
A Flexible Middleware Layer
for User-to-User Messaging

Jan-Mark S. Wams and Maarten van Steen

Vrije Universiteit Amsterdam
Department of Computer Science

{jms,steen}@cs.vu.nl
http://www.cs.vu.nl/˜{jms,steen}

Abstract. There is growing trend to unify user-to-user messaging sys-
tems to allow message exchange, independent of time, place, protocol,
and end-user device. Building gateways to interconnect existing messag-
ing systems seems an obvious approach to unification. In this paper we
argue that unification should take place at the level of the underlying
messaging models. Such a unification results in one messaging model
that has maximum adaptability, allowing one system to deliver the same
messaging services that all currently existing messaging systems deliver,
as well as hitherto impossible mixes of those services.
We present a novel unified messaging model that supports maximum
adaptability. Our approach supports the same services that all current
messaging models support, including those of e-mail, fax, SMS, ICQ,
i-mail, USENET News, AIM, blog, MMS, and voicemail.
To substantiate the claim that such a unified model can be implemented
efficiently on a worldwide scale, we present the design of an accompanying
highly adaptable and scalable messaging middleware system.

1 Introduction

User-to-user messaging services continue to increase in popularity. Billions of
messages are daily relayed through messaging systems like e-mail, fax, SMS,
ICQ, i-mail, USENET News, AIM, blog, MMS, voicemail and so on. For many
people it is hard to imagine life without these services.

Technological change as well as change in expected service cause new fea-
tures to be added to existing messaging systems and totally new systems to
emerge. However, the unstructured way in which messaging systems have been
constructed and changed so far has caused much unnecessary overhead, reinvent-
ing of wheels, and running into dead-ends that should have come as no surprise.
Besides these development problems, there is an ever-growing incompatibility
between all these systems that seemingly offer a very similar service. It would
already be a huge step forward if the choice for the sending system would be
independent from the choice of the receiving system. Users would then, for exam-
ple, be able to use a cell-phone to send a photo to a bulletin board, and another
user would be able to use a laptop in a café to look at it, while yet another user
would receive the photo using a fax machine.

J.-B. Stefani, I. Demeure, and D. Hagimont (Eds.): DAIS 2003, LNCS 2893, pp. 297–309, 2003.
c© IFIP International Federation for Information Processing 2003



298 Jan-Mark S. Wams and Maarten van Steen

Most existing messaging systems are built directly on top of one communi-
cation platform like the Internet, GPRS, or POTS. In this paper we introduce
a middleware layer for user-to-user messaging systems that provides maximum
adaptability. Maximum adaptability is needed to deal with the multitude of
communication technologies and messaging services.

Adapting a messaging service to changes is usually realized by adapting (often
extending) its underlying system. For example, user demand for off-line and
multi-point access to Internet e-mail has lead to extensions known as POP and
IMAP. Likewise, user demand for an electronic bulletin board system prompted
the development of mailing-list servers on top of Internet e-mail. However, due
to fundamental difficulties with addressing an ever-changing population [7], it
turned out to be impractical to build a full-fledged bulletin board system like
USENET News on top of Internet e-mail. Researching messaging systems has
lead us to conclude that the associated messaging model sometimes lacks enough
adaptability to make adapting the system practical. To assess the adaptability
of a messaging service both the model as well as the system that implements it,
need to be analyzed. In Section 3 we present a taxonomy, that allows analysis
of messaging models.

Princeton University’s WordNet defines “adaptability” as “the ability to
change or be changed to fit changed circumstances.” In the context of a tax-
onomy, “change” can be interpreted as a change of position. Hence we define:

A system has “maximum adaptability” within a given taxon-
omy, if the system can easily move or be moved to any position
within that taxonomy.

