
Exploiting Differentiated Tuple Distribution
in Shared Data Spaces

Giovanni Russello1, Michel Chaudron1, and Maarten van Steen2

1 Eindhoven University of Technology
2 Vrije Universiteit Amsterdam

Abstract. The shared data space model has proven to be an effective paradigm
for building distributed applications. However, building an efficient distributed
implementation remains a challenge. A plethora of different implementations ex-
ists. Each of them has a specific policy for distributing data across nodes. Often,
these policies are tailored to a specific application domain. Thus, those systems
may often perform poorly with applications extraneous to their domain. In this
paper, we propose that implementations of a distributed shared data space system
should provide mechanisms for tailoring data distribution policies. Through this
flexibility the shared data space system can cope with a wide spectrum of appli-
cation classes. The need for this flexibility is illustrated by experiments which
show that there is no single distribution policy that works well in all cases.

1 Introduction

As distributed systems scale in the number of components and in their dispersion across
large networks, the need for loose coupling between those components increases. This
decoupling can take place in two dimensions: time and space [3]. Time decoupling
means that communicating parties need not be active simultaneously. Space decoupling
means that communicating parties need not have an explicit reference to each other.

Generative communication [10], also referred to as data-oriented coordination [12],
provides both types of decoupling. In the literature several implementations of gener-
ative communication using shared data space systems have been proposed. To meet
extra-functional system properties, such as scalability and timeliness, these distribution
policies are often optimized for a specific application domain or technical infrastructure.
This hard-wiring of a single policy limits the ability of these systems to suit different
application characteristics.

Instead, we propose to cater for a wide variety of extra-functional requirements
by a using flexible architecture. This architecture provides the possibility of adapting
the distribution policies to application-level characteristics of access to the shared data
space. In this way, the implementation provides a means to balance extra-functional
properties of a system, such as performance, resource use and scalability, for a large
class of applications.

In our design of a distributed shared data space, we apply the principle of separation
of concerns. This means that we address functional requirements of an application sep-
arately from its extra-functional requirements. In particular, we propose to separate the
policies for distributing data between nodes from the application functionality. Through

M. Danelutto, D. Laforenza, M. Vanneschi (Eds.): Euro-Par 2004, LNCS 3149, pp. 579–586, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



580 G. Russello, M. Chaudron, and M. van Steen

this separation, tuning the distribution policy for extra-functional properties such as low
latency or low bandwith use becomes transparent to the application. Also, through ap-
plication of this principle, application logic and distribution logic are separate units of
implementation. In this way, both the application code and the distribution code can be
reused in different environments.

To substantiate this claim, we show in this paper, that matching the distribution pol-
icy with an application’s needs, yields better performance than any single distribution
policy. While, differentiation of policies has been applied to distributed shared mem-
ory systems [2, 5] and in shared data space [4, 15], this paper is the first to demonstrate
with concrete results the need for differentiation in shared data spaces. Furthermore,
we present experimental results that suggest that continuous adaptation of policies may
also be needed.

The paper is organized as follows. In Section 2 we introduce the shared data space
model and common distribution schemes. We also explain succintly our distributed
shared data space implementation. In Section 3 we describe the setup for our experi-
ments, followed by a discussion of the results in Section 4. We conclude in Section 5.

2 The Shared Data Space Model

A shared data space is capable of storing tuples. A tuple is an indivisible, ordered
collection of named values. Tuples may be typed. Applications can interact with the
data space via the three operations described in Figure 1. In this paper, we adopt the
semantics of the corresponding operators as specified for JavaSpaces [11].

Operation Description
put(tuple) Stores a given tuple in the data space.
read(template) Reads an arbitrary tuple that matches template from the data space.

If no match can be found, the caller is blocked.
take(template) Removes an arbitrary tuple that matches template from the data space.

If no match could be found, the caller is blocked.

Fig. 1. The three data space operations.

Various approaches have been followed for constructing distributed shared data
spaces. However, the most common approach is still to build a centralized data space,
in which all tuples are stored at a single node. Examples of this approach include JavaS-
paces [9] and TSpaces [18]. The obvious drawback is that the single node may become
a bottleneck for performance, reliability and scalability.

