine monitors for dynamic content dis-
In [10], the authors propose an application-specific edge tribution. InProc. of the Seventh International Workshop on

service architecture, where the application itself is supposed _ Web Content Caching and Distributi¢Aug. 2002).

to take care of its own replication. In such a system, accesg®! BLOOM. B. H. Space/time tradeoffs in hash coding with al-

to the shared data is abstracted by object interfaces. This fz\'\;ﬂgeerrors' Communications of the ACM 13 (1970),

system aims to achieve scalability by using weaker consis-[4])

. D) BRESLAU, L., Ca0o, P., AN, L., PHiLLIPS, G., AND
tency models tailored to the application. However, this re- SHENKER, S. On the implications of zipf's law for web

quires the application developer to be aware of the applica- ¢aching. InProceedings of 3rd International WWW Caching
tion’s consistency and distribution semantics. This is in con- Workshop(1998).
flict with our primary design constraint of keeping the pro- [5] Cao, P.,AND Liu, C. Maintaining strong cache consistency
cess of application development simple. in the world wide web|EEE Transactions on Computers 47
Our work has strong ties to partitioning in dis- 4 (1998), 445-457.

tributed databases [13], a distinction being that in dis- [6] CAO, P., ZHANG, J.,AND BEACH, K. Active cache: Caching
tributed databases, fragments are usually not created dynamic contents on the Web. Rroc. of the Middleware
based on runtime analysis of access patterns. Using tradi-_ ConferencdSept. 1998), pp. 373-388.
tional distributed database technologies, partitioning mustm CHALLENGER, J., DANTZIG, P., AND WITTING, K. A

o ' fragment-based approach for efficiently creating dynamic web
be done by a cle.ver.admlnlstrat.or who has a deep knowl- content.To appear in the ACM Transactions on Internet Tech-
edge of the application semantics and its access patterns. jogy(2004).
However, in our system we propose to do this automati- [8] CHen, Y., Qiu, L., CHEN, W., NGUYEN, L., AND KATZ,
cally and dynamically based on the access patterns of the R. H. Clustering web content for efficient replication. Fno-
application data. However, further research is needed to ceedings of 10th IEEE International Conference on Network

substantiate our claim of scalability for real Web applica- Protocols (ICNP'02)(2002).
tions. [9] FEI, Z., BHATTACHARIJEE, S., ZEGURA, E. W., AND AM-

. MAR, M. H. A novel server selection technique for improv-
8. Conclusions and Future Work ing the response time of a replicated service.INFOCOM

(2) (1998), pp. 783-791.

In this paper, we propose a system for hosting Web ap-
pap Prop y 9 P [10] Gao, L., DAHLIN, M., NAYATE, A., ZHENG, J., AND

plications that performs on-demand data replication. We IYENGAR, A. Application specific data replication for edge

adopt a sump_le application model for the_ sy_stem, which services. InProc. of the Twelfth International World-Wide
we expect will ease the process of application develop- \yep Conferencf2003), pp. 449—460.

ment. The novelty of our approach is that it employs par- [11] LagriniDis, A., AND RoussopouLos N. Webview ma-
tial replication where the data are replicated only to servers terialization. InProceedings of the 2000 ACM SIGMOD in-
that access them often. This allows the system to exploit ternational conference on Management of dé2a00), ACM
location-specific interests in request patterns. Furthermore, Press, pp. 367-378.

we also propose a scheme to combine existing caching techf12] LAMPORT, L. How to Make a Multiprocessor Computer
niques with on-demand data replication. We showed that ~ That Correctly Executes Multiprocess PrografE Trans-
our techniques can reduce the client response time by a fac- _actions on Computers 28(Sep. 1979, pp. 690-691.

tor of 5 in comparison to existing techniques for a real- [13] OZSU, P., AND VALDURIEZ, P. Principles of distributed
world e-commerce application, such as the TPC-W book- database systems, 2nd edition, Prentice Hall, 1999.

. . [14] RABINOVICH, M., XIAO, Z., AND AGARWAL, A. Com-
store. Furthermore, we evaluated our strategies for a vv_lde puting on the edge: A platform for replicating internet ap-
range of workloads. We showed that on-demand replication jications. InProc. of the Eighth International Workshop
performs better than centralized and fully replicated sys- on web Content Caching and Distributigawthorne, NY,
tems by reducing the average latency of read/write data ac- USA, Sept. 2003).
cess as well as the amount of bandwidth utilized to main- [15] SIVASUBRAMANIAN, S., RERRE, G., AND VAN STEEN,
tain data consistency. Moreover, we showed that the best M. A system for on-demand Web application replication,
replication strategy depends on the data cluster’s access pat- Dec. 2004 http://www.globule.org/ :
tern and proposed a scheme where our system will automat{16] SvITH, W. TPC-W: Benchmarking an e-commerce solu-
ically select the best replication strategy for a given situation __ tion. http://iwww.tpc.org/tpcw/tpcvex.asp.
through run-time evaluation of a cost function. We are cur- [17]1 SZYMANIAK , M., PIERRE, G.,AND VAN STEEN, M. Scal-
rently working on the implementation of a data driver that _able cooperative latency e§t|mat|0n. Accepted for publication
operates on top of the MySQL database. in ICPADS, Dec. 2004http://www.globule.org/

References

[1] Axkamal INc. Edge Computing Infrastructure.