Using our taxonomy to categorize (the models of) messaging systems, we show
that non of the popular large-scale messaging systems has maximum adaptabil-
ity; most such messaging systems lack an adaptable model . In Section 4 we
introduce a unified messaging model that does have maximum adaptability and,
therefore, could be used as a basis to unify all major existing messaging systems,
including e-mail, fax, SMS, ICQ, i-mail, USENET News, AIM, blog, MMS, and
voicemail. In Section 5, we focus on the main contribution of this paper, the de-
sign of a middleware layer for messaging with maximum adaptability. We dubbed
this system Unified Messaging System or UMS for short. Our design demon-
strates the feasibility of a large-scale UMS that supports maximum adaptability,
and which is capable of providing the same services as existing messaging sys-
tems. To the best of our knowledge such a UMS does not yet exist. In Section 6
we give some example scenarios of the use of the UMS middleware layer. We
conclude in Section 7.

2 Related Work

Work on “Unified Messaging” shows that some define unified messaging as “the
ability to allow a user to receive faxes, voice-mails and e-mails in one personal



A Flexible Middleware Layer for User-to-User Messaging 299

mailbox.” [8]. Since most user-to-user messaging is either Internet based or tele-
phony based, unified messaging is sometimes defined as; “Internet-based inte-
gration of telephony and data services spanning diverse access networks” [6].
Neither of these approaches to unification comes close to ours.

There are also commercial offerings of unified messaging, basically these are
centralized places where users can collect all there messages, usually limited to
e-mail, voicemail, faxes, and phone-text messages. These kind of unifications are
designed and/or implemented with gateways, interconnecting various systems,
leading to complex addressing and a common-denominator service. Also these
forms of unification are usually asymmetric in how they handle the sending and
receiving of messages. Receiving messages from different messaging systems is
straightforward: have one gateway/forwarder per connected messaging system.
However, sending is not always (if at all) possible in a uniform way: differences
between the way that messages can be delivered have to be dealt with by the
user, often even if the recipient uses the same integrated messaging service.
Our unified messaging is different in that we strive for one middleware layer,
connecting many communication networks to user interfaces on many platforms.

Though the user-interfaces will, most likely, have to be redesigned and re-
placed, this approach has some enormous benefits. The number of interfaces
reduces, combinations of messaging services become possible, it is much easier
to add a new user interface or new communication network, and, most impor-
tantly, there is symmetry between sending and receiving.

3 A Taxonomy for Messaging Models

In this section we introduce a taxonomy for messaging models. Issues like
throughput, latency, and portability are implementation dependent, and, al-
though important, are ignored in our taxonomy. The taxonomy does also not
take into account presence, secrecy, authentication, non repudiation, and in-
tegrity, because these can (and should) be done on an end-to-end basis [2]. We
introduced our taxonomy in a previous paper [5], so we will just list the four
dimensions and their values in Fig. 1.

dimension values (from min to max)

time immediate, impermanent, permanent
direction simplex, duplex
audience group, world
address single, list, all

Fig. 1. The messaging system taxonomy.

Given this taxonomy, models of existing messaging systems can be classified and
researched for adaptability. Fig. 2 shows the classification of eight messaging sys-
tems. Many interesting observations can been made when using the taxonomy to



300 Jan-Mark S. Wams and Maarten van Steen

system time direction audience address

e-mail permanent simplex world list
voicemail permanent simplex world single
news impermanent duplex group all
mailing-list permanent duplex group all
fax immediate simplex world single
im immediate duplex group all
sms permanent simplex world single
blog permanent duplex world all

Fig. 2. Classification of some existing messaging systems.

compare messaging models. For example, the fax messaging system and the SMS
messaging system both are (immediate, simplex, world, single) systems, reveal-
ing that they share an underlying model. Due to the different output devices
and infrastructure, their systems are, however, very different and incompati-
ble. Interestingly but not surprisingly the SMS system is meeting exactly the
same user demands for service extension that the fax system (invented over 100
years earlier) has met. Users will want support for sending a single message to
multiple recipients, automatic forwarding to other recipients or locations, non-
repudiation, authentication, and so on. Note that voice-mail systems are also
(immediate, simplex, world, single) and was also confronted with similar user
demands. As a side effect of our research, we have come to conjecture that mes-
saging systems that have coinciding positions in the taxonomy, usually have
coinciding development paths. Another interesting observation is that when a
system is built on top of another system, its classification clearly reveals what
property (if any) has been downgraded in favor of the upgrading of some other
property. For example, the mailing-list messaging system is built on top of the
e-mail system, downgrading audience in favor of upgrading its addressing capa-
bilities.

