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[0 GROUP FORMATION
AMONG DECENTRALIZED
AUTONOMOUS AGENTS

ELTH OGSTON, MAARTEN VAN STEEN,

and FRANCES BRAZIER

Department of Computer Science, Vrije Universiteit,
Amsterdam, The Netherlands

This paper examines a method of clustering within a fully decentralized multi-agent system.
Our goal is to group agents with similar objectives or data, as is done in traditional clustering.
However, we add the additional constraint that agents must remain in place on a network,
instead of first being collected into a centralized database. To do this, we connect agents in
a random overlay network and have them search in a peer-to-peer fashion for other similar
agents. We thus aim to tackle the basic clustering problem on an Internet scale, and create
a method by which agents themselves can be grouped, forming coalitions. In order
to investigate the feasibility of this decentralized approach, this paper presents simulation
experiments that look into the quality of the clusters discovered. First, the clusters found
by the agent method are compared to those created by k-means clustering for two-dimensional
spatial data points. Results show that the decentralized agent method produces a better clus-
tering than the centralized k-means algorithm, placing 95% to 99% of points correctly. A
further experiment explores how agents can be used to cluster a straightforward text docu-
ment set, demonstrating that agents can discover clusters and keywords that are reasonable
estimates of those identified by the central word vector space approach.

Agents that wish to cooperate within a multi-agent system must have a means
of finding each other. The straightforward solution to this problem is to cre-
ate a central directory server that is able to match requests. However, this
centrally directed solution limits the autonomy of agents with respect to their
choice of partners, and it limits the scalability of the multi-agent system as a
whole. Ideally agents would, on their own, be able to group together to form
cliques of like minded agents. As a result they would know their potential
partners (members of their social circle) and could directly negotiate new
partnerships based on more information than a directory server would con-
tain. Grouping agents in this way, based on similar objectives, can be viewed
as a clustering problem. Clustering has been studied in a variety of fields,
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notably statistics, pattern recognition, and data mining. These ficlds have a
wide range of purposes in mind, for instance, discovering trends, segmenting
images, or grouping documents by subject. However, in all of these disci-
plines, the underlying problem is the same; given a number of data items, cre-
ate a grouping such that items is the same group are more similar to each
other than they are to items in other groups (Jain and Dubes 1988). Most
algorithms for clustering focus on how to form these groups given a file or
database containing the items. Yet, for Internet applications like finding
similar Web pages or finding agents with similar interests, items can be
widely distributed over many machines and the issue of collecting the items
in the first place gains importance. Centralized clustering is problematical
if data is widely distributed, data sets are volatile, or data items cannot be
compactly represented. Decentralization, on the other hand, is a thorny
problem. Even in the centralized case where each data item can be compared
to every other data item, perfect clusters can be hard to find. Decentralization
creates the additional complication that even if a correct classification can be
determined with the incomplete information available, the location of items
belonging to a class also needs to be discovered.

This paper considers the case where classification is straightforward and
focuses on the question of finding potential cluster members in a decentra-
lized fashion. By studying in depth a simplified example of agent grouping,
we hope to gain insight into dynamics that can be used to create more com-
plex, self-organizing agent communities. With this purpose in mind, we view
clustering as a search problem in a multi-agent system in which individual
agents have the goal of finding other “‘similar’ agents. Agents aim to form
groups among themselves, and these groups constitute a clustering. In large
scale Internet systems, potentially millions of agents are spread across poss-
ibly as many machines. As a result, each agent will always have a view of only
a very small fraction of the rest of the system. Our research is concerned with
the minimal abilities and resources required by such agents. We create an
abstract model of simplified agents which have a very small range of actions
and act using straightforward decision functions. Furthermore, these agents
can generally only communicate in a peer-to-peer manner with a limited
amount of additional coordination among small groups.

We study the behavior of this abstract system through simulation experi-
ments. In the first of these experiments, agents are each given a two-
dimensional spatial point and seek to group themselves based on the Euclidean
distance between their points. In this setting, the quality of the clusters
produced can be measured. A second experiment considers more complex
data for which similarity measures are more subjective. Each agent is given
a text document and agents try to find groups based on document similarity.
In both experiments, agents are initially randomly assigned a small number
(five) of neighbor agents. These neighbors are an agent’s only view of the
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system as a whole. Based on these local views, agents form clusters with the
closest points they come across. Agents within a cluster coordinate, combin-
ing their local views to allow each member to search a broader range of
neighbors for better matches. Clusters are limited in size by a user-defined
parameter. Once clusters have grown to this size, they split when better
matches are found by their members, allowing stronger new clusters to
develop. We show that for the two-dimensional data case, agents produce
better clusterings than the standard k-means algorithm. We further find that
agents can also discover reasonable clusters for high dimensional text data,
even when similarity is imprecise.