For local-area systems, a popular solution is the statically distributed data space,
in which tuples are assigned to nodes according to a systemwide hash function [14].
Static distribution is primarily done to balance the load between various servers, and
assumes that access to tuples is more or less uniformly distributed. With the distributed
hashing techniques as now being applied in peer-to-peer file sharing systems, hash-
based solutions can also be applied to wide-area systems, although it would seem that
there is a severe performance penalty due to high access latencies.



Exploiting Differentiated Tuple Distribution in Shared Data Spaces 581

Fully replicated data spaces have also been developed, as in [8]. In these cases,
which have been generally applied to high-performance computing, each tuple is repli-
cated to every node. Since tuples can be found locally, search time can be short. How-
ever, sophisticated mechanisms are needed to efficiently manage the consistency
amongst nodes. The overhead of these mechanisms limits the scalability to large-scale
networks.

There are other examples of distributing shared data spaces, but in all cases the
succes of these schemes has also been fairly limited. The main reason is that shared data
spaces, like relational databases, essentially require content-based searching in order to
read data. This type of searching is inherently expensive in large-scale settings, as has
again recently been illustrated by the research on unstructured overlay networks [6, 7].

The approach we take, is that by dynamically differentiating how tuples should be
distributed in a shared data space, we can achieve significant performance gains in com-
parison to any static, systemwide distribution scheme. The best scheme highly depends
on the applications that access the shared data space. For this reason the supporting mid-
dleware should be able to support a myriad of schemes. Eilean [15], and in its successor
OpenTS [4], are the first shared data space systems where tuples can be treated differ-
ently according to the use within the applications, similar to our approach. However,
those systems present a static set of distribution strategies that can not easily extended.
Moreover, the programmer has to provide explicit information about which distribution
strategy has to be applied to each tuple, solely based on his/her knowledge of the ap-
plication. Finally, the association tuples to distribution strategies is tangled within the
application code, contrary to the principle of separation of concerns.

Our solution is called GSpace. A GSpace system consists of several GSpace kernels
running on different nodes. Each kernel stores a part of the overall data space (called
a slice), as shown in Figure 2. The kernels communicate with each other to present
applications with a view of a logically unified data space, thus preserving its simple
programming model.

Application
Layer

Middleware
Layer

Low Level
Layer

System Boot

Policy
Descriptor

Loader

Connection
Manager

Controller

GSpace
 API

GSpace
Kernel

ControllerDistribution
Manger

Data Space
Slice

Communication
Module

Dynamic
Invocation
Handler

Operating System - Network Interface

Application Component

put
read
take

Distribution
Policy

Descriptordownload

Fig. 2. The internal organization of a GSpace kernel.



582 G. Russello, M. Chaudron, and M. van Steen

Each kernel contains several distribution managers that are responsible for distri-
bution of tuples. These modules each employ a different distribution policy for differ-
ent tuple types, and are completely separated from application components. In other
words: data distribution is carried out without specifing any details in the application
code. Moreover, the set of policies is extensible such that new distribution policies can
be defined. Distribution policies can be inserted in the middleware either at design or at
run-time. Further details on GSpace internals can be found in [16].

3 Experiment Setup

To investigate the effect of using different distribution policies for different applications,
we set up the following experiments.

We defined a number of patterns that characterize how distributed applications use
the data space. Such a usage pattern consists of (1) the ratio of read, put and take oper-
ations, (2) the ordering in which these operations are executed, and (3) the distribution
of the execution of these actions across different nodes. To avoid randomization anoma-
lies, we generate a set of runs that comply with specific usage patterns. We execute the
set of runs for different distribution policies. During execution of a run, we measure
system parameters that are indicators of costs produced by a distribution policy.

We examined the following application usage patterns, which we considered to be
representative for a wide range of applications.

Local Usage Pattern (LUP): In this case, tuples are retrieved from the slice on the
same node where they have been inserted. This could be the case if components
store some information for their own use or if producer and consumer of a tuple
type are deployed on the same node.

