
Jan-Mark S. Wams
and Maarten van Steen
Vrije Universiteit, Amsterdam

Unifying User-to-User
Messaging Systems

Unification of user-to-user messaging systems facilitates message exchange

independent of time, place, protocol, and end-user device. This article describes

an approach to unification that is based on introducing a middleware layer instead

of employing gateways. It entails a single system that provides common services

such as email, fax, and short messaging, but that can also enable novel services

that current messaging systems can’t support. The authors also describe how

the model can be efficiently implemented on a global scale.

Although user-to-user messaging sys-
tems such as Internet-based email
have become virtually omnipresent

— letting users reach each other with
devices ranging from i-mode phones to
answering machines — interconnectivity
between different platforms remains lim-
ited. Users must select an appropriate
messaging system each time they want to
send a message, taking into account the
sender’s and receiver’s locations and what
systems are available to both parties at
the time. Misjudgments can easily delay
or derail messages, even when the recip-
ient could have been reached instanta-
neously. For an important message, a user
might even want to use several messag-
ing systems in parallel to increase the
delivery’s odds of success.

Although users have adapted to the
lack of interconnectivity between systems,
this situation is clearly unsatisfactory.
Rather than having to select a messaging
system, users should be able to follow one

simple approach to send messages. Unifi-
cation is the key word here — of both data
representation and data transport. Many
researchers have focused on unifying data
representation, as exemplified by such
platform-independent standards as ASCII,
MIME, and XML. Instead, we focus on
data-transport unification, a vast and
chiefly unexplored research area.

Building gateways to interconnect
existing messaging systems seems an
obvious approach to unification, but this
is not the approach we have decided to
follow. If done at the level of the underly-
ing messaging systems instead, unifica-
tion could enable a single system to pro-
vide the same messaging services that all
current messaging systems provide sepa-
rately, as well as facilitating combinations
of services that can’t currently be sup-
ported. In this article, we present a novel
unified messaging system that supports
services such as those offered by email,
fax, short messaging, instant messaging,

76 MARCH • APRIL 2004 Published by the IEEE Computer Society 1089-7801/04/$20.00 © 2004 IEEE IEEE INTERNET COMPUTING

M
id

dl
ew

ar
e

Tr
ac

k
Editors: Doug Lea • l ea@cs .oswego .edu

Steve Vinoski • v inosk i@ieee .org

and voice mail. We also describe an accompany-
ing middleware system design to show that such a
unified model can be implemented efficiently on a
worldwide scale.

Unification through Middleware
Our proposed middleware solution is based, in
part, on the fact that pair-wise integration of n
different platforms would take O(n2) effort. In con-
trast, unification by means of a common message-
transport system (namely, middleware) reduces
these efforts to O(n). A single user-to-user mes-
saging system makes it much easier to support
new combinations of messaging services. For
example, users could change an email-like thread
into a NetNews-like group.

In designing a unifying messaging system, we
must create a single messaging model that captures
the concepts underlying current messaging ser-
vices. Table 1 shows the taxonomy we developed,
characterizing existing messaging transport sys-
tems’ capabilities along four different dimensions.1

As an example of how this taxonomy can be
applied to existing systems, Internet email never
removes messages, provides only unidirectional
communication, lets users send messages to any-
body in the world (with an email address), and
supports multicasting (that is, it can handle mul-
tiple recipients). NetNews, on the other hand,
removes messages after they expire, uses a single
communication channel to exchange news items
(that is, newsgroups are duplex), allows only sub-
scribers to a specific news group to be potential
receivers, and broadcasts messages to recipients.

Our taxonomy establishes an important
requirement: unified messaging should permit
every useful (time, direction, audience, address)
tuple. This effectively means that the unified mes-
saging system should support any type of mes-
saging service that the taxonomy can classify.

In addition to satisfying this requirement for
maximum adaptability, we set out to build a uni-
fied messaging middleware layer that could scale
well in terms of number of messages and users,
and in the dispersion of users and resources across
the Internet (and other networks).2

In contrast to existing approaches, our system
puts the receiver in control. This choice comes
from another simple but important requirement —
namely, that a unified messaging system should
hinder unsolicited messages, lest it become unus-
able. On the other hand, we feel some things are
best handled in an end-to-end fashion. We thus

decided not to explicitly support presence, secre-
cy, authentication, or nonrepudiation, but have
also been careful to use mechanisms and policies
that will not hinder their support.

