
Transparent Distributed Redirection of HTTP Requests

Aline Baggio Maarten van Steen
Vrije Universiteit – Department of Computer Science

De Boelelaan 1081a – 1081HV Amsterdam
The Netherlands�

baggio,steen � @cs.vu.nl

Abstract

Replication in the World-Wide Web covers a wide range
of techniques. Often, the redirection of a client browser to-
wards a given replica of a Web page has to be explicit and
is performed after the client’s request has reached the Web
server storing the requested page. As an alternative, we
propose to perform the redirection as close to the client as
possible in a fully distributed manner. Distributed redirec-
tion ensures that we find a replica wherever it is stored and
that the closest possible replica is always found first. By
exploiting locality, we can keep latency low.

1 Introduction

Replication in the World-Wide Web encompasses a wide
range of techniques, from proxy caches to mirrors and Con-
tent Distribution Networks (CDNs). The use of location-
dependent URLs does not facilitate transparent access to the
replicated Web pages. Instead, it is often necessary to ex-
plicitly redirect clients towards a given replica.

Redirection in the case of proxy caches occurs in an im-
plicit way: each HTTP request is routed through the cache
or the hierarchy of caches and, in the best case, the replica of
the requested Web page is retrieved directly from the cache
storage space. With mirrors or CDNs, the client browser
has to be explicitly redirected to a machine which is nor-
mally not on the route followed by the request. Redirection
in these cases is generally achieved in a centralized way.
A client is redirected only after its request has reached the
home server, that is, the host named in the document’s URL,
which then decides on the replica server that should further
handle the request.

The main disadvantage of centralized redirection mecha-
nisms is the induced latency. Ideally, a client request should
not go to a page’s home to be redirected. The redirection
should take place as soon and as close to the client as pos-
sible. We have devised a distributed redirection scheme in

which the redirection decision can be taken locally at the
client machine or, in the worst case, before the HTTP re-
quest leaves the client’s network. In this paper, we present
our design and show how it can be more or less transpar-
ently integrated with the current Web.

The paper is organized as follow. Section 2 gives an
overview of the existing redirection methods for the World-
Wide Web. Section 3 presents the principle of our dis-
tributed redirection scheme. Section 4 details the design of
a redirection server, followed in Section 5 with aspects con-
cerning interaction with the redirection server. Section 6
discusses the integration of the redirection mechanism in
the current Web. Finally, Section 7 concludes and gives
some future work directions.

2 Alternatives for redirecting clients in the
Web

Redirection in today’s World-Wide Web is achieved in
three different ways: HTTP-based redirection, DNS-based
redirection and TCP handoff.

The HyperText Transfer Protocol (HTTP) is widely used
for communication between browsers, servers and proxy
caches [4]. Whenever a client browser requests a Web
page, it contacts the Web server named in the URL. In-
stead of directly sending back the page contents, the Web
server can decide to redirect the client browser to another
server. This redirection takes the form of another URL nam-
ing the server where a replica of the requested page can be
found [2, 4]. The browser has to issue a new HTTP request
to fetch the Web page at the replica site.

The Transmission Control Protocol (TCP) can also be
used to redirect clients [2, 5]. In TCP, communicating par-
ties are identified by an end point: the network address of
the machine on which the party resides and the port num-
ber it uses. The data exchanged between two communicat-
ing parties are sent in portions called segments. The origin
end point can be falsified when producing TCP segments.

Proceedings of the Second IEEE International Symposium on Network Computing and Applications (NCA’03)
0-7695-1938-5/03 $17.00 © 2003 IEEE

Using this feature, a Web server hosting a replica of the
requested Web page can let the requesting client believe
that the segment originates from the original Web server.
The client browser keeps sending its requests to the origi-
nal Web server. The requests are intercepted by the original
Web server’s gateway which forwards the requests to the
Web server holding the replica. This server then responds
directly to the client (with falsified origin end points). TCP-
based redirection is also known as TCP handoff.

