A CASE FOR DYNAMIC SELECTION OF
REPLICATION AND CACHING STRATEGIES

Swaminathan Sivasubramanian, Guillaume Pierre and Maarten van Steen
Dept. of Mathematics and Computer Science, Vrije Universiteit, Amsterdam, The Netherlands

Abstract Replication and caching strategies are being used to reduce user perceived de-
lay and wide area network traffic. Numerous such strategies have been pro-
posed to manage replication while maintaining consistency among the replicas.
In earlier research, we demonstrated that no single strategy can perform op-
timal for all documents, and proposed a system where strategies are selected
on a per-document basis using trace-driven simulation techniques. In this pa-
per, we demonstrate the need for continuous dynamic adaptation of strategies
using experiments conducted on our department Web traces. We also propose
two heuristics, Simple and Transition, to perform this dynamic adaptation with
reduced simulation cost. In our experiments, we find that Transition heuristic re-
duces simulation cost by an order of magnitude while maintaining high accuracy
in optimal strategy selection.

1. Introduction

Web users often experience slow document transfers for Web documents. To reduce
access time, many systems replicate or cache documents at servers close to the clients.
This process allows load balancing among different servers and decreases the access
latencies experienced by clients. However, if a document is updated, replicas must be
updated to prevent clients accessing a stale copy.

Many strategies have been proposed to achieve replication while maintaining con-
sistency among replicas. A replication strategy dictates the number and location of
replicas and the choice of a protocol governing the creation of replicas and consis-
tency enforcement. Different strategies may offer various levels of performance and
consistency, so a system designer should be careful when selecting a replication strat-
egy.

We showed in earlier research that no single strategy can universally perform opti-
mal for all documents [8]. An important gain in performance can be obtained by asso-
ciating each document with the strategy that suits it best. Moreover, the document-to-
strategy associations must be re-evaluated from time to time, since changes in access
and update patterns are likely to affect the performance characteristics of strategies.

In this paper, we make a case for re-evaluating this document-to-strategy asso-
ciation from time-to-time, as changes in documents’ access and update patterns are

275

F. Douglis and B.D. Davison (eds.), Web Content Caching and Distribution, 275-282.
© 2004 Kluwer Academic Publishers. Printed in the Netherlands.

276 Swaminathan Sivasubramanian, Guillaume Pierre and Maarten van Steen

likely to affect system performance. We do not deal with adaptation of strategies
during emergency situations, such as flash crowds, but rather focus on adaptation of
relatively stable access patterns.

We employ an approach where the best strategy for each document is periodically
selected among a set of candidate strategies. The choice of “best” strategy is made by
simulating the performance that each strategy would have provided in the recent past.
If necessary, the strategy for the concerned document is switched dynamically.

Each server adaptation requires d - s simulations, where d is the number of hosted
documents and s is the number of candidate strategies. In our current system, the
simulation of a single strategy takes several tens of milliseconds on a 1-GHz PIII
machine. Considering that we apply traditional and well-known trace-driven simula-
tion techniques, we expect comparable performance for systems similar to ours. Each
adaptation may thus lead to significant computational load if the number of objects or
the number of candidate strategies is high. In particular, the latter can happen if we
want to integrate parameterized strategies. Such strategies have a tunable parameter
affecting their behavior, such as a “time-to-live” value or a “number of replicas.”

The contributions of this paper are as follows: (i) we demonstrate the need for con-
tinuous dynamic adaptation of replication strategies for Web documents; and (ii) we
present techniques for the selection of an optimal replication strategy from a number
of candidate strategies, while keeping the selection costs low. None of these contribu-
tions are reported in our earlier works [7],[8].

The rest of the paper is organized as follows: Section 2 describes our evaluation
methodology. Section 3 demonstrates the need for continuous dynamic adaptation
of replication strategies using our Web traces. Sections 4 discusses our two strategy
selection heuristics and present their performance evaluation. Section 5 discusses the
related work and Section 6 concludes the paper.