BACKGROUND AND RELATED WORK

Middle agents or directory services are commonly used in multi-agent
system to enable the location of agents with particular capabilities (Decker
et al. 1997). Such services, however, add an essentially centralized component
to an ideally decentralized agent world. The formation of groups of agents
based on like interests provides a potential alternative for very large decen-
tralized systems where maintaining a directory becomes too costly. Such
groups place potential partners for collaboration in an agent’s immediate
local environment (Forner 1997). When agents’ interests include jointly
working on common tasks, this process evolves into coalition formation;
the negotiation of agreements between agents with complementary skills
for the distribution of work and rewards (Klusch and Gerber 2002;
Sandholm and Lesser 1995; Shehory and Kraus 1995). Clustering, as studied
in this paper, is a more basic problem, yet an essential component of the pro-
cess of forming coalitions. A multi-agent system made up of heterogenous
agents that cannot somehow identify groups of similar agents is unable to
introduce potential coalition members to each other. Clustering, on the other
hand, is usually studied as a centralized problem. This paper reviews previous
work on clustering and explores how a decentralized approach can be
designed for a multi-agent system. The resulting procedure could be applied
as a directory service and can enhance our understanding of coalition forma-
tion in general.

There are a large number of centrally controlled algorithms for discover-
ing natural clusters, if they exist, in a data set (see Jain et al. [1999] and
Kaufman and Rousseeuw [1990] for a general review of the literature). There
are three underlying methods relevant to this work: k-means, which divides
points into k clusters centered around k chosen centroids; hierarchical
clustering, which builds a series of clusterings by repeatedly combining near-
est neighbor clusters (or repeatedly splitting the weakest cluster); and density
based clustering, which considers clusters to be connected areas of points
with a density above a given minimum value. There are many advanced
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variations of these basic methods designed to optimize performance on parti-
cular types of data. These algorithms focus on finding clusters given various
properties of the data set: clusters of widely differing sizes, odd cluster
shapes, little separation between clusters, noise, outliers, high-dimensional
data, and complex data types for which a similarity function is difficult to
define. In general, all clustering algorithms focus on creating good compact
representations of clusters and appropriate distance functions between data
points. To this purpose, they generally need a user to provide one or two
parameters that indicate the types of clusters expected. Most commonly,
algorithms are given the number of clusters into which the data set is to be
split, the size of desired clusters, or a density value that defines the expected
distance between points within clusters. Since a central representation is
available, where each point can be compared to each other point or cluster
representation, points are never placed in a cluster with widely differing
members. Mistakes made by these algorithms instead take the form of incor-
rectly splitting a real data cluster in half or incorrectly combining two neigh-
boring data clusters into a single cluster. On the whole, however, the
definition of clustering is imprecise: the creation of clusters in which points
have more in common with other cluster members than with members of
other clusters. Given the complexities listed above it is usually not entirely
clear what the “correct” clustering of a data set is. There is generally no
one best algorithm for obtaining good clusters (Jain and Dubes 1988). The
most appropriate algorithm depends on the peculiarities of the data set
considered.

This paper focuses on yet another complexity that must be faced in multi-
agent system: the distribution of the data over many machines. Part of the
clustering process is to choose individual clusters characteristics, based on
the particular composition of a data set, so as to best meet the given general
guidelines. Thus, for instance, given a parameter of 10 for the desired number
of clusters, actual cluster sizes are determined by the overall data set size and
density variation. If data is decentralized, this process becomes much more
difficult since information about the extent of the data set or even the density
of points in a particular area is incomplete. Furthermore, in addition to
determining cluster characteristics, the actual points that best fit in a cluster
also need to be found.

AGENT PROCEDURE
Model Description

In our model, agents are defined by their characteristics, and can thus be
seen, for the purpose of clustering, as a set of data items. Each agent has a
small number of links to other agents. These links represent communication
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channels and thus define the neighborhood of an agent. The aim of the sys-
tem is for agents to rearrange these links and to select some of them to form
connections or connected links between themselves, generating a graph of
connections corresponding to a clustering.