System Architecture
Our system is based on two kinds of messaging
objects: targets and targeted immutable short mes-
sages (TISMs). A target is a generic name for an
entity such as a mailbox, newsgroup, message
channel, or chat room. It can best be thought of as
a storage place for messages. As we’ll discuss,
individual users can have many targets.

TISMs are messages that are directed at targets
rather than users. Targets, in their role as storage
providers, hold on to TISMs until they expire. Once
they pass into our messaging system, TISMs can
no longer be modified. In other words, they are
immutable by design. Both object types have asso-
ciated expiration times. Every object has a fixed
home, which always keeps a copy until it expires.

What sets our messaging objects apart is that
each can have an associated replication strategy.
In other words, our messaging objects encapsulate
not only data and operations but also strategies
that dictate how to migrate, distribute, and repli-
cate them in the messaging system. We carried this
design choice forward from our previous work on
the Globe distributed infrastructure.3 By allowing
replication at the object level — avoiding the need
for a fixed, system-wide replication strategy — we
achieve maximal adaptability, which we need in
order to mimic existing messaging services’
behaviors. Equally important, this approach pro-
vides an excellent means to achieve true scalabil-
ity through differentiated strategies, as we’ve
demonstrated previously for Web documents.4

Assigning each object its own replication strat-
egy requires that special mechanisms are built into
the middleware. We decided to keep matters as
simple as possible. Every target or TISM object is
created by a user agent (UA), which plays a role
comparable to a UA in an email system. A collec-

IEEE INTERNET COMPUTING www.computer.org/internet/ MARCH • APRIL 2004 77

Message-System Unification

Table 1. Taxonomy of messaging
transport-system capabilities.

Dimension Issue
Time How long does the system store messages?
Direction Is message transport unidirectional or bidirectional?
Audience Who are potential recipients?
Address Does the system support unicast, multicast, or broadcast?

tion of target agents (TAs) handles message stor-
age, transfer, and replication.

By its nature, a UA can be online and offline
sporadically, but ensuring that TAs can access
TISMs and targets requires high availability. In prac-
tice, this means TAs should always be online. (To
compensate for a TA’s potentially low availability,
a user can assign a replication strategy to a TISM or
target object, which will increase its availability.) In
this respect, our scheme somewhat resembles the
Internet email system, in which an Internet service
provider (ISP) runs a mail server and takes respon-
sibility for its high availability. Also like the ISP
model, every UA has one primary TA, through
which all communication flows; this becomes the
home TA for the objects the UA creates. Note that
numerous UAs can share a single primary TA.

A TA will act as a home TA only for a target or
TISM authenticated by a UA with the proper access
permissions. The UA also handles end-to-end
encryption, which enhances the system’s overall
security and relieves the TA from access control.
Instead, a TA’s main role is replication: if a UA or
another TA requests a copy of a target or TISM
object, the TA simply provides one. This approach
is safe because UA-to-UA encryption generally
renders a copy of an object useless without the
proper decryption key.

Replication
To understand replication’s importance in our sys-
tem, consider the following simple scheme for mes-
sage transportation: a TA could simply store each
new object it received from any known UA and
give out a copy of any requested object. Because
each TA holds on to those objects for which it is the
home, a UA that needed an object could contact the
object’s home TA to retrieve a copy.

This simple scheme produces a “working” mes-
saging system, although it is highly susceptible to
TA failures and might not scale very well (due to
the impact of high latencies, for example). We can
easily improve the design by adding caching capa-
bilities to the TA. A UA could thus contact its pri-
mary TA to request a given object; the primary TA
would start with a cache lookup and then request
a copy from the object’s home TA if it couldn’t find
one locally. Upon receipt, the primary TA would
forward the object to the requesting UA, caching
the object to allow the TA to service subsequent
requests (for example, by another UA) from its
cache. Note that this scheme silently assumes a rel-
atively efficient connection between the UA and

its primary TA, but this is not unreasonable given
that TAs are usually provided by ISPs or through
organizations’ LANs.

Piggybacking replication data on objects would
enable replication developers to devise advanced
retrieval schemes that further enhance system per-
formance and robustness. Replication can allow
UAs and TAs to preemptively send objects — to
update targets, for example. (We will elaborate on
target replication later.)