2. Evaluation methodology

We set up an experiment that simulates a system that is capable of switching its
strategies dynamically for changes in the access and update patterns of its documents.
Our experiment consists of collecting access and update traces from our department
Web server, simulating different strategies and selecting the best one for a given pe-
riod. With this setup, we observe the changes in the strategy adopted by the documents
over the entire length of the traces. Here we present our simulation model in detail.

2.1 Simulation model

We assume that documents have a single source of update called the primary server,
which is responsible for sending updates to replicas located at intermediate servers.
For the sake of simplicity, we consider only static documents in our evaluations, that
is documents that change only due to updates by the primary server.

In our experiments, we use a list of 30 strategies to choose from: (i) NR: No repli-
cation, (ii) CLV[p] (Cache with Limited Validation): Intermediate servers cache doc-
uments for a given time. Each document has a validity time (TTL) after which it
is removed from the cache. Different strategies are derived with TTL value fixed at

A case for dynamic selection of replication and caching strategies 277

p = 5%, 10%, 15%, and 20% of the age of document. (iii) SI (Server Invalidation):
Intermediate servers cache the document for an unlimited time. The primary server
invalidate the copies when a document is updated. (iv) SU[z] (Server Updates): The
primary server for a document maintains copies at the x most popular intermediate
servers (the top x servers sorted based on the total number of clients handled by them)
for the document. When the document is updated, the primary server pushes update to
the intermediate servers. Different strategies are derived for x = 5, 10,25, ..., 50.
(v) Hybrid[z] (SU[z] + CLV[10]) - The primary server maintains copies at the x
most popular servers, where x = 10, 15, 20, 25, 30, 40, 50 and the other intermediate
servers follow CLV strategy, with TT' L fixed as p = 10% of the age of the document.

In our simulations, we group clients based on the Autonomous Systems (AS) to
which they belong. We measure the available network bandwidth between the AS
belonging to the primary server and other ASes as follows: We record the time ¢ taken
by our server to serve a document of b bytes to a client from an AS. We approximate
the bandwidth between our AS and the AS to which the client belongs to as b/t.

We redirect the requests of a client to the replica located in the client’s AS. If there
is no such replica available, then the requests are redirected to the primary server. We
did not implement more sophisticated policies due to the lack of inter-AS network
measurements.

2.2 Adaptation mechanisms

As shown in [8], one can optimally assign a strategy to each object using a cost
function. This function is designed to capture the inherent tradeoff between the per-
formance gain by replication to performance loss due to consistency enforcement. In
our experiments, we use a cost function that takes three parameters: (i) access latency,
[, (ii) number of stale documents returned, ¢ and (iii) network overhead, b, that is the
bandwidth used by the primary server for maintaining consistency and serving clients
from ASes without replicas. The cost function for a strategy s during a given period
of time ¢ is:cost(t, s) = wy * [4+ wa * ¢ + ws * b, where w1, wy and w3 are constants
determining the relative weight of each metric.

The performance of a strategy s, during a given period of time ¢, is represented
by the value of the cost function cost(t, s). This value is obtained by simulation of
strategy s with past traces. The primary server periodically evaluates the performance
of a set of candidate strategies for each document and selects the best as the one that
had the smallest cost.

The Web trace used in the experiments covers the requests and updates made to the
documents hosted in our Web server from June 2002 to March 2003. Numerical details
about the trace are given in Table 1. We perform our evaluations only for objects that
receive more than 100 requests a week, reducing the total number of objects to be
evaluated in the order of thousands. We adopt the no replication (NR) strategy for the
rest. We fix the adaptation period of the server to one day.