The creation of initial links is a bootstrapping problem; we assume
they are derived from the placement of agents, or some other application-
dependent source, and model them as a random network. Thus, in our simu-
lations, each agent starts out as a cluster of a single item with links to some
other randomly chosen agents. As a simulation progresses, agents pick some
of their links to become matches or matched links, based on the similarity of
the agents joined by the link. Clusters choose the best of these matches
proposed by their agents to become connections. Agents joined by a path
of connected links form a single cluster.

The creation of connected links allows clusters to expand, but the initial
clusters formed in this way are very poor. They represent the best clusters
agents can see in an extremely limited local view. We give agents two beha-
viors that are used to improve clusters. First, agents in a cluster combine their
individual pools of links, widening their individual neighborhoods. This
allows them (still individually) to pick better matched links as candidates
for cluster membership. Additionally, to prevent agents conglomerating into
one large cluster, a limit is placed on cluster size. A further procedure then
allows clusters to break weaker connections, enabling them to upgrade
stronger available matches into connections. Since connections are between
agents, breaking a connection can split a cluster, but leaves other stronger
agent pairs connected in the resulting clusters.

We represent the search for good matches between similar agents as a
matchmaking problem among agents’ short-term objectives. Internally each
agent is considered to have a main attribute that describes its basic character-
istics. We would like to cluster agents according to these attributes. Each
agent further contains a number of objectives, or current goals based on its
attribute. In the first experiment in this paper, an attribute is abstracted as
a two-dimensional point. Objectives are represented by nearby points, chosen
as a function of their agent’s attribute. Objectives thus form a cloud of points
around an agent’s central data. For two-dimensional points, objectives sim-
ply extend an agent’s range of influence. For higher dimensional data, on the
other hand, objectives can be chosen to reduce dimensionality, thus reducing
the cost of checking for matches. In clustering text, we use a full document as
an agent’s attribute and weighted word vectors to define its objectives. For
more advanced agents, an objective could be only one of many tasks that
an agent needs to complete to reach a final goal, which is its central attribute.
Figure 1(a) shows a diagram of two clustered agents. Figure 1(b) shows the
links between all agents in a small system containing four clusters of ten
points each.
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(a) Two clustered agents (b) A small system

FIGURE 1 Diagrams of model components.

Note that agents pick matches, since they are best able to determine how
closely related their objectives are to other agents’ objectives. Clusters, how-
ever, have a wider view of relative closeness on the attribute level since they
contain a larger number of matched and connected links. Therefore, clusters
have a stronger basis on which to choose connections to make and break.

Multi-agent systems are often described in terms of their agents’ indivi-
dual behaviors. Along these lines, we can summarize the above agents as
having the goal of finding good matches for their objectives. We would like
the individual goals of these agents, along with the local coordination pro-
vided by cooperation within the clusters, to result in the overall system
self-organizing into a grouping of agents based on their attributes. In this
paper, we focus on the nature of this collective clustering behavior. For
this reason, agents are limited to having very simple decision processes. This
allows us to highlight the basic clustering behavior and gives us a good
foundation on which to study more complex agents that might be used in real
applications.

Simulation Definition

Our aim is to examine the ability of a multi-agent system to find clusters
in a set of points P = {xy,...,xy}. A set of N agents 4 = {a,...,an} is
created. Each agent, a; has as its attribute the point x; in P. The agents are
joined by links, forming a graph G = (V, E), where the nodes are agents
and the edges are links. We stipulate that each node in the graph G has
the same degree J. The interaction of the agents will change the edges in
G, and eventually yield a new graph G* = (V, E*), where E* contains a set
of chosen connected links. Connected components in G* will correspond to
clusters to P.
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The procedure is as follows. Each agent, «;, is given a set W; of ¢ objec-
tives, which are points (not necessarily in P) chosen as a function of Xx;.
Note that, in the experiments presented in this paper, we use 6 =5 and
all objectives of an agent a_; are given a common view of the agent’s attri-
bute, x;. To initiate the system, we chose for each objective w; € W; an
objective w; € W; of a different agent uniformly at random in such a
way that no objective is paired twice. This pairing of objectives leads to
an initial set of unmatched links, denoted as E; . The initial set of matched
links, denoted as Ej, is set equal to the empty set. The initial set of connec-
ted links, Ej is also empty, indicating that to begin, each agent forms a clus-
ter of size 1. From this position, we proceed in turns, each turn ¢ consisting
of the following four steps. Some of these steps contain functions, which
will be defined later.

