
Customizable Data Distribution for Shared Data Spaces

Giovanni Russello, Michel Chaudron Maarten van Steen
Dept. of Mathematics and Computing Science Faculty of Science, Dept. of Computer Science

Eindhoven University of Technology Vrije Universiteit Amsterdam

Keywords: Coordination, Component-based System,
Separation of Concerns, Distributed Shared Data Space,
Customization.

Abstract

To support component-based software engineering, sim-
ple and efficient mechanisms for dynamic composition
and decomposition of components are needed. Shared
data spaces are a simple composition mechanism, yet
their efficient distributed implementation faces several
complicating factors. One of these factors is that the
communication needs of components may differ per data
type, per application, and may even change over time.
While existing data-space implementations treat all data
equally, we propose a distributed data-space architecture
that provides the means for differentiating distribution
policies according to the type of data. Using this approach
we are able to cater for the specific needs of the data.
We maintain the transparency of the shared data space
paradigm to the application programmer, but extend its
capabilities for optimizing its efficiency.

1 Introduction
There are several forces that drive industry toward

component-based development of software. From a devel-
opment perspective, it is desirable to reuse existing software
and to easily compose (existing) pieces of software in order
to increase productivity and decrease time-to-market. From
the application perspective, there is an increasing demand
for flexibility in terms of adapting or extending the function-
ality of systems. Hence, a key technology in the successful
deployment of software components is one that supports dy-
namic (de)composition of software components.

Generative communication, where applications commu-
nicate via a shared data space, is a promising composition
technology because it provides referential and temporal de-
coupling between components [3]. This decoupling makes
it possible to handle changes in the composition of systems
in a way that is transparent to other components. The shared
data-space model was introduced by the coordination lan-
guage Linda [7].

The communication needs of the data that passes through
a shared data space may differ per data-type, per applica-
tion and may even change over time. In order to obtain an
efficient distributed shared data space, the coordination in-
frastructure should cater for these different communication
needs.

In this paper we present an architecture for a shared
data space system that is able to tailor data distribution to
data characteristics. The contributions of this paper are
twofold. Firstly, we show that data distribution can be han-
dled transparently to the application components. In this
way, we achieve separation of concerns between functional
requirements and non-functional requirements. Secondly,
we demonstrate how the mechanism for enforcing distribu-
tion policies is carried out at runtime. This illustrates that
the non-functional properties of the system can be changed
during system deployment without the need for shutting the
system down. As a consequence, writing application code is
easier because programmers have only to concentrate on the
basic functionality of the components. Furthermore, com-
ponent reuse is enhanced, since the same component may
be deployed in environments where different data distribu-
tion patterns are required.

Our approach to differentiating distribution policies dif-
fers from existing ones in that we can support any policy im-
plementation as provided by a distribution designer. More-
over, implementations of distribution policies may be dy-
namically loaded into the system without the need for a
shutdown and subsequent restart. Differentiating policies
is not new, but has mainly been a subject of interest in
distributed-shared memory systems (see, e.g., the work on
Orca [2], Munin [5], TreadMarks [1], and more recently, In-
terWeave [6]). However, only recently, some work has been
done in relation to shared data spaces [4], but is still directed
towards computation-intensive applications and without the
flexibility of runtime adaptations.

The paper is structured as follows. In Section 2 we
present a case study that motivates the need for dedicated
distribution patterns. Subsequently, in Section 3 we present
our architecture. In Section 4 the case study is revisited
using our model. We end with concluding remarks about
future work.

1

Component

Middleware

OS and Network

Distribution
Requirements

Distribution
Policy Descriptor

Functionality
Application

Layer

Middleware
Layer

Low Level
Layer

Application
Specification

Phase

Application
Deployment

Phase

mapping

downloading

Figure 1. Our separation of concerns for com-
ponent based systems.

2 A Case Study

In this section we present a case study that illustrates that
different data types in a distributed system shows different
distribution patterns. Our case study concerns in-home net-
works of consumer devices. Today, the number of chips
embedded in devices in the home is increasing and so is
the computational power that a device can offer. This al-
lows devices to cooperate autonomously with each other to
make the home environment more comfortable and config-
urable. Below, we discuss some scenarios that may occur in
the context of our case study. For each scenario we describe
some distribution patterns.