278 Swaminathan Sivasubramanian, Guillaume Pierre and Maarten van Steen

Table 1. Trace Characeteristics

Number of days 273
Number of GET requests 78,049,912
Number of objects 2,185,896
Number of updates 156,721
Number of unique clients 1,252,779
Number of different ASes 2853

3. The Need for Dynamic Adaptation

In this section, we demonstrate the need for continuous dynamic adaptation of
replication strategies for Web documents. To do so, we measure the proportion of
documents that change their strategy over the duration of the traces, determined by
Adaptation Percentage (AP). AP is defined as the ratio of the total number of adapta-
tions observed and the total number of possible adaptations. For example, in a 7 day
period, if a document makes 2 adaptations out of the maximum possible 6 adaptations
(as the adaptation period is fixed to be one day), then its AP is 33%. This metric shows
the rate at which an object switches its strategy dynamically. A higher value of AP
implies that the objects dynamically switch their strategy more often thereby showing
a clear need for continuous adaptation.

We performed a complete evaluation of the popular documents (those receiving at
least 100 requests a week) in our traces and plotted the average AP over all documents
(aggregated every week). The results are given in Figure 1.

As seen in the figure, AP varies from 5% (objects switch their strategy only 5% of
the times) to 50% (objects switch their strategy half of the time). This figure shows
that the objects switch their strategy often, though the rate of adaptation varies over a
period of time. This clearly demonstrates the need for continuous dynamic adaptation
of strategies, if the adopted strategy for an object needs to remain optimal.

60

50 ¢
40 ¢
30 ¢

Average AP

20 ¢
10

0 n n n n n n n
0 4 8 12 16 20 24 28 32
Time (weeks)

Figure 1. Time plot of AP of documents (aggregated weekly) for the entire length of traces

A case for dynamic selection of replication and caching strategies 279

Table 2. Performance of Non-adaptive and Adaptive selection methods given in terms of (i)
Total Client latency (TCL) for all requests, (ii) number of stale documents delivered to clients
(NS) and (iii) network usage bandwidth (BW)

Strategy TCL(hrs) | NS | BW (GB)
Non-adaptive 37.5 11 13.1
Adaptive 31.3 3 12.7

We further evaluated the need for continuous dynamic adaptation by comparing the
performance of a system that would associate a strategy to each document once and
never adapt (Non-adaptive), to one which would periodically adapt to the current-best
strategy associations (Adaptive). Table 2 shows the performance of the two selec-
tion methods for the same time period in terms of the three cost function parameters:
client latency, number of stale documents and bandwidth usage. It can be seen that
the Adaptive selection method outperforms its Non-adaptive counterpart, according to
all metrics, because of its ability to adapt to changes in client request and document
update patterns.

From these simple experiments performed with our traces, it can be seen that docu-
ments need to continuously adapt strategies to maintain optimal performance, even for
a simple Web server like ours. We believe that continuous dynamic adaptation will be
more beneficial for replicated Web services handling more clients and hosting higher
number of popular objects.

4. Strategy Selection Heuristics

In this section, we propose two selection heuristics, Simple and Transition, that aim
to reduce the simulation cost by reducing the number of candidate strategies evaluated
during the selection process.

4.1 Performance evaluation metrics

To evaluate the performance of strategy selection heuristics, we compared the se-
lection accuracy and computational gain in comparison to the full evaluation method
(evaluating all candidate strategies every period). The goal of a selection heuristic is
to provide the same decisions as the full evaluation strategy, but with less simulation
cost. We evaluate the performance of selection heuristics with the following metrics:
(i) Speedup: This is defined as the ratio of total number of candidate strategies eval-
uated by the full evaluation method to that of the selection heuristic, (ii) Accuracy:
This is defined as the percentage of times when the heuristic has selected the same
strategy as the full evaluation strategy and (iii) Average Worst Case Ratio (AWCR):
This metric indicates how bad a strategy is when the heuristic has made a non-optimal
selection. The AWCR of a heuristic is computed as the average of WCRs for all non-
optimal selections in an adaptation period, where WCR is defined as follows:

|(cost(selected, t) — cost(best, t))|
|(cost(worst, t) — cost(best, t))|

WCR(t) =

280 Swaminathan Sivasubramanian, Guillaume Pierre and Maarten van Steen

AWCR can vary from O to 1. The greater its value, the worse is its choice of
strategy.