Finally, the Domain Name System (DNS) can be used
for redirection purposes [2, 7]. DNS-based redirection ex-
ploits the fact that a browser needs to resolve the domain
name contained in a URL to a network address. Unless the
name-to-address mapping is already cached at the client’s
DNS, the client’s DNS request reaches the DNS server re-
sponsible for the Web server’s domain (i.e., the authoritative
DNS server). As a reply, the authoritative server can decide
to send any appropriate network address and not only the
address of the Web server designated in the URL. In partic-
ular, the DNS server can respond with the address of a Web
server holding a replica of the Web page. The returned ad-
dress is cached at the client’s DNS. The subsequent DNS re-
quests for this domain are therefore resolved to the replica’s
network address until the address is flushed from the DNS
cache.

Each of these three Web redirection methods have their
own characteristics that make them not entirely satisfactory.
Most importantly, the three methods require that the actual
redirection is done by a server close to the Web server host-
ing the requested page. Either it is the Web server itself,
the gateway or the Web server’s DNS server. As a con-
sequence, a large number of requests travel to the server
side before the redirection takes place. The worst case is
HTTP-based redirection where each single request has to
be redirected independently of the others. Latency is thus
an important disadvantage of HTTP-based redirection [2].
However, since subsequent redirections are independent of
each other, HTTP-based redirection provides a fine granu-
larity that TCP handoff and DNS-based redirection can not
achieve.

Another disadvantage of HTTP-based redirection is that
it does not provide support for redirection transparency.
Clients are aware of the redirection since the replica’s ad-
dress is passed to the client. This allows a client to cache
and reuse references towards replicas, which may conflict
with the redirection policy of the Web server. On the other
hand, TCP handoff is fully transparent but not scalable.
The traffic generated by the segment forwarding makes the
method more suited for long-lived sessions such as FTP [2]
or for use in local-area networks. In that respect, DNS-
based redirection is more scalable. A more detailed com-
parison of redirection mechanisms can be found in [2, 7, 8].

Caches provide an alternative for redirection. Each

HTTP request a client generates may first travel to the local
cache to check whether the page has already been down-
loaded. Hierarchical caches are based on the same princi-
ple [3]. The caches are organized as a tree. If a Web page
was not found in the local cache, the request is forwarded
to the upper-level cache. Hierarchical caches are commonly
used. However, they guarantee neither that a request returns
the closest replica, nor that a replica is inevitably found if
there is one somewhere in the cache hierarchy.

Cooperative caches aim at short-cutting the forwarding
of requests and at taking benefit of pages cached at low-
level caches [9]. Cached data is partitioned and sometimes
replicated among the different sites participating in the co-
operative cache. By maintaining a directory of cache entries
at each site, a cached Web page can be found in at most two
hops: one hop to the local cache and to fetch the actual lo-
cation of the cached page, one hop to the cache where the
page is currently stored. However, two problems arise with
cooperative caches [12]. First, the maintenance of the direc-
tory of cache entries is often costly. Second, the cache hit
percentage gained through cooperation appears to be low in
current Web, making it not worth it to maintain the direc-
tory.

3 Principles of distributed redirection

Considering the disadvantages of HTTP-based, DNS-
based redirection and TCP handoff, we would like to devise
a redirection method offering a fine granularity in redirec-
tion without loss of scalability or transparency. We con-
sider scalability by locality important: a request to look for
a replica of a Web page has to avoid traveling a long dis-
tance. Also, the selected replica should remain the nearest
possible to the client browser.