Profiling Housing Environment In this scenario, devices
cooperate to recognize a person in a room and adapt the
room environment to the preferences for that person (as-
suming these are stored as a profile somewhere in the sys-
tem). For instance, setting the temperature in the room to
a preferred value or starting to play favorite music are few
actions that can adapt the room to the person’s desires.

Fundamental in this scenario is the recognition phase. To
this end, each room is equipped with a digital video cam-
era. Each camera detects when someone enters the room
and starts to collect images of the subject’s face. This infor-
mation is used by a Face Recognition Application (FRA).
This application compares the data collected with the im-
ages stored in its database. When a match is found, the
database returns the profile associated with that subject.
Then, the profile is made available to all the other devices
(such as, the heating controller, the CD player, etc.). In case
no match is found, the FRA may set off a burglar alarm.

This scenario illustrates two data distribution patterns.
One pattern is the push-to-one pattern for the image infor-
mation: images are sent from all camera locations to the
FRA location. Another pattern is the push-to-all pattern:
data from the FRA is sent to all devices in the house.

Ubiquitous Message System In this scenario a user can
leave a voice message for other persons that live in the
house. A special device, the Message Storing Device
(MSD) is designed to record and play voice messages.
However, the user can request to listen to the received mes-
sages from another device, such as a PDA or a TV. It is
desirable that the PDA can access the messages even if it
is currently not connected to the home network. Thus, all
messages are migrated and stored locally on the PDA.

For default, the messages are stored in the MSD. In case
the messages are moved to another device and the device is
still connected to the home network, new messages are sent
to that device. When the device is not anymore reachable,
then the default device, that is the MSD, is again used for
storing messages.

The distribution pattern that data shows in this scenario
is what we call migrate-on-demand: data is migrated to the
PDA, if the PDA has declared an interest in it.

Service Discovering In this scenario, a rendering device
searches in the home network for devices that provide ser-
vices. For instance, a user wants to watch a movie on her
PDA. The PDA searches the network for a device such as
DVD player and requests the list of movies (list of content)
that it can stream. The list of content is stored locally to
the provider device. The PDA could cache locally the DVD
player’s list of content for fast access and displays the infor-
mation to the user.

However, the DVD player may update its list of content,
for instance, when new movies are added. This update re-
quires that all the cached copies are invalidated. If the user
wants to see the list, the PDA has to request and cache the
new list of content and display the updated information to
the user.

In this scenario the data that represents the list of con-
tent shows a cache-on-demand pattern, that is, the data is
cached on the location of the requester only when it is re-
quested. Moreover, an invalidation mechanism is necessary
to prevent outdated data being returned after an update.

3 The Architecture of a Distributed Shared
Data Space System

This section describes the architecture of our distributed
shared data space system. The system was designed to
support separation of component functionality from non-
functional issues concerning data distribution.

3.1 Conceptual View

Figure 1 depicts the approach that we propose for system
design and implementation. Each application is specified as

a combination of a definition of its functionality and a defi-
nition of its data distribution requirements. Functional spec-
ifications are mapped onto components which may be dis-
tributed onto various nodes of a distributed system. Distri-
bution requirements are converted into a distribution policy
descriptor that is downloaded into the middleware where it
is interpreted at runtime.

The middleware provides the application components a
set of operations for communicating with the shared data
space. Moreover, the middleware is responsible for inter-
preting an application’s distribution policy descriptor and
for enforcing application-specific policies.

In the next section we describe the actual implementation
of our model. Currently, we focus on data distribution. We
aim to deal with timeliness concerns in similar ways.