4.2 Selection heuristics

The basic assumption behind the Simple heuristic is that a significant change in the
request or update rate indicate the need for a strategy re-evaluation. In such cases, a
full evaluation is performed. Otherwise, the current strategy is retained. Our evalua-
tions showed that this heuristic yields poor accuracy with very little gain in speedup.
We conclude that more sophisticated is necessary to give a better speedup without
much loss in accuracy.

The Transition heuristic tries to predict the likely strategy transitions and evaluates
only the most promising strategies. It aims to gain speedup by evaluating only this
subset of likely strategies instead of the entire set of candidate strategies. Obviously,
the size and constituents of the selected subset of strategies to evaluate determines the
speedup and accuracy of the heuristic. The smaller the size of this subset, the higher
will be the speedup. On the other hand, the heuristic will find the optimal strategy
only if it belongs to the subset of evaluated strategies.

The Transition heuristic works in two phases. In the first phase, full evaluations
are performed on the traces to build the transition graph. This graph captures the
history of transitions between different strategies. It is a weighted directed graph,
whose nodes represent the candidate strategies and weights are the number of observed
transitions between strategies. No speedup is gained in this phase as full evaluations
are performed.

The second phase of the heuristic uses the transition graph built during the first
phase to determine the likely subset of strategies that need to be evaluated to perform
strategy selection. This subset is determined as the set of target strategies whose esti-
mated transition probability is greater than y%.

The accuracy of this heuristic depends on two factors: (i) the value of y and (ii) the
duration of phase 1.

Effect of y: We evaluated the accuracy and speedup of this heuristic for different
values of y with a transition graph built from a week long trace. The results are
presented in Table 3. As could be expected, the speedup of the heuristic increases
when y increases, since less strategies are evaluated. At the same time, the accuracy
decreases and AWCR increase. When y = 10%, we obtain speedup of 12, with only a
little loss in accuracy. Thus, Transition strategy drastically reduces the simulation cost
making accurate strategy selections.

Effect of the length of Phase 1: We evaluate the accuracy of the heuristic for different
durations of Phase 1, with y fixed at 10%. Results are given in Table 4. As seen from
the table, a transition graph built out of just 5-day traces for each object already leads to
an accuracy of 90.7%. Increasing the size of transition graph leads to better accuracy,
however the gain stabilizes around 7 days. This corresponds to 6 full evaluations
performed over thousands of documents.

An important issue in using Transition is to determine how often to rebuild the
transition graph. In our experiments, we did not observe a degradation in accuracy for

A case for dynamic selection of replication and caching strategies 281

Table 3. Performance of Transition for different values of y

y% | Accuracy | Speedup | AWCR
5% 97.8% 8 0.01
10% 95.5% 12 0.03
15% 93.4% 13 0.06
20% 92.2% 15 0.08
25% 88% 15.5 0.10

Table 4. Length of phase 1 vs. accuracy

No. of days | Accuracy | AWCR
5 90.7% 0.09
7 95.5% 0.03
9 96% 0.03
14 96% 0.03

9 month traces with a transition graph built from one week. Hence, we feel that this
transition graph needs to be rebuilt only rarely.

One of the shortcomings of this heuristic is its inability to handle emergencies like
flash crowds as the pre-built transition graph does not cover such drastic changes in ac-
cess patterns. Such scenarios might call for fast detection of the onset of emergencies
(also determining the access patterns of emergency) and triggering a strategy selection
mechanism that evaluates only a small set of candidate strategies that can perform well
in the given scenario.