Consider the following scenario. A Web page is referred
to as http://www.cs.vu.nl/globe/ and is available at four Web
servers: Amsterdam, the “home” location of the document;
Naples; San Francisco and Sydney. A client browser lo-
cated in San Diego issues an HTTP request for the page.
This request should reach a redirection server so that the
client can find a replica of the Web page. With the cur-
rent redirection mechanisms, the request travels, in prin-
ciple, to the home server in Amsterdam and only there is
it redirected. We propose to improve locality for client
HTTP requests by using a collection of redirection servers
that are installed close to the clients. In our example, the
browser’s HTTP request is processed first by its local redi-
rection server in San Diego (see Figure 1).

In our approach, a redirection server knows only about
pages that are available in its own area. Since the requested
Web page is not replicated locally in San Diego, the redirec-
tion server in San Diego itself has to issue a lookup request
to find the page. In order to keep the communication costs

Proceedings of the Second IEEE International Symposium on Network Computing and Applications (NCA’03)
0-7695-1938-5/03 $17.00 © 2003 IEEE

relatively low and to preserve locality, a redirection server
always tries to find a requested Web page in its neighbor-
ing areas. This is achieved by organizing the collection of
redirection servers hierarchically. Such an organization is
done on a per-page basis. For each page, a separate hier-
archical organization of servers assists in redirecting HTTP
requests. How such an organization can be realized effi-
ciently is discussed below. Figure 1 shows the hierarchy
for the page http://www.cs.vu.nl/globe/. The page has one
redirection server for each area covered by the hierarchy.
This hierarchy is organized around the Amsterdam redirec-
tion server which is the home location of the Web page. It
is best if the root redirection server is co-located with the
home Web server. Note that the hierarchy of redirection
servers of the page http://www.cs.vu.nl/globe/ can be shared
with other pages whose home Web server is in Amsterdam.

The lookup request issued by the redirection server in
San Diego is further treated as follows. It reaches the page’s
redirection server for USA. For preserving locality, only
leaf servers store records with addresses of replicas. The
intermediate US server thus does not have an address for
the Web page. However, it holds a pointer to the redirec-
tion server in San Francisco, which is known to have in-
formation about a replica of the page. The US server fur-
ther forwards the lookup request to the redirection server in
San Francisco. San Francisco replies with the address of
the Web page completing the lookup request. The client’s
redirection server in San Diego is in charge of actually re-
trieving the Web page from the San Francisco Web server.
The San Diego server can finally decide to cache the address
for handling subsequent client requests, for example, when
downloading the inline images of a document.

By contacting its local redirection server, a client
browser implicitly initiates a lookup for a replica at the low-
est level of the redirection service. In the best case, the ad-
dress of a replica can be found at this server (local replica
or cached address). If not, the forwarding of the lookup re-
quest takes place. Each step up in the hierarchy broadens
the search. Having replica lookups always starting locally
at the client site and gradually expanding the search area
guarantees that the potential local and close-by replicas are
found first. This also guarantees us to find a replica wher-
ever it is stored. The forwarding of the requests along the
hierarchy allows us to avoid unnecessary communication
with parties that are far apart. In addition, by keeping the
number of levels in the hierarchy relatively small, we can
ensure that we do not introduce too much latency when for-
warding the requests.

The placement of the redirection servers is also impor-
tant. A single host can run several servers acting at different
levels of the hierarchy. For example, in Figure 1, the root
World of the Web page’s hierarchy is placed in Amsterdam.
It would be counter-productive to have a lookup request first

reaching the root in Amsterdam, having it forwarded to the
European level, for example in Germany, to the Netherlands
level in Rotterdam and back to Amsterdam where the leaf
server is located. It is more efficient to let the set of servers�

World, Europe, The Netherlands, Amsterdam � run at one
and same host in Amsterdam. The servers running on the
Amsterdam redirection host can be efficiently implemented
using a single multi-threaded redirection server.

4 Detailed design

The redirection service relies on two main components:
a hierarchical collection of redirection servers and the
mechanisms of the redirection server itself. This section
details what the hierarchy of redirection servers is and how
it is built. It also describes how a redirection server works
and how it makes use of the hierarchy.