3.2 Implementation View

We have named our system GSpace. Conceptually, ap-
plications view GSpace as a single data space. However,
GSpace is implemented by several GSpace kernels dis-
tributed across multiple nodes (see Figure 2). A GSpace
kernel provides a local storage service plus some means to
communicate with other GSpace kernels. Application com-
ponents may be placed on the same node where a GSpace
kernel is running, as is the case with node 1 in Figure 2. Al-
ternatively, if an application components resides on a node
with limited computational resources, then GSpace may be
located on another node, as in node 3. In this latter case,
a proxy is used to bind a remote GSpace kernel to com-
ponents. GSpace kernels have their own threads and exist
independently from application component resources. This
is an important design property because it enables temporal
decoupling. In other words, components do not need to be
active at the same time to exchange data.

Data in a space are represented as tuples. A tuple is an
ordered collection of typed fields and each field has a value
associated with it. Components can insert tuples in a space
and retrieve tuples in an associative manner by matching
with a query.

There are many design decisions that can be made (see
also [9]). We focus on two issues related to the partitioning
and distribution of the data space: (1) how do we partition
the data, i.e., which tuple is stored where, and (2) when,
how, and where to are tuples moved.

In our system we assume that the tuples in the data space
are typed. We support partitioning of data based on these
types as well as on their content. In our Java implementa-
tion, the tuples are typed by their class. To obtain an ef-
ficient distributed shared data space, we treat tuples of the
same class and same content according to the same distri-
bution policy. In other words, tuples of different types may
be distributed according to very different strategies. This is

Node3Node2

GSpace
Kernel

Application
Component

Node 1

GSpace
Proxy

Network

GSpace
Kernel

Application
Component

Figure 2. GSpace kernel and application com-
ponents placement across several nodes.

an important distinction with the traditional way of distribu-
tion in shared data spaces, which is often realized through
distributed hashing techniques [12]. It is furthermore im-
portant to note that this distribution of GSpace tuples across
multiple nodes is completely transparent to the application
components.

The internal architecture of GSpace is shown in Figure 3.
Internally, each GSpace kernel is organized as follows.

� The System Boot module is responsible for initiating
all the other modules of GSpace kernel. Subsequently,
it advertises its presence to other GSpace nodes in or-
der to establish communication channels and join a
GSpace group.

� The Controller provides the following operations to
components.

– put(t) inserts tuple t in the space.

– read(q) if there is a tuple in the data space that
matches the query, then a copy of this tuple is re-
turned to the calling component. The read op-
eration blocks the caller component until a tuple
matching the query is available in the system.

– take(q) is similar to a read operation with
the difference that the matching tuple is removed
from the space.

� The Dynamic Invocation Handler (DIH) determines
which distribution policy to apply based on the type
and content of the tuple (or query). It operates as fol-
lows. If a component invokes a GSpace operation, then
the DIH looks up which policy to use for this opera-
tions. This information is obtained from a Distribu-
tion Policy Descriptor. A distribution policy descrip-
tor is a file containing (template, distribution policy)–
pairs. Tuples and queries are matched against tem-
plates to determine which distribution policy to apply.

Application
Layer

Middleware
Layer

Low Level
Layer

System Boot

Policy
Descriptor

Loader

Connection
Manager

Controller

GSpace
 API

GSpace
Kernel

ControllerDistribution
Manger

Data Space
Slice

Communication
Module

Dynamic
Invocation
Handler

Operating System - Network Interface

Application Component

put
read
take

Distribution
Policy

Descriptordownload

Figure 3. Internal structure of a GSpace kernel on one node.

Distribution Manager Description
Store locally A tuple is always stored in the local slice. Consuming operations (i.e. read or take) are performed

on the local slice. If the tuple is not found locally then the request is forwarded to other nodes.

Push-to-all A put operation forwards a tuple to all known nodes. Read and take are performed on the local
slice.

Push-to-one A put operation forwards a tuple to one specific slice. Read and take are performed on this
specific slice.

Push-where-needed A network of GSpace nodes can be partitioned into sets Si. Each set is then associated with a
template. For instance, if set Si is associated with template ti a tuple matching ti is inserted in the
local slices of all nodes in Si. Consuming operations are forwarded to the nodes in the set. Particular
care should be provided for a take operation because a tuple must be removed atomically from all
nodes in the set.