Most messaging systems do not have the maximum value in all dimensions,
in other words, they do not possess maximum adaptability. There is one mes-
saging system in Fig. 2 that does have the maximum value in all dimensions:
the blog system. The blog system (also known as weblog or what’s-new-page) is
a messaging system in which one person (or a small number of persons) collects
noteworthy messages. Potentially every person on the Internet can read these
messages and can append addenda (a message and its addenda are often called
a “thread”). This type of messaging is more subtle than the other messaging
systems with respect to controlling who can post what message. More precisely,
most implementations of the blog-type messaging system put some restrictions
on its duplex character (i.e., not every participant can start a thread). Some
blogs have many readers (like slashdot.org), many blogs have a few dedicated
readers. Since a blog system is (permanent, duplex, world, all), it might possess
maximum adaptability. Unfortunately, it is stuck at the extreme of the taxon-



A Flexible Middleware Layer for User-to-User Messaging 301

omy. Bloging is relaying a message to anyone who wants to hear it, therefor,
it has to be adapted to enable more private forms of communication. We have
come to the conclusion that non of the messaging systems we know of can be
easily forged into a system with maximum adaptability.

4 The Unified Messaging Model

In this section we introduce a Unified Messaging Model (UMM) as underlying
model for the messaging system we will define in Section 5. The UMM has to
support four major objectives. First, the UMM has to support large-scale mes-
saging: billions of users jointly exchanging billions of messages per day. Second,
the UMM should not be dependent on trust and should allow for a distributed
peer-to-peer implementation. Third, the UMM has to hinder SPAM by putting
the recipient in control. Fourth, the UMM has to posses maximum adaptability:
it should offer everything any existing messaging system has to offer. Moreover,
it should allow users (or user agent software) to dynamically create new types
of messaging systems on demand, mixing and matching messaging service prop-
erties at will.

We have kept our model as simple as possible. It has two main entities. The
first entity is called target, and stands for a collection of user-to-user messages.
A target is a generic in-box, news-group, channel, paper-role, tape and so on. The
second entity is called TISM, short for targeted immutable short message.
A TISM is a generic e-mail, news article, remark, fax, voice-mail-message and so
on. The acronym TISM is used to reflect the choices we have made for our UMM.
TISMs are targeted because they are directed towards targets—not users. They
are immutable by design: that which has been sent, can no longer be modified.
TISMs are said to be short, thereby focusing the UMM on real-life user-to-user
messaging. The focus is thus not on large messages of, say, millions of bytes. To
give the UMM maximum adaptability, four (dimensional) constraints are put
upon targets. First, targets should allow for immediate, impermanent, and per-
manent storage. Second, targets should support an access control mechanism for
posting TISMs into targets to allow simplex and duplex messaging on demand.
Third, targets should support an access control mechanism for reading TISMs
from targets, and to allow both group and world access to targets. Fourth, access
to targets should allow individual (single), selected (list), and total (all) access
to TISMs. If these objectives can be (orthogonally) materialized into an imple-
mentation, the result would be a messaging system with maximum adaptability.
We will introduce such a messaging system in the next section.

5 Design of the Unified Messaging System

In this section we introduce the Unified Messaging System (UMS). We start
with a description of the implementation of targets and TISMs. The conceptual
target and TISM from the UMM is implemented as a distributed shared object.
Such an object not only encapsulates state and the implementation of opera-
tions on that state, but also encapsulates a distribution policy that prescribes



302 Jan-Mark S. Wams and Maarten van Steen

how the state is distributed, replicated, and migrated across different locations.
Distributed shared objects were first introduced in Globe [3]. For our UMS, we
adopt the concept of distributed shared objects but provide a specific, more
efficient, implementation for targets and TISMs.

In the following, we distinguish between referring to a target by its name,
say T , and referring explicitly to its realization as a distributed shared object. In
the latter case, we will talk about T ’s instance. A distributed shared object can
be thought of as a collection of local objects, where each local object is hosted
by a single site. Correspondingly, we will refer to a local instance of a target
T . Likewise, we make a distinction between a TISM m, its instance, and a local
instance of m.