4.1 A hierarchy of redirection servers

The collection of redirection servers is distributed world
wide. It is organized hierarchically in such a way that each
part of the globe is taken care of by one or more redirection
servers. The redirection servers are themselves organized
on a world-wide collection of redirection hosts. As it is
the case for Web servers, a given host can run several redi-
rection servers. A hierarchy of redirection servers is con-
structed as follows. Each server is responsible for a one
and only one given domain and thus operates at one given
level of the hierarchy. Leaf domains are aggregated into
larger domains and, in turn, these domains are aggregated
so that eventually the highest-level domain covers the entire
network. In our example, a domain corresponds to a geo-
graphical region. The domain thus represents a notion of
locality. Each domain is allocated at least one redirection
server. However, there will generally be multiple redirec-
tion servers and hosts per domain. For example, the root do-
main will have thousands of redirection servers distributed
all over the world. For each Web page, a given server of the
collection will act as root server and pages hosted in differ-
ent leaf domains will generally have different root servers,
as suggested in [10]. The full redirection service is there-
fore organized as a collection of trees of redirection servers
rather than as a unique hierarchy. Note that this full distribu-
tion takes care of balancing the load across all the servers of
the redirection service. The hierarchy of domains, however,
is unique.

For locality purposes, a server stores information only
over the replicas that belong to its own domain. The address
of a given replica is therefore to be found at one redirection
server. Moreover, addresses are stored only at leaf servers.
This makes it unnecessary to maintain consistency within

Proceedings of the Second IEEE International Symposium on Network Computing and Applications (NCA’03)
0-7695-1938-5/03 $17.00 © 2003 IEEE

Amsterdam

Sydney
Redirection server with replica

Redirection server

Americas Europe

World

Asia-Pacific

San Francisco

San Diego
Naples

USA

Naples

Sydney

USA

ItalyThe Netherlands

Australia

World

Americas

Europe
Asia-Pacific

Amsterdam

The Netherlands
Italy

San Francisco

San Diego

Figure 1. Building a hierarchy of redirection servers

the redirection service. As a whole, the world-wide collec-
tion of redirection servers stores the addresses (URLs) of
all the replicas of the Web pages willing to participate in
the service.

To find a given address starting from any redirection
server in the hierarchy, a redirection server can store not
only addresses of Web pages but also forwarding pointers
to other redirection servers in one of its subdomains. Fol-
lowing a forwarding pointer guarantees that an address for
a given replica will be found and that this replica lies in a
subdomain of the redirection server where the forwarding
pointer was found. In our example, the US server holds a
pointer to a server in the San Francisco subdomain.

The hierarchy of domains of the redirection service re-
flects geographical locality. However, the locality metrics
can also be expressed in terms of network distance such as
latency. From now on, we assume that geographical and
network distances are equivalent. Although this assumption
is generally false, it has an impact only on the way the hier-
archy is built. It does not influence the locality in the treat-
ment of requests, nor does it change the way we manage
the hierarchy of domains or the redirection servers. Choos-
ing another locality metric would thus only lead to building
the redirection service hierarchy in a different way. More-
over, the hierarchy can be adapted a posteriori. For each
Web page, the redirection service is brought up with an ini-
tial configuration for the hierarchy of domains which is a
rough estimate of what the redirection service needs once
the entire service is up and running. This initial configura-
tion may show to be inappropriate and the locality may have
to be improved by creating or removing domains.

4.2 The redirection server

A redirection server has to perform two kinds of tasks:
answer incoming requests and manage the location infor-
mation for the replicas to be found in its domain. Each
redirection server can receive requests either from client
browsers or from other redirection servers, which we call
client redirection servers. These requests are known as
lookups. They do not modify the information stored in the
redirection service but allow clients to retrieve addresses of
replicas of Web pages. To let the Web servers hosting repli-
cas add and maintain replica information, there is also a
need for update requests. An update corresponds to either
an insert, which lets the address of a replica be stored by the
redirection service or to a delete, which removes an address
from the redirection service. Each redirection server has to
handle these three types of requests.