Write-Many Usage Pattern (WUP): In this usage pattern applications on different
nodes need to frequently and concurrently update the same tuple instance. This is
problematic for the consistency of distributed shared-memory systems, since extra
mechanisms are needed for mutual exclusion.

Read-Mostly Usage Pattern (RUP): In this usage pattern, application components ex-
ecute mostly read operations on remote tuples. We distinguish two variants of this
pattern: 1) RUP(i), where applications might execute tuple updates between se-
quences of read operations. An example could be of a tuple type representing a
list-of-content. 2) RUP(ii), between the insertion of a tuple and its removal only
read operations are executed. This could be the case of tuple type representing
intermediate-result data in a process-farm parallel application.

As we mentioned, we are interested in examining how differentiating distribution poli-
cies can improve performance. To this end, we designed and implemented four different
policies, which we subsequently applied to each of the three application usage patterns.
The four different policies are the following:

Store Locally (SL): A tuple is always stored on the slice that excutes its put operation.
Likewise, read or take operations are performed locally as well. If the tuple is not
found locally then a request is forwarded to other nodes.



Exploiting Differentiated Tuple Distribution in Shared Data Spaces 583

Full Replication (FR): Tuples are inserted at all nodes. The read and take operations
are performed locally. However, a take has to be forwarded to all nodes by means
of a totally-ordered broadcast, in order to remove all copies.

Cache with Invalidation (CI): A tuple is stored locally. When a remote location per-
forms a read operation, a copy of the tuple is subsequently cached at the requester’s
location. When a cached tuple is removed through a take operation then an invali-
dation message is sent to invalidate all other cached copies of that tuple.

Cache with Verification (CV): This policy is similar to CI, except that invalidations
are not sent when performing a take. On reading a cached tuple, the reader verifies
whether the cached copy is still valid, that is the original has not been removed.

To compare the distribution policies we follow the approach described in [13]. We
define a cost function (CF) as a linear combination of metrics that represent differ-
ent aspects of the cost incurred by a policy. We used the following metrics in the cost
function: rl and tl represent the average latency for the execution of read and take oper-
ations; bu represents the total network bandwidth usage; and mu represents the memory
consumption for storing the tuples in each local data slice. For these parameters, the
cost function for a policy p becomes:

CFp = w1 ∗ rlp + w2 ∗ tlp + w3 ∗ bup + w4 ∗mup (1)

Because put operations are non-blocking, application components do not perceive any
difference in latency for different distribution policies. Therefore, the put latency is not
used as a parameter for the cost function.

The wi’s control the relative contribution of an individual cost metric to the over-
all cost. An application engineer can set these parameters to match his preference of
the relative importance of the different cost metrics. For the experiments in this paper,
we take wi = 0.25 for all i. Clearly, the settings of these weights determine the perfor-
mance of the policies. The relevance of these results is not to identify the best setting
of the weights, but to illustrate that different policies can be ranked according to a cost-
criterium and that for different application characteristics different policies perform best
(this holds for any setting of weights).

In our experiments, we simulated all application usage patterns with the policies
described previously. The best policy for an application usage pattern is the one that
produces the lowest cost value.

4 Results

All experiments were executed on 10 nodes of the DAS-2 [1]. Each usage pattern was
simulated using runs of 500, 1000, 2000, 3000, and 5000 operations. For brevity rea-
sons, the histograms in Figure 3 only illustrate the results obtained using runs of 5000
operations. In each histogram, the X-axis shows the distribution policies and the Y -axis
represents the respective CF values. The results of shorter sequences of operations fol-
low the same trend. The complete results of these other experiments can be found in the
extended version of this paper [17].



584 G. Russello, M. Chaudron, and M. van Steen

(a) (b)

(c) (d)

LUP

0

500000

1000000

1500000

2000000

2500000

3000000

3500000

SL FR CI CV

WUP

3200000

3300000

3400000

3500000

3600000

3700000

3800000

3900000

4000000

4100000

SL FR CI CV

RUP(i)

1

10

100

1000

10000

100000

1000000

10000000

SL FR CI CV

RUP(ii)

1

10

100

1000

10000

100000

1000000

10000000

SL FR CI CV

Fig. 3. Histograms showing the cost incurrend by each policy per application pattern.