5. Related work

A large number of proposals have been made in the past to improve the quality of
Web services. Cache consistency protocols such as Alex [3] and TTL policies aim to
improve the scalability of the Web. Invalidation strategies have been proposed to main-
tain strong consistency at relatively low cost in terms of delay and traffic [2]. Several
replication strategies have been proposed in the past. Radar uses a dynamic replica-
tion protocol that allows dynamic creation/deletion of replicas based on the clients’
access patterns [9]. In [6], the authors propose replication protocols that determine the
number and location of replicas to reduce the access latency while taking the server’s
storage constraints into account. All these systems adopt a single strategy or single
family of strategies for all documents, possibly with a tunable parameter. However,
our earlier work advocated the simultaneous use of multiple strategies.

A number of systems select strategies on a per-document basis. In [1], the authors
propose a protocol that dynamically adapts between variants of push and pull strate-
gies on a per-document basis. Similarly, in [4] proposes an adaptive lease protocol that
switches dynamically between push and pull strategies. Finally, in [5], the author pro-

282 Swaminathan Sivasubramanian, Guillaume Pierre and Maarten van Steen

pose a protocol that chooses between different consistency mechanisms, invalidation
or (update) propagation, on a per-document basis, based on the document’s past ac-
cess and update patterns. These protocols perform a per-document strategy selection
similar to ours but they are inherently limited to a small set of single family of strate-
gies (e.g., push or pull, invalidation or propagation) and cannot incorporate different
families of strategies as done in our system.

6. Conclusions and Future Work

The need for dynamically selecting a strategy on a per-document basis was shown
in our earlier research. In this paper, we demonstrate the need for continuous dynamic
adaptation of strategies with experiments performed on the traces of our department
Web server. We find that continuous adaptation is beneficial even for seemingly rel-
ative stable access patterns. As a second contribution of this paper, we proposed two
heuristics to perform this continuous adaptation with reduced simulation cost. In our
experiments, we find that the Transition heuristic performs better than its simple coun-
terpart, both in terms of accuracy and speedup. We conclude that, in our traces, eval-
uating strategies based on their past transition patterns is a good solution that yields
high speedup with high accuracy. Another way of reducing simulation overhead would
be to perform object clustering, i.e., to group objects with similar access and update
patterns. We are also investigating schemes to handle emergency situations such as
flash crowds in our system.

References

[1] M. Bhide, P. Deolasee, A. Katkar, A. Panchbudhe, K. Ramamritham, and P. Shenoy. Adap-
tive push-pull: Disseminating dynamic Web data. [EEE Transactions on Computers,
51(6):652-668, June 2002.

[2] P. Cao and C. Liu. Maintaining strong cache consistency in the world wide Web. IEEE
Transactions on Computers, 47(4):445-457, Apr. 1998.

[3] V. Cate. Alex — a global file system. In USENIX File Systems Workshop, pages 1-11, May
1992.

[4] V. Duvvuri, P. Shenoy, and R. Tewari. Adaptive leases: A strong consistency mechanism
for the world wide Web. In 19th INFOCOM Conference, pages 834-843. IEEE Computer
Society Press, Mar. 2000.

[5] Z.Fei. A novel approach to managing consistency in content distribution networks. In 6k
Web Caching Workshop, pages 71-86, June 2001.

[6] J. Kangasharju, J. Roberts, and K. W. Ross. Object replication strategies in content distri-
bution networks. In 6th Web Caching Workshop, June 2001.

[7]1 G. Pierre, I. Kuz, M. van Steen, and A. S. Tanenbaum. Differentiated strategies for repli-
cating Web documents. Computer Communications, 24(2):232-240, Feb. 2001.

[8] G. Pierre, M. van Steen, and A. S. Tanenbaum. Dynamically selecting optimal distribution
strategies for Web documents. [EEE Transactions on Computers, 51(6):637-651, June
2002.

[9] M. Rabinovich and A. Aggarwal. Radar: A scalable architecture for a global web hosting
service. Computer Networks, 31(11-16):1545-1561, 1999.