Migrate-on-demand Tuples of type t are stored in one location, called home � locationt . When a read or take
operation is performed from another location, all tuples of type t are migrated to the requester
location, that becomes the home � locationt . In case that the home � locationt is not reachable then
a default location is used.

Cache-on-demand Tuples are stored locally. When a remote location performs a read operation, a copy of the tuple
is cached on the local slice of the requester location. When a cached tuple is removed through a
take operation then an invalidation message is sent to invalidate all the cached copies of that tuple.

Figure 4. A list of several Distribution Managers available in GSpace.

Once the applicable policy has been determined, the
DIH ensures that a distribution manager that imple-
ments this policy is instantiated 1. This means that it
is possible to instantiate a class and invoke its methods
at runtime without knowing the class at the time the
code was written. The benefits of this methodology
are twofold. First of all, it is not necessary to load at
bootstrap time all the available distribution managers,
but only the ones requested by a distribution policy de-
scriptor. Moreover, new implementations of distribu-
tion managers can be added and used at runtime, with-
out recompiling the source code of the GSpace kernel.

� The Distribution Managers are responsible for en-
forcing distribution policies. For each distribution pol-
icy that the system supports there is a separate dis-
tribution manager. Depending on the policy that the
manager implements, it may dictate that tuples be sent
to or requested from GSpace kernels on other nodes.
Communication between distribution manager is real-
ized by the communication modules.

� The Data Space Slice provides a local storage for tu-
ples together with the associative method for retrieving
them.

� The Communication Module provides facilities for
sending or retrieving tuples to and from other GSpace
kernels. This module provides support for differ-
ent forms of communication (such as multicasting or
point-to-point communication), but also different qual-
ities of service (such as reliable or unreliable commu-
nication) to be used for defining different policies.

� The Connection Manager is responsible for keeping
track of information about network locations of other
GSpace nodes that can be used by distribution man-
agers. We currently foresee the use of GSpace on
local-area networks and assume the availability of an
efficient mechanism for multicasting communication,
making it much easier to discover the locations of other
GSpace nodes.

� At bootstrap time, the Policy Descriptor Loader
downloads distribution policy descriptor file. The file
is made available to all nodes where GSpace kernels
are instantiated. The descriptor may be changed at run-
time. Thus, this module monitors for updates of the
local descriptor file and reloads it if necessary.

GSpace is partly based on the approach followed in the
Globe distributed system [11] in which each distributed ob-
ject encapsulates state, operations on that state, but also the

1The DIH uses the Java Dynamic Proxy Class mechanism to dynam-
ically instantiate distribution managers and invoke their methods. A dy-
namic proxy class is a special class created at runtime by the Java virtual
machine.

implementation of a policy that dictates how state and op-
erations are distributed across multiple machines. GSpace
and Globe have in common that distribution policies can
be differentiated between objects. In GSpace, differentia-
tion may take place based on object types or on content; in
Globe differentiation is done between objects.

We have implemented GSpace on a local-area network
and designed several distribution managers, listed in Ta-
ble 4. For brevity, we mention only a few distribution man-
agers that we developed. However, as we mentioned, part
of the novelty of GSpace lies in the fact that we allow users
to provide arbitrary policies and download them into the
middleware while the system is in operation.

4 The Case Study revisited using GSpace

In this section we show how GSpace can be used as com-
munication middleware for the in-home networking case
study. We assume that each home device has some power of
computation and some means to communicate and that de-
vices may be connected to the in-house LAN using either
wired or wireless connections. Application components
running on devices may provide GUIs to users. GSpace ker-
nels are instantiated on several devices, forming the shared
data space of the house, as shown in Figure 5.

Now, let us describe how GSpace is used to tailor distri-
bution patterns of data for some of the scenarios introduced
in Section 2.

Figure 6 shows a Message Sequence Chart that illus-
trates a migrate-on-demand pattern of the Ubiquitous Mes-
sage System scenario. The application component Mes-
sageRecorder running on the MSD stores tuples rep-
resenting messages in the local GSpace kernel. The Mes-
sagePlayer running on the PDA queries the GSpace ker-
nel on the PDA for Michel’s messages. The kernel forwards
the request to the kernel on the MSD. The latter replies by
moving all the tuples matching the query to the PDA ker-
nel. When the MessagePlayer on the PDA queries the
space the next time, the kernel on the PDA can return a tuple
directly.