Step 1 (Connecting): Clusters choose some of their matched links from E; to
become connected links using a rule r.. Together with all links from E7,
this forms the edge set E}, ;. Note that a connected link remains in E;".

Step 2 (Mixing): Each cluster C; has a set of unmatched links adjacent to it,
given by

E (C) ={(w,0) € E] : w is an objective of an agent in C;}.

Each cluster mixes its objectives that are adjacent to an unmatched link in

E; (C;), using a random permutation. After each cluster has completed

this mixing procedure, a new set of unmatched links is obtained which

is denoted by E_ ;.

Step 3 (Matching): All agents test their unmatched links (from £, ) using a
turn-dependent matching probability p(w,w’). More precisely, an
unmatched link (w,®’) will become a matched link with probability
pi(w,0') and will remain unmatched with probability 1 — p; (@, o).
The new unmatched links together with E, from E;|, and are taken
out of E_,.

Step 4 (Breaking): Clusters choose some of their matched links from E/" ;| to
be broken, downgrading them to unmatched links and adding them to
E; |, according to a breaking probability p,. Each broken link is then

t+1°
removed from the set E . If a link to be broken is also a connected link,

1+1°
it is also taken out of E} ;.

The connecting, mixing, and breaking steps must be done collaboratively
by a cluster as a whole, while the matching step can be done separately by
each of a cluster’s agents. In our simulations, to simplify operations within
a cluster, we select, at random, one cluster agent to perform the collaborative
steps. Which agent is chosen is unimportant in these experiments since all
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agents in the simulations have equal capabilities. Over many turns the mixing
and matching steps above create a search for matches among the objectives
of neighboring clusters. The connecting and breaking steps result in clusters
forming and changing over time.

To determine the matching probability, p; (o, '), each agent maintains a
range, which it continuously adjusts as follows. Let R! denote the range of ¢;
for turn 7. The agent a; considers M distances between objectives w € W; and
o' € W; presented to it in the matching step. This might take several turns.
After the M distances have been observed, let ¢ be the smallest observed
value. If R! > ¢, the agent forgets its distances and starts collecting M new
distances. Meanwhile R! stays the same. On the other hand, if R’ < g, the
range is gradually increased in the next M turns by a fixed fraction
(6 — RY)/M. However, if after say m turns, the agent is presented with a dis-
tance ¢’ smaller than the current o, it repeats the test R >¢’ and follows the
above procedure from the point on. The above procedure increased the range
of the agent a;. To decrease it, when a match is made, the range is set to the
distance of this match. In our experiments, M = 100.

For each turn 7, we now let pf(w, ') =1 —d(w,®")/R,. Here, d(w, o)
denotes some measure of the distance between w and «'. For instance, for
spatial data we use the Euclidean distance between w and «'. In this paper,
we set the joint range for a link as the maximum of its two objectives’ ranges,
R, = max{R!, R/}, if o€ W}, and o' € W;.

The rule used to choose connections, r., is defined as follows. Let the
strength of a matched link (w,®’) be defined as 1/d(w, '), meaning that
more closely related links have a higher strength. All current matched links
in the cluster, that are not connected, are first ordered according to their
strength. We then proceed to create connections, starting with the strongest.
A connection is created if the resulting cluster is not larger than a size limit L.
Once a connection cannot be formed because of this size limit, no more con-
nections are formed. In the experiments in this paper, L is set at 1.5 times the
known cluster size.

To define the breaking probability, we need a speed parameter A. Consider
a cluster C consisting of N¢ agents. Each turn the cluster has a probability of
breaking one of its links given as p,(C)=AN¢/L. The experiments in this
paper use A = 0.3, a value found to result in a good tradeoff between cluster-
ing speed and quality in Ogston et al. (2003a). The cluster chooses which link
to break out of its set of matched links, E*(C), according to the following
formula. Let s(/) denote the strength of the link /, and let s¢,_be the maximal

max

strength of a matched link in C. The weight of a link is defined as:
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The probability of the cluster choosing a link / is then given by:

w(l)

pill) = Zl’eE*(C) w(l')’

EXPERIMENTAL RESULTS

This section presents the results of two experiments designed to measure
the quality of clusterings produced by the agent method described earlier.
The first experiment considers spatial data, for which there are a number
of standard quality measures, and compares agent clusterings to those found
by the k-means algorithm. The second experiment demonstrates how agents
can be adapted for use with text data and gives some comparisons to the
classical word vector model approach. To allow us to clearly separate the
issue of decentralization from that of difficult to distinguish clusters, we con-
sider basic data sets in which clusters are clearly separable and of equal size.