The technique for handling requests in the redirection
service is the same for both updates and lookups (for more
details, see [1, 11]). Requests are always initiated at a
lowest-level redirection server. In the case of update re-
quests, the request is forwarded only upwards. For an insert
request, the upper domain has to be contacted to ask permis-
sion to store an address. If the permission is granted, the up-
per domain installs a pointer towards its child domain. This
happens recursively up until a server is reached that already
holds a record for the considered Web page. In such a case
there is no need for forwarding the request any further. It
simply means that the upper level already has a forwarding
pointer installed. Installing forwarding pointers guarantees
that any inserted address can be found following a path of
pointers from the root to the server where the address is ac-
tually stored.

In the case of a delete request, the upper domain has to
be contacted only if the record for the Web page at the cur-

Proceedings of the Second IEEE International Symposium on Network Computing and Applications (NCA’03)
0-7695-1938-5/03 $17.00 © 2003 IEEE

rent redirection server becomes empty. In such a case, the
pointer at the next higher-level server has to be deleted. This
happens recursively up to the root redirection server if nec-
essary. This mechanism guarantees that following a path of
forwarding pointers always leads to an address and never to
an empty record.

Finally, in the case of a lookup, the request is forwarded
upwards in the hierarchy until information is found for the
Web page that is being looked up. When a pointer is found,
the lookup request is further forwarded downwards to the
redirection server referred to by the pointer. The presence
of a pointer guarantees us to find an address in one of the
subdomains. This address is eventually sent back to the re-
questing redirection server.

Special attention is necessary when forwarding the re-
quests. Since the information concerning a Web page is
available only at one redirection server in each domain, a
client redirection server has to know exactly to which other
server it should send a request. The redirection server se-
lection is achieved differently depending on the direction
the forwarding follows (upwards or downwards). If the re-
quest goes upwards, we select the redirection server from
the upper domain that is the closest to the home location of
the Web page. If the request goes downwards, we simply
make use of the forwarding pointer and contact the refer-
enced redirection server.

Each redirection server acts independently when dealing
with its contents or the requests it receives. It makes use of
local information as much as possible in order to reduce the
communication overhead. However, during an update or a
lookup request, another redirection server may have to be
contacted. If this server is unreachable, the redirection ser-
vice can make use of a simple fall-back mechanism. When-
ever a lookup request takes too long to proceed, the initi-
ating server can take the decision of contacting directly the
home server of the document. This prevents a client from
indefinitely waiting for a redirection server that is currently
unavailable. In the case of update requests, the client does
not have to wait until the full completion of the request but
can get an answer directly after the update has been com-
pleted locally.

In addition to the above tasks, a redirection server has
to handle the registration of Web servers willing to partic-
ipate in the service. This encompasses registering replicas
of Web pages and offering space for hosting replicas.

Address caching mechanisms can be applied to dis-
tributed redirection. The time-to-live of each address in the
cache can be provided directly by the Web server hosting
the replica since it has to fulfill a contract determining pre-
cisely what it should store and how long. This time value
can be given to the redirection server where the address
of the replica is stored and be further used as time-to-live
value in the cache of the client redirection server. The stan-

dard lookup procedure can therefore be short-cut by using
the address cache and it can be guaranteed than an address
found in the cache is always valid. Note that the contents of
a replicated Web page can still change without invalidating
the cached addresses.

5 Interacting with the redirection server

The client browser interacts with the redirection server in
order to look for replicas of Web pages. This interaction has
to occur as transparently as possible. First, a client should
not be aware it is dealing with a replica of the Web page
it requested. At no point a client should be able to keep
an explicit reference towards a replica of a Web page, for
example by bookmarking it. Not preventing this can, first,
lead to dangling pointers when the replica is removed. This
is unacceptable if the original page is itself still accessible.
Second, discovering new replicas closer to the client would
require an explicit action from the end user, which is also
unsatisfying. This is what we call replication transparency.