Figure 7 depicts a Message Sequence Chart for a
migrate-on-demand pattern for the Service Discovering sce-
nario. In this case, the component ListManager on the
DVD Player puts the list of content into the shared data
space. This list is stored in the local slice. When a render-
ing device, such as a TV set, queries for the list of content,
its local GSpace kernel forwards the request to the kernel
running on the DVD Player. Then, a copy of the tuple rep-
resenting the list of content is sent to the requester’s kernel,
which stores it on the local space before returning it to the
application component. When the list of content is updated,
the old tuple is removed and invalidation messages are sent
to the node where it was cached. The new tuple is put in the

TV Set

GSpace

PDAMobile
 Set

DVD
Player

Figure 5. A GSpace composes devices in an
in-home environment.

MSD

Message
Recorder

GSpace
kernel

PDA

Message
Player

GSpace
kernel

t(Michel, msg)
put(t)

store locally
q(Michel, ?)

take(q)
forward request

moving tuples
store locally

return tuple

Figure 6. Message Sequence Chart for the
Ubiquitous Message System Scenario.

space. The next time the application component requests
that tuple, the kernel has to forward a message to receive
the updated version.

It is worth it to note that using our approach it is possible
to implement complex distribution policies (such as those
described in the scenarios above), yet without interweaving
distribution requirements with the functionality of applica-
tion components.

It may be an objective of an application to store data per-
sistently in GSpace. Then, depending on the capabilities of
the devices, a distribution policy should be used that stores
data on devices that are unlikely to leave the network. Also,
the policy may impose some degree of replication of data
across multiple devices.

DVD Player

List
Manager

GSpace
kernel

TV Set

GUI
Component

GSpace
kernel

t(list[])
put(t) store locally

q(list[])
read(q)

forward request

send tuple

cache locally

return tuple

check locally

q(list[])
take(q)

t(newlist[])
put(t)

return tuple forward invalidation

remove cache

Figure 7. Message SequenceChart for the Ser-
vice Discovery Scenario.

5 Discussion

The development of GSpace is still in a preliminary
phase. At present, policies are described implicitly by
means of the implementation of a corresponding distribu-
tion manager. An applicatiuon developer simply identifies
for each template which distribution manager is to be used.
This manual specification should preferably be supported
by means of a policy description language that could also
cater for conflict detection. For example, templates can gen-
erally be organized as a partially ordered set in which t 1

�
t2

if template t1 is more specific than t2. Currently, we demand
that each template can be an immediate specialization of at
most one other template, effectively enforcing a tree struc-
ture. This prevents conflicts in distribution policies.

Although we have not substantiated out claim that differ-
entiating distribution policies will lead to a better perform-
ing shared data space, preliminary experiments actually do
indicate the validity of our claim. In particular, if we con-
struct applications with different put/get/take ratios, it turns
out that all the policies described in Figure 4 show to be
relevant. However, the research described in this paper was
partly motivated by the outcomes of research concerning
differentiation of replication and distribution strategies for
Web documents, as described in [8]. There, it was shown
that if a Web document could be assigned its own distri-
bution strategy, global performance optimization could be
achieved. We expect similar results for GSpace.

6 Concluding Remarks and Future Work

Component-based systems are well served with the tem-
poral and referential decoupling provided by the shared data
space model. Hence the shared data space provides a suit-
able mechanism for (de)composing components.

In this paper, we have presented a model for a data
space-based coordination system that supports dynamic
component-based applications. This system separates func-
tional and distribution concerns. We show how distribution
policies can be customized to the communication needs of
particular data types. This customization enables the ef-
ficient distributed implementation of a shared data space,
while maintaining its simple programming model. Further-
more, a special feature of the architecture we presented is
that, in addition to changes to catering for changes in the
functionality of the system, it allows the run-time modifica-
tion of non-functional properties. The effectiveness of this
approach is confirmed by a number of experiments which
we have performed using a Java prototype in [10].