TA

TA

UA

TA

TA

TA

Fig. 3. Conceptual view.

5.1 Target Agents and User Agents

As with the design of our unified messaging model, we keep the design of the
UMS as simple as possible. Apart from the actual user, there are only two types
of communicating parties, as shown in Fig. 3. The first type is a target agent
(TA). Its primary function is to store and forward (the state of) targets and
TISMs, in addition to carrying out the associated distribution policies. As such,
a TA is designed to be continuously operating, that is, on line. The second type is
a user agent (UA), which is responsible for generating and managing keys that
are need for security, as well providing the user access to facilities for sending
and receiving TISMs. The UA is (part of) an application, and is thus not part
of the middleware layer. Therefore, we only describe its lower-level part that is
responsible for communication with the TAs. We do not go into the specifics of
the higher-level parts like the GUI, or the representation of targets or collections.

Whenever a UA wants to create a target or TISM, it needs to contact a TA
that is willing to operate as the home of that target or TISM. The home TA
will store a local instance of every target or TISM created by such a UA, thereby
providing minimal access guarantees to those objects. Access is provided until a



A Flexible Middleware Layer for User-to-User Messaging 303

specified expiration time, after which the local instance of the target or TISM
can be permanently removed.

5.2 Key Management

The UA associates every target T with a (private,public) key pair (K−
T , K+

T ),
where K−

T denotes a private key and K+
T a public key. Any information on

target T that leaves a UA, is encrypted with K−
T . This specifically includes

TISMs and information on TISMs that are contained in target T . Every TISM
has an associated target that contains it. A TISM has no associated key pair,
but instead is encrypted with the private key of its associated target. End-to-
end secure communication between UAs proceeds as follows. Whenever a UA
encrypts a TISM for storage or transport by a TA, the TISM m is first encrypted
with it own unique (random) symmetric key (SK), which, in turn, is encrypted
with the key K−

T that is associated with the target that is containing this TISM.
This type of two-staged encryption is referred to as a hybrid protocol [1].

Not only does this scheme save time, because symmetric encryption and
decryption is usually much faster than its asymmetric counterpart, but also
cross posting will be (computationally) much cheaper. Cross posting is done by
reading a TISM, m, from a target, T1, and than posting it into an other target,
T2. The two targets will have different private keys, but that is of no consequence
to the encrypted version of m, which is encrypted with the symmetric key SK.
Only SK has to be decrypted and re-encrypted. In general SK will be much
smaller than m, therefor decrypting/encrypting this way, takes less time. Cross
posting this way will deliver similar gains in communication and storage.

5.3 The Content List

In the UMM a target is an unordered collection of TISMs. In the UMS a target
is represented as a list of TISMs ordered by creation date, as shown in Fig. 4-
a. We decided on the ordering, because it will make the “old” part of the list
more static and thus easier to compress. Imagine a real-time messaging system
sending a list of 1 million TISMs over the network every second for comparison
to a replica list. Performance wise, a better alternative would be to sent the hash
of a list of 1 million TISMs every second for comparison to the hash of the replica
list. For efficient comparison and updating of lists, we introduce an elaboration
on this simple hashing scheme, dubbed a contentList. A contentList is a list of
descending dates with between each two dates either a list of TISMs or a hash of
a list of TISMs and the number of TISMs in the hash, see Fig. 4. A contentList
of a particular TISM list can range in size from a few bytes (see Fig. 4-b) to just
over the size of that TISM list (see Fig. 4-e).

