
A Method for Decentralized Clustering in Large Multi-Agent
Systems

Elth Ogston , Benno Overeinder, Maarten van Steen, and Frances Brazier
Department of Computer Science, Vrije Universiteit Amsterdam

{elth,bjo,steen,frances}@cs.vu.nl

ABSTRACT
This paper examines a method of clustering within a fully decen-
tralized multi-agent system. Our goal is to group agents with sim-
ilar objectives or data, as is done in traditional clustering. How-
ever, we add the additional constraint that agents must remain in
place on a network, instead of first being collected into a central-
ized database. To do this we connect agents in a random network
and have them search in a peer-to-peer fashion for other similar
agents. We thus aim to tackle the basic clustering problem on an In-
ternet scale and create a method by which agents themselves can be
grouped, forming coalitions. In order to investigate the feasibility
of a decentralized approach, this paper presents a number of simu-
lation experiments involving agents representing two-dimensional
points. A comparison between our method’s clustering ability and
that of the k-means clustering algorithm is presented. Generated
data sets containing 2,500 to 160,000 points (agents) grouped in 25
to 1,600 clusters are examined. Results show that our decentralized
agent method produces a better clustering than the centralized k-
means algorithm, quickly placing 95% to 99% of points correctly.
The the time required to find a clustering depends on the quality of
solution required; a fairly good solution is quickly converged on,
and then slowly improved. Overall, our experiments indicate that
the time to find a particular quality of solution increases less than
linearly with the number of agents.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent systems; I.5.3 [Pattern Recognition]: Clustering

General Terms
Algorithms, Experimentation, Performance

Keywords
Decentralized Systems

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’03, July 14–18, 2003, Melbourne, Australia.
Copyright 2003 ACM 1-58113-683-8/03/0007 ...$5.00.

1. INTRODUCTION
Agents that wish to cooperate within a multi-agent system must

have a means of finding each other. The straightforward solution
to this problem is to create a central directory server that is able
to match requests. However, this centrally directed solution lim-
its the autonomy of agents with respect to their choice of partners,
and it limits the scalability of the multi-agent system as a whole.
Ideally agents would, on their own, be able to group together to
form cliques of like minded agents. As a result they would know
their potential partners (members of their social circle) and could
directly negotiate new partnerships based on more information than
a directory server would contain. Grouping agents in this way,
based on similar objectives, can be viewed as a clustering prob-
lem. Clustering has been studied in a variety of fields, notably
statistics, pattern recognition and data mining. These fields have
a wide range of purposes in mind, for instance discovering trends,
segmenting images, or grouping documents by subject. However,
in all of these disciplines the underlying problem is the same; given
a number of data items, create a grouping such that items in the
same group are more similar to each other than they are to items in
other groups [5]. Most algorithms for clustering focus on how to
form these groups given a file or database containing the items. Yet,
for Internet applications like finding similar web pages or finding
agents with similar interests, items can be widely distributed over
many machines and the issue of collecting the items in the first
place gains importance. Centralized clustering is problematical if
data is widely distributed, data sets are volatile, or data items can-
not be compactly represented. Decentralization, on the other hand,
is a thorny problem. Even in the centralized case where each data
item can be compared to every other data item, perfect clusters can
be hard to find. Decentralization creates the additional complica-
tion that even if a correct classification can be determined with the
incomplete information available, the location of items belonging
to a class also needs to be discovered.

This paper considers the case where classification is straightfor-
ward and focuses on the question of finding potential cluster mem-
bers in a decentralized fashion. By studying in depth a simplified
example of agent grouping we hope to gain insight into dynam-
ics that can be used to create more complex, self-organizing agent
communities. With this purpose in mind, we view clustering as a
search problem in a multi-agent system in which individual agents
have the goal of finding other “similar” agents. Agents aim to form
groups among themselves, and these groups constitute a cluster-
ing. In large scale Internet systems potentially millions of agents
are spread across possibly as many machines. As a result each
agent will always have a view of only a very small fraction of the
rest of the system. Our research is concerned with the minimal
abilities and resources required by such agents. We create an ab-

789

stract model of simplified agents which have a very small range
of actions and act using straightforward decision functions. Fur-
thermore, these agents can generally only communicate in a peer-
to-peer manner with a limited amount of additional coordination
among small groups.