Comparison to K-means Clustering

In order to precisely measure clustering ability, we first examine the clus-
tering of straightforward data sets made up of two-dimensional spatial data
points. As these data sets do not contain any of the difficulties addressed by
more complex algorithms, the clusters found by the multi-agent system are
compared to those found by Forgy k-means clustering, as described in Jain
and Dubes (1988). K-means clustering works by choosing at random £ initial
cluster centers, or centroids, and assigning each data point to the cluster of
the centroid to which it is closest. Centroids are then reset to be the center
of the resulting clusters and the data points are reassigned to the new
centroids. This process is repeated until a quality measure, the total squared
error, stops changing. This is the simplest of the centralized clustering tech-
niques. Nonetheless, it works well on the elementary data sets examined and
illustrates the basic abilities and common mistakes of centralized clustering.

For this experiment, each agent is given a two-dimensional spatial point
as its attribute data, and agent objectives are simply also set to this data
point. The strength of links is determined using the Euclidean distance
between objectives as the measure of distance, d(w,®’). Table 1 compares
the results of the agent clustering method to perfect, random, and k-means
clusterings for four data sets of varying sizes. The agent algorithm was run
for 5000 turns with 50 trials for each data set. The k-means and random
clusterings were run 100 times for each data set.

The data sets used were generated according to the procedure described
in Zhang et al. (1997). Each data set consists of K clusters of two-dimensional
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data points. A cluster is characterized by the number of points per cluster
(mow = nhigh = 100) and the cluster radius (riow = rhigh = V2). The grid
pattern is used, which places the cluster centers on a VK x v/K grid. The dis-
tance between the clusters is controlled by k,, which is set to 8. The noise
parameter is set to 0. This creates a grid of well separated, circular, 2D
clusters with 100 points each and equal density. Four data sets are generated
with 25, 100, 400, and 1600 clusters. A corner of the 20 x 20 data set is shown
in Figure 2.

We compare the quality of clusters found by our method to the generated
clusters (perfect case), a set of clusters of the correct size but with randomly
assigned points (random case), and the clusters generated by the Forgy
k-means algorithm, given the correct value of k, initial centers picked uni-
formly at random from all the points, and run until no further improvement
in clustering is found.

Several measures of cluster quality are compared. First, the total squared
error metric is E*, which is used by the k-means algorithm. Given k clusters

Cy,...,Cy, where C; has a mean value m; for 1 <i < k:
k
B=3 > lx—ml.
i=1 xeC;

Total squared error gives an easily computed measure of the compactness
of clusters, but in doing so, favors small clusters. In fact, clusters with a single
point have a squared error of zero and thus the total squared error alone
cannot be used to compare clusterings of a data set with different numbers
of clusters. Total squared error also cannot be used to compare data sets
of different sizes. The more points there are in a data set and the larger
the range over which the data set is spread, the larger the total squared error.

¢ 5%
¥ %
£ ¥

(a) Clusters produced by the agent-based procedure (b) Clusters produced by the k-means algorithm

FIGURE 2 Agent-based and k-means clustering results.
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Jain and Dubbes (1988) describe measures for comparing two clusterings
of the same data by creating a contingency matrix which lists the number of
points in common between each pair of clusters, between the two clusterings.
These measures consider cluster membership, rather than the distance over
which clusters are spread. We use this method to compare our experimental
clusterings to the perfect clusterings produced by the generator. The Rand
statistic (Jain and Dubbes 1988) sums the number of pairs of points that
are correctly placed in the same cluster and the number of pairs of points that
are correctly placed in different clusters, and normalizes by the total number
of possible pairs. However, for our data sets which have many small clusters,
the number of pairs correctly placed in different clusters dominates. Thus we
also use the contingency matrix to calculate the number of points incorrectly
placed by associating with each real cluster the found cluster with which it
has the most points in common. We sum the number of common points over
all real clusters and subtract from the total number of points to get the points
that are out of place. This gives a clearer distinction between clusterings that
are close to, but not quite, correct. On the other hand, it does not distinguish
clusters that are incorrectly grouped into a single cluster. It also can count up
to half of the points in a real cluster as incorrectly placed if that cluster is
simply split in two.