5.4 Information Flow

As mentioned, the UAs and TAs exchange information. The principal operation
is simple. Each target and TISM is uniquely identified by the combination of a



304 Jan-Mark S. Wams and Maarten van Steen

TISM 6
TISM 7

TISM 0
TISM 1
TISM 2

TISM 7

TISM 3

TISM 0
TISM 1

TISM 5

TISM 8
date

TISM 6
TISM 4

TISM 2

TISM 5
TISM 4

TISM 9
TISM 8
TISM 7
TISM 6
TISM 5
TISM 4
TISM 3

(c)

TISM 9 date
(hash, n)
date

date
(hash, n)
date
(hash, n)
date
(hash, n)
date
(hash, n)
date

date
(hash, n)
date

date
(hash, n)
date

(e)(a) (b) (d)

date

Fig. 4. An ordered list of TISMs in five different formats, (a) plain TISM list, (b)
minimal contentList, (c) hash only contentList, (d) mixed contentList (e) TISM only
contentList.

home TA and an ID unique relatively to that TA. If a UA needs (information
on) a target or TISM it simply contacts the respective home TA. Requests and
replies are transmitted in an asynchronous and connection less fashion (notably
UDP). As shown in Fig. 5-a, incoming information is processed by the TA us-
ing a simple scheme of decode and execute functions. The decode function is
responsible for analyzing the type of input information. For example, we make
a distinction between requests for information on a target, and requests con-
cerning a specific TISM. Depending on this type, the decode function passes
the request to a specific execute function. The execute function processes the
request, possibly storing data in, or fetching data from a local store. A reply is
subsequently put in an output queue for transmission to the requester.

TA

decode

execute

execute

execute

store

fetch Q

output Q
decode

output Q

fetch Q

execute

store execute

TA

cache

(a) (b)

Fig. 5. Information flow within a TA, (a) basic scheme, (b) TA with replication.

With this simplistic scheme, UAs will have to pull any information directly
from a home TA. With just this pull-on-demand scheme our messaging system
would be fully functional. Obvious drawbacks are its lack of scalability and
performance, and also its lack of robustness. These drawbacks are all caused by



A Flexible Middleware Layer for User-to-User Messaging 305

the fact that we are relying on a single home TA (per target or TISM). For
example, every time a UA would want to know whether a target contained new
TISMs, it would have to access the home TA of that target.

This basic scheme can be easily improved. For example, a pushing scheme
could automatically deliver the information to a close TA: a TA on the same
LAN as the UA, or a TA at the ISP. Other adaptations that improve the overall
performance of the system can easily be thought of. In the context of develop-
ing distributed Web services, we have observed that differentiating distribution
schemes is important for achieving performance [4]. For our messaging system,
we believe such a differentiation is also important. What we are therefore seeking
is an organization by which we can easily associate a specific distribution or
replication policy separately with each target or TISM. Our basic scheme is al-
ready capable of supporting this flexibility as the decode function can distinguish
different types of input information from which it can derive the appropriate ex-
ecute function that should be executed.

We considered three ways of differentiating policies. The first option was to
allow each target or TISM to run arbitrary (e.g., Java) code. The second option
was to invent some replication scripting language and have a target or TISM
carry a replication script. The third option was simply to assign identifiers to
a fixed number of policies and let each target and TISM specify its prefered
policy through this identifier. We chose the third option for both targets and
TISMs because it has a low overhead per message. It is, however, reasonable
flexible because policies can be added as updates to our messaging system in a
backwards compatible fashion.

These adaptations lead to a slightly modified version of the internals of a
TA, as shown in Fig. 5-b. First, we make a distinction between the storage and
a cache. The storage is used for targets and TISMs for which the TA acts as the
home. These objects can be removed only after the specified expiration time.
Moreover, requests to store information on a target, or to store a TISM are
executed only when they come from an authenticated and authorized UA.

The cache is used to voluntarily store information. The TA stays in full
control of the cache: it can decide any time what to store or remove. The re-
sponsibility for having information on a target or TISM available lies completely
with the home TA, which uses its storage for that purpose. There are two ways
information finds its way into the cache of a TA. First, a request that has been
forwarded by a TA might result in a reply from a peer. This information will
then be relayed to the requesting UA and might be stored in the cache. Second, a
replication of a target or TISM might be pushed to a TA because a peer executes
a replication strategy. The TA could, for example, decide to cache the replica
because it is associated with a popular target.