There are at least three ways to implement per-
object replication. First, we could let an object run
arbitrary code written in Java or some other lan-
guage. This would make the target and TISM
objects into full-fledged agents, but it would also
raise many security issues and make the objects
relatively heavyweight because they would need
to transport code along with the data. To circum-
vent these problems, a second option would be to
design a compact special-purpose replication lan-
guage for use in expressing replication strategies.
Given that one of our design goals was simplicity,
however, we opted for a third alternative: we pro-
gram several predefined replication routines in
each TA and assign each object a replication-
strategy index number to indicate which should be
executed. This creates a flexible system in which
an object can also carry arbitrary replication data
under the replication strategy’s full control.

Our design choices provide users considerable
freedom in selecting replication strategies. Because
each object has a home TA that is responsible for
its availability, there is no need for hard guaran-
tees concerning timely or reliable message deliv-
ery through replication. When a TA can’t find an
object locally, it can always contact the object’s
home to retrieve a copy.

The TISMs’ immutability lets us escape many
problems related to updating replicated data. For
example, we avoid various consistency and syn-
chronization issues because there are no
write–write or read–write conflicts to resolve:
writes simply can’t occur after a TISM is inserted
into the messaging system. Targets are mutable,
but in a special way: they allow UAs only to add
TISMs. In this sense, they behave similarly to
append-only logs in file systems (although the
order in which TISMs are added is not important
for targets). Furthermore, targets (and TISMs) have
expiration times, after which the system automat-
ically removes them. These two properties make
replication much easier to handle.

The immutable and add-only characteristics

78 MARCH • APRIL 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Middleware Track

also simplify the TA’s cache strategy because they
eliminate the notion of stale data. An object’s
availability through its home TA allows for any
form of cache pruning. In other words, TAs
needn’t ensure that at least one copy of an object
remains available in the system; the object’s home
TA takes care of that.

TA and UA Design Details
As Figure 1 illustrates, the TA’s structure is rela-
tively straightforward. The TA runs one or more
threads per replication strategy, plus fetch threads
to collect objects from networks. Each replication
thread has a queue from which it takes objects to
be processed. The fetch thread puts each object in
the proper queue. For output, a TA also has queues
and output threads.

Furthermore, one or more replication threads
looks at objects in the storage and cache and, if
need be, puts them on a replication thread’s queue.
This guarantees that objects will be processed for
replication. Finally, a cleaning thread deletes
expired objects and cleans the cache. Replication-
strategy threads can store or cache objects and
then send them out by putting them at the tail of
the output queue. To allow for instant-message
exchange and presence notification, the TA needs
a notion of how to handle UAs going online on a
target; it might need to track which UAs are cur-
rently communicating through a given target.
Replication strategies supporting instant messag-
ing can also insert objects at the head of the queue
for immediate dispatching.

Target and TISM Objects
Target and TISM objects are similar. Each contains
a system-wide unique ID, a replication-strategy
index, a creation and expiry date, a short text, a
payload, and replication data. The TA composes
the unique ID from the object’s home address and
a locally unique index.

Targets and TISMs are represented by sets of
distributed local objects, which at minimum carry
the unique ID and two dates. Given the unique ID,
the system can retrieve any other part of the object
from its home TA.

For a TISM object, the payload contains the
actual message, and the short text contains the
subject line. Targets can also have subject lines,
which can help users with organization. A target’s
payload is, basically, a list of TISMs.

Because targets are mutable, the system must
compare and update them. They can become so

arbitrarily large, however, that it can be impracti-
cal to exchange target objects even using minimal
representations of TISM objects. We therefore
designed a scheme to cut down the target object’s
memory footprint: by ordering the TISM list by
creation date in the target payload (as shown in
Figure 2a), we make the “old” part of the list more
predictable and, thus, easier to compress for per-
formance reasons. (Imagine a real-time messaging
system sending a list of 1 million TISMs per sec-
ond over the network for comparison with some
other list to check for anything new.)

To facilitate efficient list comparison and
updating, we introduce a content list. Between

IEEE INTERNET COMPUTING www.computer.org/internet/ MARCH • APRIL 2004 79

Message-System Unification

Figure 1.A target agent's internal design. Objects come in through
various communication channels and are queued for further
processing according to their associated replication strategies.
Threads process objects and forward them across different
communication channels. Stored and cached objects can also be
appended to input queues.

...

...

IP

GSM

Generic

...