It is the task of the client’s redirection server to maintain
replication transparency. This is achieved by not display-
ing the addresses of the replicas to the client browser. The
client sees only the home location of a Web page. It has
no way of discovering the address of a replica when using
the redirection service and of accessing the replica directly.
The redirection server at the client side thus takes care of
fetching the replica for the client and acts as if it were the
home Web server.

Second, a client browser should not be aware its requests
are going through a redirection service. The end user should
have the least possible to do to take benefit of the redirec-
tion service. This makes the deployment and the use of the
redirection service at client sites easier. We can achieve this
by carefully integrating the components of the redirection
service with their environment. This is what we call trans-
parency of use.

Let us see how an end-user request for loading the http:
//www.cs.vu.nl/globe/ page is handled when using the redi-
rection service. We assume no Web proxy is installed in
the client browser configuration. For loading the page, the
browser performs two tasks. First, it resolves the DNS-
domain name www.cs.vu.nl into the IP address of a Web
server by contacting its authoritative DNS server. Second,
it generates an HTTP request for the page and sends it to the
Web server whose address was returned. Since redirection
has to take place locally at the client side, the redirection
service has to integrate between these two steps. By us-
ing a modified authoritative DNS server at the client site,
we can resolve the client browser’s DNS request into the
address of its local redirection server (see Figure 2, mes-
sage exchange 1). Without noticing it, the client browser
is therefore asked to contact the redirection service which it

Proceedings of the Second IEEE International Symposium on Network Computing and Applications (NCA’03)
0-7695-1938-5/03 $17.00 © 2003 IEEE

believes to be the Web server of the requested page. This ap-
proach realizes transparency of use. As for the second step,
the browser sends its HTTP request to its local redirection
server (message 2) which looks for a replica (message ex-
change 3). The lookup can recursively lead to several mes-
sage exchanges with other redirection servers (not shown in
the figure). The client’s local redirection server is in charge
of fetching the requested Web page (message exchange 4)
and returning it to the client (message 5). Using an HTTP-
redirect at this stage would violate replication transparency.
Note that Web proxies display a similar behavior. More-
over, the HTTP reply the redirection server sends back to
the browser has to use the original URL to designate the
page and thus preserve replication transparency. It also
means that the URLs contained in a replicated Web page
are not rewritten to match the location of the replica. Any
subsequent request goes through the redirection server and
is not bound to a given replica.

The client site’s servers that are needed for the redirec-
tion service can be integrated into a single component. The
modified DNS server may just be a front-end to the redirec-
tion server. The redirection server component has therefore
to act as (1) a DNS server, resolving DNS names; (2) a Web
proxy, receiving client browser requests and fetching pages
from Web servers; and (3) a redirection server, performing
lookups in the redirection service.

In our example, the Web page http://www.cs.vu.nl/globe/
was known to the redirection service. It may, however, hap-
pen that no replica of the requested Web page is found by
the redirection service. The page’s Web server may not par-
ticipate in the redirection service or this specific page may
not be replicated while others from the same Web server are.
The protocol we follow if the requested site is not partici-
pating differs slightly from the previous case. Assume that
no replica address has been found at the end of the mes-
sage exchange 3. The redirection server therefore has to
contact the home location of the requested Web page since
it is the only known Web server for the page. It acts as a
Web proxy would do: it resolves the domain name of the
requested page and fetches the page from the home Web
server. Finally, the redirection server returns the Web page
to the browser as it would normally do.