With this in mind, it makes sense for a UA to try to get a target or TISM
from a close TA. This close TA will do a cache lookup, and if the lookup fails, it
can forward the request to one of its peers. However, to protect against malicious
and erroneous requests, only a signed request from a known UA can result in
the forwarding of the request. Basically this means that a TA will only look in



306 Jan-Mark S. Wams and Maarten van Steen

its own cache and storage to satisfy a request. If the request is signed by a known
UA, the TA will forward it (unsigned) to a peer, notably the home TA for the
referenced target or TISM, but the peer, in turn, will not forward the request
any further (for the peer received the request from a TA, not an authenticated
UA). Consequently, requests will not be forwarded ad infinitum in search for a
non existing target or TISM. It may seem at first that this forwarding restric-
tion can render some information unaccessible. However, targets and TISMs can
never become unreachable because replication only improves performance and
robustness: targets and TISMs remain available at their respective home TA.

The information flow for Fig. 5-b is similar to that of Fig. 5-a, however,
the input flow for Fig. 5-b contains replicas of targets and TISMs that have
to be dealt with. Information is fetched and decoded. In the case of a replica
the identified replication policy is executed and will, if appropriate, result in the
insertion of one or more replicas to the output queue. The replication policy does
any of three things; update the cache, queue a reply to a UA, and queue one or
more replicas to peer TAs. No general limit on forwarding of replicas is enforced.
Due to the fact that replication policies need to be explicitly referenced by an
identifier, limitations on replication are safely enforcible. In fact there are no
rules for what replication strategy code can do. Typical behavior would include,
checking the cache for related objects, storing (local instances of) objects in the
cache, forwarding many objects to many peers, updating objects in the store,
and so on.

UA A

User C

User B

User A

UA C

TA C

TA A

TA B

UA B

Fig. 6. Three UMS users A, B, and C.

6 Examples

In this section we will demonstrate the behavior of the middleware layer for
some archetypical user-to-user communication patterns between three users A,
B, and C. Let us assume each of the three users has their own UA and home
TA, as seen in Fig. 6. For simplicity reasons, let us assume each UA contacts the
middleware layer only through its home TA.



A Flexible Middleware Layer for User-to-User Messaging 307

TA-A TA-B TA-C
comments

day store cache store cache store cache

1 T target T is created
2 T m1 user B posts TISM m1

3 T m1 m1 user A reads m1

4 T m1 m1 m2 user C posts TISM m2

5 T m1 m2 m1 m2 user A reads m2

6 T m2 m1 m2 TA-A de-caches m1

7 T m1 m2 TA-A de-caches m2

Fig. 7. Cache and store utilization with e-mail like behavior.

TA-A TA-B TA-C
comments

day store cache store cache store cache

1 T1 target T1 is created
2 m T1 user A posts TISM m

3 m T1 m user B reads m

4 m T2 T1 m user B creates target T2

5 m T2 T1 m user B forwards m

6 m T2 T1 m m user C reads m

7 m T2 T1 m T2 m user C lists T2

Fig. 8. Cache and store utilization with forwarding.

In Fig. 7 the storage and cache are depicted of the three TAs in a typical
e-mail-like exchange. On day 1, user A instructs UA-A to create a new target
T . TA-A stores the target and returns a unique ID to UA-A. User A sends users
B and C the (address of TA-A, unique ID, public key) tuple in an other TISM
(not shown). On day 2, user B has UA-B post a TISM m1 to user A. TISM m1
is put in the storage of TA-B, the changes to T are forwarded to TA-A due to
the (e-mail mimicking) replication strategy of T . On day 3, user A requests the
TISM m1 from TA-A, and TA-A fetches it from TA-B. TA-A stores TISM m1
in the cache (due to the replication strategy) and also forwards it to UA-A. On
day 4, user C decides to post a TISM m2 and user A reads m2 on day 5. At days
6 and 7, m1 and m2 are discarded from TA-A’s cache. At the end of day seven,
T , m1 and m2 are not cached in any TA. This will be the typical situation with
low-usage targets and TISMs. Note that the UA-A probably has a cache too and
that this cache will hold on to T , m1, and m2 much longer.