We study the behavior of this abstract system through simulation
experiments. In these experiments agents are each given a two-
dimensional point and seek to group themselves based on the Eu-
clidean distance between their points. Initially agents are randomly
assigned a small number (5) of neighbor agents. These neighbors
are an agent’s only view of the system as a whole. Based on these
local views, agents form clusters with the closest points they come
across. Agents within a cluster coordinate, combining their local
views to allow each member to search a broader range of neighbors
for better matches. Clusters are limited in size by a user-defined
parameter. Once clusters have grown to this size they spilt when
better matches are found by their members, allowing stronger new
clusters to form. We find that using this method, given an appro-
priate maximum cluster size, agents are able to quickly form an
approximation of an underlying clustering in the data points. For
small systems with 2,500 to 40,000 agents in 25 to 400 clusters the
system quickly converges to a configuration in which 99% of points
are placed in the correct clusters. For a larger system with 160,000
agents and 1,600 clusters the same rapid convergence to a solution
with 95% of points placed correctly is proceeded by a tail behavior
where the solution slowly improves. Further experimental results
indicate that finding a particular quality of solution costs less than
linear time as the number of agents and clusters increases.

The remainder of this paper first discusses the application of
the clustering problem to multi-agent systems and surveys previ-
ous work. Section 3 sketches the model we study followed by a
precise description of the simulated procedure. Section 4 presents
our methodology and experimental results. A discussion of future
directions in which these experiments can be expanded concludes
the paper.

2. BACKGROUND AND RELATED WORK
Middle agents or directory services are commonly used in multi-

agent systems to enable the location of agents with particular capa-
bilities [1]. Such services, however, add an essentially centralized
component to an ideally decentralized agent world. The formation
of groups of agents based on like interests provides a potential al-
ternative for very large decentralized systems where maintaining
a directory becomes too costly. Such groups place potential part-
ners for collaboration in an agent’s immediate local environment
[3] [12]. When agents’ interests include jointly working on com-
mon tasks this process evolves into coalition formation; the negoti-
ation of agreements between agents with complementary skills for
the distribution of work and rewards [9] [14] [15]. Clustering, as
studied in this paper, is a more basic problem, yet an essential com-
ponent of the process of forming coalitions. A multi-agent system
made up of heterogenous agents that cannot somehow group sim-
ilar agents, is unable to introduce potential coalition members to
each other. Clustering, on the other hand, is usually studied as a
centralized problem. This paper surveys previous work on clus-
tering and explore how a decentralized approach can be designed
for a multi-agent system. The resulting procedure could be applied
as a directory service for multi-agent systems and can enhance our
understanding of coalition formation in general.

There are a large number of centrally controlled algorithms for
discovering natural clusters, if they exist, in a data set (see [6] for a
general review of the literature). The majority of these algorithms
focus on finding clusters given various properties of the data set;

clusters of widely differing sizes, odd cluster shapes, little sepa-
ration between clusters, noise, outliers, high-dimensional data and
complex data types for which a similarity function is difficult to
define. In general, clustering algorithms focus on creating good
compact representations of clusters and appropriate distance func-
tions between data points. To this purpose they generally need a
user to provide one or two parameters that indicate the types of
clusters expected. Most commonly, algorithms are given the num-
ber of clusters into which the data set is to be split or a density
value that defines that the expected distance between points within
clusters. Since a central representation is available, where each
point can be compared to each other point or cluster representation,
points are never placed in a cluster with hugely differing members.
Mistakes made by these algorithms instead take the form of incor-
rectly splitting a real data cluster in half or incorrectly combining
two neighboring data clusters into a single cluster. The definition of
clustering as a whole is imprecise; the creation of clusters in which
points have more in common with other cluster members than with
members of other clusters. Given the complexities listed above it
is usually not entirely clear what the “correct” clustering of a data
set is. There is generally no one best algorithm for obtaining good
clusters [5]. The appropriate algorithm depends on the peculiarities
of the data set considered.

This paper focuses on yet another complexity that must be faced
in multi-agent systems: the distribution of the data over many ma-
chines. To allow us to clearly separate the issue of decentralization
from that of hard to distinguish clusters, basic data sets in which
clusters are clearly separable, two-dimensional, of equal size and
circular in shape are considered. As these data sets do not con-
tain any of the difficulties addressed by more complex algorithms,
the clusters found by our multi-agent system are compared to those
found by Forgy k-means clustering, as described in [5]. This is the
simplest of the centralized clustering techniques. Nonetheless, it
works well on the elementary data sets examined and illustrates the
basic abilities and common mistakes of centralized clustering.