...

...

Strategy 1

Strategy 2

Strategy N

...

...

... IP

GSM

Generic

CleanerReplicate

Queue

> >

object

object

object

object

object

object

Target
agent

Store Cache

Figure 2. Five ways to represent a list of targeted immutable short
messages (TISMs). (a) A plain list of TISMs. (b) A minimal-sized content
list. (c) A content list containing only hash values. (d) A content list
containing hash values and TISMs. (e) A TISMs-only content list.

(a) (c) (d) (e)

TISM 6
TISM 7

TISM 3

TISM 0
TISM 1

TISM 5

TISM 8

TISM 4

TISM 2

TISM 9

(b)

date
(hash, n)
date

date
(hash, n)
date
(hash, n)
date
(hash, n)
date
(hash, n)
date

TISM 7
TISM 6
TISM 5
TISM 4

date
(hash, n)
date

date
(hash, n)
date

TISM 0
TISM 1
TISM 2

date
TISM 9
TISM 8
TISM 7
TISM 6
TISM 5
TISM 4
TISM 3

date

each pair of creation and expiry dates in this
descending list appears either a list of TISMs, a
hash of a TISM list, or the number of TISMs in the
hash. A content list of a particular TISM collection
of can range in size from a few bytes to just over
the size of that TISM collection when each TISM is
listed explicitly.

Consider an example in which TAA and TAB

both have local instances of the same target T.
Let’s say that T’s replication strategy prescribes
that the lists should be unified. If we assume that
TAA has some TISMs that TAB does not, the update
proceeds roughly as follows.

First, TAA sends a minimal-sized content list
to TAB (Figure 2b). TAB’s executed replication code
calculates the hash of its TISM list and compares it
with the hash from TAA. If there were no differ-
ences, no further action would be needed. In this
example, however, TAB’s executed replication code
calculates several hashes of partitions of its TISM
list and sends them in a content list to TAA (Fig-
ure 2c). Upon receipt, TAA executes the replication
code that calculates the hashes on its TISM list
and creates a new content list in which hashes
that differ are replaced by the actual TISM sublist
from that period (Figure 2d). TAA sends this
expanded content list to TAB, which checks the
hashes, finds no differences, and merges the new
TISMs into its own list. TAB does not need to send
any reply to TAA once it has updated its TISM list

as both parties know they now have the same
TISMs. Note that the TAs don’t keep track of ses-
sions; they react to each request separately, as in
connectionless services.

Security
As we mentioned, UAs handle encryption in our
approach. One (post,read) key pair is associat-
ed with each target, and a posting UA uses the
post key to encrypt every TISM belonging to the
target. (Actually, the TISM is encrypted with a
random symmetric key, which is encrypted with
the post key.) To decrypt the TISM, a UA needs
the matching read key.

By controlling the distribution of keys for read-
ing and posting TISMs, users control access to the
targets they create. Because the UA can create tar-
gets at will, users can discard and replace targets,
if the post key is abused in any way.

Users distribute keys out-of-band, just like email
addresses. The messaging system itself will likely be
a primary vehicle for key distribution. Imagine, for
example, that a user puts a target ID and corre-
sponding post key in some public place (a Web
page, for example), and another user uses them to
post a message in the advertised target, containing
a reference to some newly created target with its
own (post,read) key pair. The users could then
communicate using this “dedicated” target; under
normal circumstances, no other user would be able

80 MARCH • APRIL 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Middleware Track

Related Work in Unified Messaging

Unification of user-to-user messaging,
also referred to as “unified messaging,”

is becoming increasingly important given the
various non-interoperable ways that users
can send and receive messages. Because
most user-to-user messaging is either Inter-
net- or telephony-based, messaging devel-
opers and providers sometimes narrowly
define unification as Internet-based integra-
tion of telephony and data services.1 Such
thinking drives the development of com-
mercial unified-messaging offerings, which
typically provide a centralized place for
users to collect all messages — although
usually limited to email, voice mail, faxes, and
phone-text messages.2

Current approaches unify messaging by
defining a single message box for each user
in which to collect messages from different

services. Systems unify messages at a fixed
endpoint on the receiver’s side.

In contrast to these methods, we pro-
pose implementing unification at the system
level — that is, at the level of message trans-
portation. In fact,our system has no collect-
ing endpoint. Instead, it stores messages at
their starting points and makes them avail-
able to recipients through replication.