In Table 1, it can be seen that while the agent-based clustering method
usually does not find the perfect clusterings, it consistently improves upon
the clusters found by the k-means algorithm. For smaller systems, it places
more than 99% of the points correctly, and for the larger system, it places
at least 95% of points correctly. The reason why a less good clustering is
found for the largest data set is the amount of time it takes the agent system
to find clusters. During a trial, the agents rapidly find a set of mediocre clus-
ters and then improve these over time. In this experiment, the agent systems
were run for 5000 turns, which is a long time for the smaller systems, but
halts the largest system while it is still improving. In Ogston et al. (2003a),
we present detailed results on timing.

Nature of Discovered Clusters

Figure 2(a) shows the clusters found by the agent procedure in a sample
run for a section of the 10 x 10 cluster grid. Figure 2(b) shows for comparison
the clusters found by an example k-means run. Both methods were given the
correct input parameters. The agent-based procedure used a maximum
cluster size, L, of 150, or 1.5 times the cluster size. The k-means algorithm
was run with &£ = 100, the number of clusters in the data set. Overall, both
methods found the correct number of clusters, meaning that k-means did
not lose any, which is possible, and that our agents adjusted to the correct
cluster size of 100, instead of staying at the maximum size of 150. Total
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squared error for the k-means run was 126,889 versus 20,372 for the agent-
based method.

The graphs in Figure 2 show the typical mistakes made by each method.
At point A, the agent method has associated a point with a neighboring clus-
ter instead of with the correct cluster. This can happen when a point has
joined the correct cluster, but has been broken off again due to the random-
ness of the breaking function. Agent clusterings remain dynamic, and gener-
ally these points reattach, though they can spend some time as a member of a
neighboring cluster. Thus at any point in time after good clusters have been
found, several such mistakes are likely to exist. This type of mistake can also
occur when a point simply does not find its correct cluster. This results in
clusters with one or a small number of agents that can take a long time to
discover their correct group. We see in Figure 2b that the k-means algorithm,
by contrast, makes very different types of mistakes. At label B, it has incor-
rectly joined two clusters into one, and at label C, it has incorrectly split a
cluster in two equally sized components. This can occur when two initial cen-
troids are chosen from the same cluster. This cluster then becomes split, but
somewhere else two clusters need to be joined to maintain k. When there are
large numbers of clusters, it is likely that this will occur. There are heuristic
methods of choosing better initial centriods, however, a perfect choice would
amount to knowing the correct clustering a-priori.

Clustering Text

Text clustering uses the same basic methods as spatial data clustering;
however, it faces the additional difficulty that the similarity of text docu-
ments is ambiguous. Since there is no strict distance measurement that can
be used, text algorithms focus on effective ways to extract a document’s
meaning through identifying content bearing words in the text or by means
of any additional information available through user feedback or references
(Faloutsos and Oard 1995). Again, in this paper, we wish to keep the issue of
decentralization separate from that of difficult to find clusters. Thus we
consider a straightforward data set and use comparison methods from the
classical word vector model (Salton and McGill 1983).

We use a 100 point data set containing the first ten chapters of each of ten
books chosen to have distinct subjects. These chapters are between 343 and
15733 words long. Agents are each given the entire text of a chapter as their
data point. Following the word vector model, agents process these texts to
create a weighted vector of all unique words (without stopping or stemming).
We represent this weight vector as 7' = {t1, ..., t,,}, where there are m unique
terms in the entire document set, though, of course, agents only know of the
terms their text contains and thus have a 0 weight for all other terms. Table 2
shows data for agent clusters found using three different combinations of
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TABLE 2 Results for Text Clustering Agents: 50 Runs Per Experiment, 500 Turns Per Run

Number of clusters Points out of place
Weighting
function Similarity coefficient min avg max min avg max
none Dice 11 15.46 25 4 10.76 27
~IDF S min(ti, i) 10 13.5 19 5 11.1 19
~IDF Soisy s(k), where s(k) =ty + 1 10 13.5 19 0 6.58 17

if 5 >0
and #; > 0, and
s(k) = 0 otherwise.

weighting schemes and distance functions. In the first of these, all words in
the text are given a weight of 1 and we use the Dice coefficient:

20300 tik - tik)
het Lik + D5y Lk

D(T;, Tj) =

This gives a measure of the number of words two texts have in common,
normalized by the lengths of the texts. We see in Table 2 that even with this
simple method agents are already able to find passable clusterings.