A number of optimizations can be applied to the above
protocol. First, when the DNS, proxy and redirection
servers are integrated into one single entity, the client
browser exchanges two sets of messages with the same en-
tity but using different protocols. We can improve efficiency
by relaxing the transparency constraint: we can let the client
browser consider the redirection server as a Web proxy. The
browser proxy configuration has thus to be adjusted accord-
ingly. The browser has only to send HTTP requests to the
redirection server which performs the subsequent lookup.
To preserve transparency, the redirection service could be

directly integrated at the router or switch level, as it is the
case for transparent caches. It would then intercept TCP
traffic for port 80.

A second optimization concerns the lookup of a replica
address in the redirection service. Consider the case where
no participating site is known for the page. A redirection
server can only discover this fact after the lookup has been
completely processed, that is, when the hierarchy has been
traversed without finding any replica address. Since each
unsuccessful lookup is costly, we would like to prevent
them as much as possible. As an optimization, a redirec-
tion server can keep a database of participating Web sites.
The database is checked for each client HTTP request be-
fore the address lookup in the redirection service starts. The
lookup is short-cut if the requested site is not participating,
at which point the redirection server performs the name res-
olution by directly forwarding the request to the local DNS
server. The rest of the protocol remains unchanged.

6 Integration with existing platforms

To facilitate installation and deployment, we implement
our redirection server as a module in the Apache server.
Apache is a well-known and widely-used Web server. It has
the advantage of being implemented in a modular way and
as such is extendable with new features. Moreover, similar
experiments with integrating replication [6] or DNS-based
redirection [8] features in Apache modules have shown the
approach to be feasible.

Another integration point to be careful with is the nam-
ing scheme. To find addresses of replicas of Web pages,
the redirection service needs a unique, location-independent
identifier for each Web page. An identifier is associated
to a number of location-dependent addresses that denote
the physical location of the replicas. The de facto nam-
ing scheme that is use today (i.e., URLs) does not comply
with these requirements. We propose to use URLs as both
human-friendly names and addresses of replicas. The redi-
rection service is in charge of translating these names into
identifiers and then use the identifiers to look for replica ad-
dresses. An identifier is directly derived from a URL. It is
composed of a hash and of the geographical coordinates of
the home Web server. The coordinates allow a client redi-
rection server to select the redirection server that is closest
to the home location of the requested page during lookups.
As explained in [10], this approach does not violate the
location-independence property since the coordinates of the
home location will never be changed.

7 Conclusion

The redirection mechanisms used in today’s World-Wide
Web such as HTTP-based redirection, DNS-based redirec-

Proceedings of the Second IEEE International Symposium on Network Computing and Applications (NCA’03)
0-7695-1938-5/03 $17.00 © 2003 IEEE

San Francisco domain

Amsterdam domain

Modified
DNS

Client
browser

Redirection
server

Home Web
server

Web
server

①

② ④⑤

③

San Diego domain

Initial user request for
http://www.cs.vu.nl/globe/

Modified
DNS

Redirection
server

Modified
DNS

Redirection
server

①
②

④
⑤

③

DNS name resolution of www.cs.vu.nl
HTTP request to supposedly www.cs.vu.nl
Lookup request in the redirection service
HTTP request to the Web server hosting the replica
HTTP reply with the contents of the page

Figure 2. Interaction of the distributed redirection components

tion or TCP handoff exhibit characteristics that make them
not fully satisfactory. The main concern is that with any
of these methods, a home-based approach is used. The re-
quest of a client is in most cases redirected only after it has
reached the Web page home location. Not only does this put
a load on the home Web server and does it generate traffic
on the network, but it induces latency that can be perceived
by the end user.

We devised a scheme where the redirection is fully dis-
tributed. An important aspect is that the locality has to be
preserved: the redirection decision has to take place as lo-
cally to the client as possible and the selected replica of the
requested Web page has to remain close to the client. In
such a way, we avoid unnecessary communication for both
finding a replica and contacting it. Latency is kept as low as
possible.