Our approach solves a problem inher-
ent to endpoint unification schemes, in
which the user finds out who the sender is
only after receiving a message. In our sys-
tem, senders target not recipients but one
of their many specialized message boxes,
which take the roles of chat room, news
group, and so on. Recipients can create
multiple message boxes to give different
access rights to various people and groups,

thus maintaining fine-grained control over
who they receive messages from. In partic-
ular, a user (the recipient) can give another
user (the sender) a separately created tar-
get so that the latter can post messages.

In short, we strive not merely to con-
nect but to unify most existing user-to-user
messaging systems into one. We believe
this necessitates a multiplatform user-to-
user messaging middleware layer,which no
existing unified-messaging proposal offers.

References
1. H.J.Wang et al.,“ICEBERG:An Internet-Core Net-

work Architecture for Integrated Communications,”

IEEE Personal Comm., vol. 7, no. 4, 2000, pp. 10–19.

2. C.K.Yeo et al.,“Unified Messaging:A System for the

Internet,” Int’l J. Computers, Internet, and Manage-

ment, vol. 8, no. 3, 2000, pp. 1-14.

to join the discussion. An email address on a Web
page gives away much more control.

To prevent malicious and malfunctioning
servers from filling a target with nonsense mes-
sages, a (private,public) key pair is also asso-
ciated with each target. The user distributes the
private key along with the post key, and posters
use it to sign the encrypted TISMs. The target’s
home TA stores and gives out the public key,
which other TAs can use to verify signatures and
to filter out denial-of-service data.

Message Flow
To illustrate how messages flow through our sys-
tem, consider the following scenario. Assume user
A has just given a subject and message text to
UAA, which has the post key and ID for a target
T. UAA builds a TISM object with the encrypted
subject as short text and the encrypted message
text as long text. It then inserts the number asso-
ciated with a “hold this” strategy, effectively
requesting that the TA be this TISM’s home, and
adds a signed secure hash as replication data and
as a second replication strategy. UAA sends this
TISM to A’s primary TA, TAA.

Upon receiving this TISM, TAA checks the signed
hash to ensure that this object is indeed coming
from UAA. It fills in the creation date field, gen-
erates a unique ID for the TISM, and then replaces
the message’s “hold this” strategy with the second
strategy from the replication data. TAA puts the
resulting object in the store and back on the input
queue for further replication. It then creates a copy,
signs it, and sends it back to UAA, which now
knows that its primary TA will act as the TISM’s
home TA.

To finally post the message to the target T, UAA

also creates a local target object based on target
T’s ID and an “update list” strategy, telling T to
update its content. It then creates a simple content
list that contains the TISM’s unique ID. UAA sends
this target object to TAA.

TAA will send this target object on to other TAs,
as dictated by the target’s replication strategy,
which the TA is likely to know about from the
copy of that target in its store or cache. If the TA
doesn’t have a copy of the target, it will have to
retrieve one before it can send the target object to
other TAs. At some point, another UA, say UAB,
will request target T from TAB. If user B so wish-
es, UAB will retrieve the encrypted short text or
message text via TAB. If UAB has the read key for
target T, it can display the message to user B.

We discuss these processes in greater detail
elsewhere,2 particularly regarding the replication
between TAs, which depends on the replication
strategy chosen by target T’s creator.

Mimicking Existing Systems
Our messaging system can mimic existing sys-
tems like email and instant messaging. To mimic
email, for example, the UA could distribute a
newly created target’s post key to the general
public, effectively creating a mailbox that any-
one can post to.

The UA could create a chat-room-like target by
distributing post and read keys and assigning the
target an “instant forward” replication strategy.
Users would simply request the target from their
primary TAs in order to go online in it.

Our unified messaging system can also mimic
other existing messaging systems such as Net-
News and Web logging,5 but the model offers
much more. Some might find it surprising that
such a simple architecture could facilitate novel
and complex forms of messaging; with proper key
distribution, however, our system can implement
almost any type of messaging. Let’s consider a
few examples.

If there were one target for which all users had
post and read keys, it would create a form of “say
all, hear all” (SAHA) messaging that would make
it hard to deny individual users access. Because
TISMs are stored at the poster’s home TA, our
model makes this type of high-volume target fea-
sible without a huge central server.