An orthogonal line of research to the quality of clustering is the
speed of clustering algorithms. The amount of time it takes to find
a clustering is crucial when considering large data sets. It is this
line of research that we build upon in this paper. K-means clus-
tering has the lowest time complexity. It chooses a set of k cluster
centers, called centriods, and compares each of the n points in the
data set to each centroid, placing each point in the cluster to which
it is closest. It then recalculates centroids based on the resulting
cluster memberships and repeats this process l times. Its time com-
plexity is thus O(nkl), however k and l are usually small compared
to n and thus it is usually considered to be O(n). K-means is a
partitional algorithm, meaning that it creates a single partition of
the data. More complex, and thus more accurate, algorithms are
generally hierarchical. They build a table of the distances between
every pair of points in the data set and use this table to create a
series of partitions, each time splitting or combing clusters based
on the next largest or smallest distance between points. However,
the construction of the distance table costs O(n2) time, making hi-
erarchical algorithms unsuitable when large amounts of data are
involved.

A number of papers have addressed ways in which to deal with
large data sets. One way of reducing the execution time is to re-
duce the space of solutions that a clustering algorithm has to search.
CLARANS [10] is a k-medoid based algorithm that uses random-
ized search. K-medoid algorithms are similar to k-means algo-
rithms except that they represent clusters by their medoids, the most
central member of the cluster, instead of their centroids, the mean
value point of the cluster. Thus for a given k it is possible to search

790

all the possible sets of k medoids. There are, however, n choose
k of these. CLARANS reduces this search space by using a ran-
domized hill climbing technique. Starting with a set of medoids it
checks at random only some of the sets that differ by one medoid
for an improvement in the clustering. This random search, when
restarted a few times in different places, is shown to produce good
clusters while increasing the efficiency over exhaustive search. An
alternative way of reducing the problem space is to consider only a
sample set of the data points. CLARA [8] makes a random selec-
tion of points before running a k-medoid algorithm. CURE [4] also
uses random sampling, combined with other techniques, to extend
the range of a hierarchical clustering algorithm. Sampling assumes
that a large enough sample contains a sufficient number of points
from each cluster, and thus needs to be given a known minimum
cluster size. BIRCH [16] also performs hierarchical clustering on
a reduced sample space. BIRCH however uses a pre-cluster phase
in which it first creates a compact summary of data points, called
a CF-tree. Nodes of the CF-tree represent high density groups of
points that are defined to be in the same cluster based on some
threshold distance. CF-tree nodes are then sparse enough to be
clustered using a hierarchical algorithm.

A second method of dealing with large data sets is to partition
them into a series of smaller problems. CURE, in addition to sam-
pling data, divides the resulting sample into partitions and sepa-
rately pre-clusters each one. The resulting sub-clusters are then
combined to create a final clustering. P-CLUSTER [7] parallelizes
k-means clustering by partitioning the data set over a network of
workstations. A server workstation determines and distributes an
initial set of centroids and combines the information on the re-
sulting clusters in each partition. It then distributes new centroid
information for the following k-means pass. Olson [13] surveys
methods of parallelizing hierarchical clustering by distributing the
calculation and storage of the distance matrix. Alternatively, den-
sity based algorithms create very fine partitions of data by placing
two points in the same cluster should they be close enough together
and in an area with sufficiently many other points. This requires
creating a data structure that can efficiently find the nearest spatial
neighbors of a point. DBSCAN [2], for example, defines clusters
as areas with a threshold density of points within a given radius and
grows clusters out from single points based on this density.