Figure 3-(a) shows that SL is the best policy for the local usage pattern. Store-
Locally guarantees low cost for the execution of space operations on local tuples. Fig-
ure 3-(b) shows that FR produces the lowest cost for the write-many usage pattern. This
is because the extra resources spent on replicating tuples, reduce the time required for
finding a matching tuple. Figure 3-(c) and (d) show the results for RUP(i) and RUP(ii),
respectively. Note that a logarithmic scale is used. In both cases, the CI policy produces
the lowest cost. This is because caching allows to execute most of the read operations
locally. However, the CV policy performs considerably worse than CI policy because
the former sends a validation message for each read executed on the local cache.

Figure 4 shows some unanticipated results collected for a set of experiments with
the Read-mostly usage pattern RUP(i). Here, the ratio of number of read operations
to number of take operations is decreased respect to the one used in the experiment
in 3-(c), meaning that a greater number of take operations are executed. The X-axis
shows the length of the run; i.e. number of operations. The Y -axis shows -on a loga-
rithmic scale- the cost incurred by the distribution policies. The experiments described
before suggest that the best policy for RUP(i) is CI. Instead, the graph shows that only
for shorter runs, cost is minimized by the CI policy. As the number of the operations
increases policy FR outperforms policy CI.

The reason for this changing of policy performances is due to the increased number
of take operations executed for each run. This fact has two effects that jeopardize the
performance of policy CI. Firstly, the execution of more take operations reduces the
benefits introduced with caching since cached tuples are more often invalidated. Thus,
read operations have to search for a matching tuple, increasing latency time and band-
width use. On the other hand, policy FR replicates tuples at every insertion thus replicas
are already available locally. Secondly, for each take operation policy CI uses point-to-
point messages for cache invalidation. Instead, policy FR exploits the more effective
atomic multicast technique for removing replicas, that reduces resource usage.



Exploiting Differentiated Tuple Distribution in Shared Data Spaces 585

1

10

100

1000

10000

500 1000 2000 3000 5000

SL

FR

CI

CV

Fig. 4. Results of the simulation for the RUP(i) with different operation lengths.

What we see is that even given the behaviour of an application, it is difficult to
predict which policy it fits best. One solution is to make more accurate models for pre-
dicting the cost of policies from behaviour. Building these models is quite intricate. For
one thing, it is quite complex to determine all the parameters needed for such a model.
An alternative approach is to let the system itself figure out which policy works best. In
[13] an approach is reported in which a system automatically selects the best strategy
for caching Web pages. This approach works by internally replaying and simulating the
recent behaviour of the systems for a set of available strategies. Based on this these sim-
ulations, the system can decide which policy works best for the current behaviour of the
system. We are extending GSpace to include such a mechanism that can dynamically
select the best available distribution strategy.

5 Conclusion and Future Work

In this paper we discussed the use of a flexible architecture for distributed shared data
space systems in which the strategy for distributing data amongst nodes can be config-
ured without affecting application functionality. This flexibility enables the tailoring of
distribution policies to balance the different extra-functional needs of applications. The
separation of extra-functional concerns from application functionality enhances code
reuse. Both application code and distribution policies are unit of reuse ready to be de-
ployed in several enviroments.

The need for this flexibility is motivated by a series of experiments. These experi-
ments show that there is no distribution policy that is best for different types of appli-
cation behaviour.

Another important result of our experiments is the urge to have in the system a
mechanism able to monitor at run-time the application behavior. In this way, the system
is aware when the actual distribution policy is no more the most efficient one. When
this happens, the system can adapt dynamically to the new needs of the application by
switching distribution policy.

For future work we are currently optimizing migration strategies needed to dynam-
ically change from one distribution policy to another, and are concentrating on devel-
oping accompanying mechanisms. At the same time, we are working on supporting
real-time constraints in the same fashion as we are doing with distribution requirements.