To add moderation to such a system, we could
let one user (the moderator) create a new target
and post its read key (and ID) in the SAHA target.
This moderator would forward a selection of the
TISMs in the SAHA target to the new target.

Of course, sharing the new target’s post key
with a select set of people would let a small group
moderate the original SAHA target. The beauty of
this scheme is that any user can start a moderated
target based on the SAHA target. Even if the mod-
erated target contained many TISMs, the required
resources would be modest because there is no
need to copy all the TISMs from the unmoderated
target; we would need to store only the meta
information. As we describe elsewhere, much more
elaborate schemes are also possible.1

Users will generally have many targets from
which to receive TISMs, including family mem-
bers, bosses, company mailing lists, hobby clubs,
government agencies, and so on. A user can ignore

IEEE INTERNET COMPUTING www.computer.org/internet/ MARCH • APRIL 2004 81

Message-System Unification

any such messages independently without further
ado. As mentioned, the sender rather than the
receiver is initially responsible for resources, thus
avoiding many of the problems related to unso-
licited messaging.

Future Work
We are currently separating our system between a
messaging-independent micro-object layer, a mes-
saging middleware layer on top of that, and a
graphical user interface. (The latest source code is
available for download from www.cs.vu.nl/ums/.)
This separation will let us investigate replication
strategies in both formal and practical settings. The
lightweight micro-object layer will let us run a
large-scale emulation on our wide-area cluster of
workstations. Finally, the middleware layer imple-
mentation will be connected to Internet email and
NetNews, and possibly to existing instant messag-
ing systems.

Others might also use the micro-object layer
as a testbed for different replication strategies.
The unified messaging middleware interface
should prove to be useful for testing those repli-
cation strategies.

More work is needed on the topic of immutable
objects — not just in the context of middleware for
user-message distribution, but also in the context
of middleware layers for distributed file systems,
distributed directory services, distributed databas-
es, and so on.

References
1. J.M.S. Wams and M. van Steen, “Pervasive Messaging,”

Proc. 1st Int’l Conf. Pervasive Computing and Comm. (Per-

Com), IEEE CS Press, 2003, pp. 495–504.

2. J.M.S. Wams and M. van Steen, “A Flexible Middleware

Layer for User-to-User Messaging,” Proc. 14th Int’l Conf.

Distributed Applications and Interoperable Systems, LNCS

2893, Springer-Verlag, 2003, pp. 297–309.

3. M. van Steen, P. Homburg, and A. Tanenbaum, “Globe: A

Wide-Area Distributed System,” IEEE Concurrency, vol. 7,

no. 1, 1999, pp. 70–78.

4. G. Pierre, M. van Steen, and A. Tanenbaum, “Dynamically

Selecting Optimal Distribution Strategies for Web Docu-

ments,” IEEE Trans. Computers, vol. 51, no. 6, 2002, pp.

637–651.

5. P. McFedries. “Blah, Blah, Blog,” IEEE Spectrum, vol. 40,

no. 12, 2003, p. 60.

Jan-Mark S. Wams is a PhD student at the Vrije Universiteit,

Amsterdam. His research interests include efficient large-

scale replication and domain-specific compression. Wams

is the inventor of “lazy evaluation” compression. He

received a master’s degree in computer science from the

Vrije Universiteit. He is a member of the IEEE and the ACM.

Contact him at jms@cs.vu.nl

Maarten van Steen is professor at the Vrije Universiteit, Ams-

terdam. His research concentrates on large-scale distrib-

uted systems. He co-authored the text book Distributed

Systems (Prentice Hall, 2002). He is a member of the IEEE

and the ACM. Contact him at steen@cs.vu.nl.

82 MARCH • APRIL 2004 www.computer.org/internet/ IEEE INTERNET COMPUTING

Middleware Track

Architectures
Support Services

Algorithm/Protocol Design and Analysis
Mobile Environment

Mobile Communication Systems
Applications

Emerging Technologies

IEEE Transactions on
Mobile Computing

revolutionary new quarterly journal that seeks out and delivers the very
best peer-reviewed research results on mobility of users, systems, data,
computing information organization and access, services, management,

and applications. IEEE Transactions on Mobile Computing gives you
remarkable breadth and depth of coverage …

A
To subscribe:

http://
computer.org/tmc

or call
USA and CANADA:

+1 800 678 4333
WORLDWIDE:

+1 732 981 0060

Subscribe
NOW!