A more advanced method of weighting terms is to use each word’s inverse
document frequency:

IDF(t) = log <nﬁ) +1
k

where N is the total number of documents, and »; is the number of docu-
ments in which term 7, appears. This weighting method is based on the
assumption that words that occur very frequently or almost never among
the documents are likely to be functional words, while those with a middling
frequency are likely to be content bearing. We see a problem here, however.
In order to calculate the inverse document frequency of a word, an agent
must examine the entire document set. Since this is not possible in a decen-
tralized setting, we instead have agents attempt to estimate inverse document
frequencies by observing the frequency of words in the neighbors with which
they attempt to make matches:

~IDF (1) = 10g< total matches attempted >

potential neighbors that contained term k

To account for difference in document lengths, agents normalize their
weights so that their entire vector sums to 1. Agents then use one of the sim-
pler of the methods of determining similarity, the sum of the minimum of the
weights of each term. Although we find in the last row of Table 2, that using
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The Acwid

War of the Worlds

The Houmd of the Baskeryilles

FIGURE 3 Example clustering of the text data set.

the sum of the combined weights for each common term works slightly
better. Since changing the weights of words changes link strengths and thus
requires updating cluster heads, we have agents reevaluate weights only after
each 1000 attempts to make a match.

Figure 3 shows an example cluster of average quality, clustering using the
last of the three methods in Table 2. The clustering divides the data set into
12 clusters and places 6 points incorrectly. From the diagram, we can see that
this is actually quite a reasonable clustering of the date set. The mistakes that
are made are similar to those seen for spatial data, the War of the Worlds
cluster has been broken up, one of its components has joined The Hound
of the Baskervilles, and one of the Oliver Twist points has gotten lost. Con-
sidering that agent clusterings are dynamic, these mistakes are most likely
to be temporary, so that over time the average clustering will be the correct
one.

Finally, Table 3 shows, for three of the clusters in Figure 3, the top 25 words,
scored by adding the weights of all agents in the cluster that contain that word.
In addition, the table shows the scores and ranks these words would have
if agents used the actual inverse document frequency of the words for this data
set as their weights. We see from this table that the agents were able to find
reasonably good estimates of the central inverse document frequency values.

CONCLUSION AND FUTURE WORK

The experiments reported in this paper indicate that decentralized agent
systems can indeed be used to find clusterings of data sets with surprisingly
good quality. Our method contains two parameters, the maximum cluster
size and the speed at which clusters break, that can be adjusted to trade-
off knowledge of the data set and time for cluster quality. Agent clusters
show an ability to adjust their size to the size of underlying data clusters,
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and to learn the appropriate range for matching. In addition, more complex
text agents show an ability to learn reasonable approximations of word fre-
quency within a data set. In other work, we have shown that agents can learn
a much wider range appropriate cluster sizes by watching the series of links
they make and break (Ogston et al. 2003b) and have found that agent cluster-
ing shows good scalability properties (Ogston et al. 2003a). Together these
results demonstrate how using rational autonomous agents, which can
modify their decision-making criteria over time, can be advantageous in
the clustering problem.

The agents studied in this paper are extremely simple and clustered
straightforward data sets. However, they exhibit the basic dynamics of form-
ing clusters based on similarities between agent attributes. The text agents in
this paper demonstrate how these agents can be modified to deal with more
complex forms of data and matching functions. They further suggest that
approximate values of central concepts like word frequency might be
sufficient to produce good clusterings. On the other hand, the text data set
studied was fairly small and this work needs to be extended for larger data
sets. Further research directions include studying more advanced matching
functions and distance measures in order to tackle issues, such as clusters
of varying size, shape, and density, addressed by more advanced central clus-
tering algorithms. How well this works in practice must be determined by
future research, however, some such from of decentralized agent grouping
may in the future provide a basis for peer-to-peer directory services.
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