586 G. Russello, M. Chaudron, and M. van Steen

References

1. H. Bal et al. “The Distributed ASCI Supercomputer Project.” Oper. Syst. Rev., 34(4):76–96,
Oct. 2000.

2. H. Bal and M. Kaashoek. “Object Distribution in Orca using Compile-Time and Run-Time
Techniques.” In Proc. Eighth OOPSLA, pp. 162–177, Sept. 1993. Washington, DC.

3. G. Cabri, L. Leonardi, and F. Zambonelli. “Mobile-Agent Cooordination Models for Internet
Applications.” IEEE Computer, 33(2):82–89, Feb. 2000.

4. J. Carreira, J.G. Silva, K. Langendoen,and H. Bal. “Implementing Tuple Space with
Threads”. In International Conference on Parallel and DistributedSystems (Euro-PDS97),
259–264, Barcelona, Spain, June 1997.

5. J. Carter, J. Bennett, and W. Zwaenepoel. “Techniques for Reducing Consistency-Related
Communication in Distributed Shared Memory Systems.” ACM Trans. Comp. Syst.,
13(3):205–244, Aug. 1995.

6. Y. Chawathe, S. Ratnasamy, L. Breslau, N. Lanham, and S. Shenker. “Making Gnutella-like
P2P Systems Scalable.” In Proc. SIGCOMM, Aug. 2003. ACM Press, New York, NY.

7. E. Cohen, A. Fiat, and H. Kaplan. “Associative Search in Peer-to-Peer Networks: Harnessing
Latent Semantics.” In Proc. 22nd INFOCOM Conf., Apr. 2003. IEEE Computer Society
Press, Los Alamitos, CA.

8. A. Corradi, L. Leonardi, and F. Zambonelli. “Strategies and Protocols for Highly Parallel
Linda Servers.” Software – Practice & Experience, 28(14):1493 – 1517, Dec. 1998.

9. E. Freeman, S. Hupfer, and K. Arnold. JavaSpaces, Principles, Patterns and Practice.
Addison-Wesley, Reading, MA, 1999.

10. D. Gelernter. “Generative Communication in Linda.” ACM Trans. Prog. Lang. Syst., 7(1):80–
112, 1985.

11. S. Microsystems. JavaSpaces Service Specification, Oct. 2000.
12. G. Papadopoulos and F. Arbab. “Coordination Models and Languages.” In M. Zelkowitz,

(ed.), Advances in Computers, volume 46, pp. 329–400. Academic Press, New York, NY,
Sept. 1998.

13. G. Pierre, M. van Steen, and A. Tanenbaum. “Dynamically Selecting Optimal Distribution
Strategies for Web Documents.” IEEE Trans. Comp., 51(6):637–651, June 2002.

14. A. Rowstron. “Run-time Systems for Coordination.” In A. Omicini, F. Zambonelli,
M. Klusch, and R. Tolksdorf, (eds.), Coordination of Internet Agents: Models, Technologies
and Applications, pp. 78–96. Springer-Verlag, Berlin, 2001.

15. J. G. Silva, J. Carreira, and L. Silva. “On the design of Eilean: A Linda-like library for
MPI.” In Proc. 2nd Scalable Parallel Libraries Conference, IEEE, October 1994.

16. G. Russello, M. Chaudron, and M. van Steen. “Customizable Data Distribution for Shared
Data Spaces.” In Proc. Int’l Conf. on Parallel and Distributed Processing Techniques and
Applications, June 2003.

17. G. Russello, M. Chaudron, and M. van Steen. “GSpace: Tailorable Data Distribution in
Shared Data Space System.” Technical Report 04/06, Technische Universiteit Eindhoven,
Department of Mathematics and Computer Science, Jan. 2004.

18. P. Wyckoff et al. “T Spaces.” IBM Systems J., 37(3):454–474, Aug. 1998.


	1 Introduction
	2 The Shared Data Space Model
	3 Experiment Setup
	4 Results
	5 Conclusion and Future Work
	References