Distributed redirection makes use of a world-wide col-
lection of redirection servers organized as a collection of
trees, one per Web page or group of Web pages from the
same leaf domain. Leaf servers store addresses of replicas
and perform lookup requests on behalf of clients. A redi-
rection server supports both DNS and HTTP protocols for
interacting with clients, as well as its own protocol for look-
ing up and updating addresses of replicas. Each participat-
ing client or server site has to run its redirection server.

The distributed redirection mechanisms have to integrate
seamlessly in the current World-Wide Web. A redirection
server is implemented as an Apache module and used trans-

parently by being configured as an authoritative DNS server.
We are currently in the process of running simulations and
comparing both DNS-based and distributed redirection. Fu-
ture work encompasses experiments and performance mea-
surements of our redirection scheme as well as the addition
of optimizations such as address caching mechanisms.

References

[1] A. Baggio, G. Ballintijn, M. van Steen, and A. S.
Tanenbaum. Efficient tracking of mobile objects in
Globe. The Computer Journal, 44(5):340–353, 2001.

[2] B. Cain, A. Barbir, F. Douglis, M. Green, M. Hof-
mann, R. Nair, D. Potter, and O. Spatscheck. Known
cn request-routing mechanisms. Internet draft, May
2002.

[3] A. Chankhunthod, P. Danzig, C. Neerdaels,
M. Schwartz, and K. Worrell. A Hierarchical
Internet Object Cache. In Annual Technical Con-
ference, pages 153–163, San Diego, CA, Jan. 1996.
USENIX.

[4] R. Fielding, J. Gettys, J. C. Mogul, H. Frystyk,
L. Masinter, P. Leach, and T. Berners-Lee. Hypertext
Transfer Protocol – HTTP/1.1. RFC 2616, June 1999.

[5] V. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,
W. Zwaenepoel, and E. Nahum. Locality-Aware Re-

Proceedings of the Second IEEE International Symposium on Network Computing and Applications (NCA’03)
0-7695-1938-5/03 $17.00 © 2003 IEEE

quest Distribution in Cluster-Based Network Servers.
In 8th International Conference on Architectural Sup-
port for Programming Languages and Operating Sys-
tems, pages 205–216, San Jose, CA, Oct. 1998. ACM.

[6] G. Pierre and M. van Steen. Globule: a platform for
self-replicating web documents. In 6th Int. Conf. on
Protocols for Multimedia Systems, pages 1–11, En-
schede, The Netherlands, Oct. 2001.

[7] M. Rabinovich and O. Spastscheck. Web Caching and
Replication. Addison-Wesley, Reading, MA., 2002.

[8] M. Szymaniak. DNS-based client redirector for the
Apache HTTP server. Master’s thesis, Warsaw Uni-
versity and Vrije Universiteit, June 2002.

[9] R. Tewari, M. Dahlin, H. Vin, and J. Kay. Design
Considerations for Distributed Caching on the Inter-
net. In 19th International Conference on Distributed
Computing Systems, pages 273–284, Austin, TX, June
1999. IEEE.

[10] M. van Steen and G. Ballintijn. Achieving scalabil-
ity in hierarchical location services. In 26th Interna-
tional Computer Software and Applications Confer-
ence (CompSac), pages 899–905, Oxford UK, Aug.
2002.

[11] M. van Steen, F. Hauck, G. Ballintijn, and A. Tanen-
baum. Algorithmic Design of the Globe Wide-Area
Location Service. The Computer Journal, 41(5):297–
310, 1998.

[12] A. Wolman, G. M. Voelker, N. Sharma, N. Cardwell,
A. R. Karlin, and H. M. Levy. On the scale and per-
formance of cooperative web proxy caching. In Sev-
enteenth Symposium on Operating Systems Principles,
pages 16–31, Kiawah Island Resort, SC, USA, Dec.
1999.

Proceedings of the Second IEEE International Symposium on Network Computing and Applications (NCA’03)
0-7695-1938-5/03 $17.00 © 2003 IEEE