Moreover, the separation of functional and distribution
concerns has the following advantages:

� Potential for component reuse is enhanced, since com-
ponents need not be obfuscated with (hard-wired) dis-
tribution policies. As a result, they may be deployed in
environments where different data distribution patterns
are required.

� Distribution policies become a unit of reuse; i.e. they
can be reused by many applications.

� The job of the component designer is simplified. He
does not need to incorporate distribution requirements
into his component.

� Typically the design of distribution aspects of an appli-
cation is error-prone. Separating distribution policies
as unit of reuse increases the quality because it can be
design by distribution-experts and be proven by field
testing.

As a next step, we plan to investigate separation of other
non-functional concerns such as global scheduling of tim-
ing constraints, error handling and security. Furthermore,
we are working on reflexive mechanisms for the automatic
runtime selection of policies. The latter touches upon one of
the challenging issues for GSpace: the automatic adaptation
of policies when application behavior changes. Ideally, all
tuples should be initially distributed according to a default
distribution, but the system should automatically and trans-
parently adapt to a policy for each tuple separately when
it gradually obtains information on the way that a tuple is
being used and accessed. Preliminary experiments indicate
that such an adaptation is indeed feasible.

References

[1] C. Amza, A. Cox, S. Dwarkadas, P. Keleher, H. Lu, R. Ra-
jamony, W. Yu, and W. Zwaenepoel. TreadMarks: Shared
Memory Computing on Networks of Workstations. IEEE
Computer, 29(2):18–28, Feb. 1996.

[2] H. Bal and M. Kaashoek. Object Distribution in Orca using
Compile-Time and Run-Time Techniques. In Eighth OOP-
SLA, pages 162–177, Washington, DC, Sept. 1993. ACM.

[3] G. Cabri, L. Leonardi, and F. Zambonelli. Mobile-Agent
Cooordination Models for Internet Applications. IEEE
Computer, 33(2):82–89, Feb. 2000.

[4] J. Carreira. Researching the Tuple Space Paradigm in Paral-
lel Programming. PhD thesis, University of Coimbra, 1998.

[5] J. Carter, J. Bennett, and W. Zwaenepoel. Techniques
for Reducing Consistency-Related Communication in Dis-
tributed Shared Memory Systems. ACM Trans. Comp. Syst.,
13(3):205–244, Aug. 1995.

[6] D. Chen, S. Dwarkadas, S. Parthasarathy, E. Pinheiro, and
M. L. Scott. InterWeave: A Middleware System for Dis-
tributed Shared State. In Fifth Workshop on Languages,
Compilers, and Run-time Systems for Scalable Computers.
ACM, May 2000.

[7] D. Gelernter. Generative Communication in Linda. ACM
Trans. Prog. Lang. Syst., 7(1):80–112, 1985.

[8] G. Pierre, M. van Steen, and A. Tanenbaum. Dynamically
Selecting Optimal Distribution Strategies for Web Docu-
ments. IEEE Trans. Comp., 51(6):637–651, June 2002.

[9] A. Rowstron. Run-time Systems for Coordination. In
A. Omicini, F. Zambonelli, M. Klusch, and R. Tolksdorf,
editors, Coordination of Internet Agents: Models, Tech-
nologies and Applications, pages 78–96. Springer-Verlag,
Berlin, 2001.

[10] G. Russello, M. Chaudron, and M. van Steen. Separting Dis-
tribution Policies in a Shared Data Space System. Technical
Report IR-497, Vrije Universiteit, Department of Mathemat-
ics and Computer Science, June 2002.

[11] M. van Steen, P. Homburg, and A. Tanenbaum. Globe:
A Wide-Area Distributed System. IEEE Concurrency,
7(1):70–78, Jan. 1999.

[12] G. Wilson, editor. Linda-Like Systems and Their Implemen-
tation. Edinburgh Parallel Computing Centre, University of
Edinburgh, Edinburgh, June 1991.