In Fig. 8 we consider some other common behavior: forwarding a TISM to
another user. For this, UA-B will create a new target, in which TISM m is cross
posted. User A sends a TISM m to user B, and user B forwards TISM m to user
C. On day 1, user B creates a target T1 and forwards the relevant information to
user A (not shown). On day 2, user A posts a TISM m into target T . On day 3,



308 Jan-Mark S. Wams and Maarten van Steen

user B reads TISM m and decides that user C might be interested in TISM m.
User B requests its UA-B to privately forward m to user C. UA-B creates a new
target T2, cross posts TISM m in target, and then forwards the (home TA of m,
unique ID of m) and (home TA of T2, unique ID or T2, private key of T2) tuples
to UA-C in another TISM (not shown). On day 6, user C reads m. On day 7, user
C decides to list the content of T2, and finds only m is in T2. Note that if user A
were to post a new TISM into target T1, this new TISM would not automatically
show up in target T2, as would be the case if user B had shared T1 with user
C. More sophisticated examples can be given, and practical usage of the UMS
middleware layer probably is much more elaborated than these examples. It is
the task of the UA to transform simple wishes from the user into the usage and
creation of targets and TISMs. Typically a user would ask the UA to give some
other user access to a set of coherent messages, analogous to the “newsgroup
thread” or chain of “e-mail followups.”

7 Conclusions

In the paper, we have introduced the design of a truly unified user-to-user mes-
saging system in the form of a generic middleware layer for messaging. Our paper
illustrates the feasibility of developing a such a middleware layer to allow effi-
cient integration of existing messaging services. Compared to a messaging service
offered by a collection of existing messaging systems and connecting gateways,
our approach does not suffer from common denominator restrictions and frees
the users from having to deal with differences between the individual underlying
messaging systems. Our approach and its accompanying design should be able
to support very large communities of users. It is flexible enough to simultane-
ously support a variety of replication schemes, a feature which has shown to be
important when performance is an issue. In fact, we allow differentiation not
only on a per-target basis, but can even support different schemes at the level
of TISMs. To validate our approach, we are currently developing a prototype
implementation.

References

1. A.J. Menezes, P.C. van Oorschot, and S.A. Vanstone. Handbook of Applied Cryp-
tography. CRC Press, Fifth Printing, August 2001.

2. J.H. Saltzer, D.P. Reed, and D.D. Clark. End-to-End Arguments in System Design.
ACM Transactions on Computer Systems, 2(4):277–288, November 1984.

3. M. van Steen, P. Homburg, and A.S. Tanenbaum. Globe: A Wide-Area Distributed
System. IEEE Concurrency, 7(1):70–78, January 1999.

4. G. Pierre, M. van Steen and A.S. Tanenbaum. Dynamically Selecting Optimal
Distribution Strategies for Web Documents”, IEEE Transactions on Computers,
pages 637–651, June 2002.

5. J.M.S. Wams and M. van Steen. Pervasive Messaging. In IEEE Conference on
Pervasive Computing, pages 499–504, March 2003.



A Flexible Middleware Layer for User-to-User Messaging 309

6. H.J. Wang, B. Raman, C. Chuah, R. Biswas, R. Gummadi, B. Hohlt, X. Hong,
E. Kiciman, Z. Mao, J.S. Shih, L. Subramanian, B.Y. Zhao, A.D. Joseph, and
R.H. Katz. ICEBERG: An Internet-core Network Architecture for Integrated Com-
munications. IEEE Personal Communications, pages 10–19, August 2000.

7. A. Westine and J. Postel. Problems with the Maintenance of Large Mailing Lists.
RFC 1211, March 1991.

8. C.K. Yeo, S.C. Hui, I.Y. Soon, and G. Manik. Unified Messaging : A System for the
Internet. International Journal on Computers, Internet, and Management, Septem-
ber 2000.


	1 Introduction
	2 Related Work
	3 A Taxonomy for Messaging Models
	4 The Unified Messaging Model
	5 Design of the Unified Messaging System
	5.1 Target Agents and User Agents
	5.2 Key Management
	5.3 The Content List
	5.4 Information Flow

	6 Examples
	7 Conclusions
	References