All of the above methods can be used to find clusters of similar
agents in multi-agent systems. Methods based on partitioning that
limit, or eliminate, the global data that needs to be maintained are,
nevertheless, best suited for large scale systems. The method we
present in this paper is based on the concept of creating a fine par-
titioning of points. Points are agents, giving us a high level of local
decision making capability. Two agents are defined as belonging
to the same cluster if their attributes are sufficiently similar. How-
ever, unlike density-based methods, we do not assume that agents
know of all of their spatial neighbors, as this would require a global
view of the system. Instead, agents choose cluster partners based
on the closest agents they encounter and later abandon more distant
partners in favor of new found closer ones. The decision of when
to drop partners can either be based on a minimum distance as in
density-based algorithms, or a fixed maximum cluster size corre-
sponding to the k used in k-means clustering. In this paper we fix
the maximum cluster size. Overall, this agent approach allows us
to find clusters in a fully decentralized manner. Although all data
points (or agents) are considered in our analysis of the clusters, in-
dividual agents only see a sample of the data points at any one time.
Agents work in parallel. For this reason we do not concentrate on
using resources efficiently, instead we rely on fine grain paralleliza-
tion and partitioning to allow us to handle very large data sets.

3. AGENT PROCEDURE

3.1 General Model
In our model agents are characterized by their attributes, and can

thus be defined, for the purpose of clustering, as a set of data items.
Each agent has a small number of links to other agents. These links
represent communication channels and thus define the neighbor-
hood of each agent. The aim of the system is for the agents to rear-
range these links and to select some of them to form connections or
connected links between agents, generating a graph of connections
corresponding to a clustering.

The creation of initial links is a bootstrapping problem; we as-
sume they are derived from the placement of agents in a network, or
some other application-dependent source, and model them as a ran-
dom network. In our simulations each agent starts out a cluster of a
single item with links to some other randomly chosen agents. As a
simulation progresses, agents pick some of their links to become
matches, or matched links based on the similarity of the agents
joined by the link. Clusters choose the best of these matches pro-
posed by their agents to become connections. Agents joined by a
path of connected links form a single cluster.

The creation of connected links allows clusters to expand, but
the initial clusters formed in this way are very poor. They repre-
sent the best clusters agents can see in an extremely limited local
view. We give agents two behaviors that are used to improve clus-
ters. First, agents in a cluster combine their individual pools of
links, widening their individual neighborhoods. This allows them
(still individually) to pick better matched links as candidates for
cluster membership. Additionally, to prevent agents conglomerat-
ing into one large cluster, a limit is placed on cluster size. A fur-
ther procedure then allows clusters to break weaker connections,
enabling them to upgrade stronger available matches into connec-
tions. Since connections are between agents, breaking a connection
splits a cluster, but leaves other stronger agent pairs connected in
the resulting clusters.

In previous research we concentrated on the matchmaking abil-
ities of this model [12, 11]. Following this work, we represent the
search for good matches between similar agents as a matchmak-
ing problem among agents’ short-term objectives. Internally each
agent is considered to have a main attribute that describes its basic
characteristics. We would like to cluster agents according to these
attributes. Each agent further contains a number of objectives, or
current goals based on its attribute. In the experiments in this paper
an attribute is abstracted as a two-dimensional point. Objectives
are also represented by points, chosen as a function of their agent’s
attribute. Objectives thus form a cloud of points around an agent’s
central attribute. For two-dimensional points objectives simply ex-
tend an agent’s range of influence. For higher dimensional data or
complex data, on the other hand, objectives can be chosen to reduce
dimensionality and thus reducing the cost of checking for matches.
For instance, an objective could be only one of many tasks that an
agent needs to complete to reach a final goal. Figure 1 shows a
diagram of two clustered agents. Figure 2 shows the links between
all agents in a small system containing four clusters of ten points
each.

Note that agents pick matches, since they are best able to deter-
mine how closely related their objectives are to other agents’ ob-
jectives. Clusters, however have a wider view of relative closeness
on the attribute level since they contain a larger number of matched
and connected links. Thus clusters have a stronger basis on which
to choose connections to make and break.

Multi-agent systems are often described in terms of their agents’
individual behaviors. Along these lines, we can summarize the

791

Figure 1: A diagram of two clustered agents.

Figure 2: A diagram of a small system.

above agents as having the goal of finding good matches for their
objectives. We would like the individual goals of these agents,
along with the local coordination provided by cooperation within
the clusters, to result in the overall system self-organizing into a
grouping of agents based on their attributes. In this paper we fo-
cus on the nature of this collective clustering behavior. For this
reason agents are limited to having very simple decision processes.
This allows us to highlight the basic clustering behavior and gives
us a good foundation on which to study more complex agents that
might be used in real applications. This paper does not discuss
the exact communication required within clusters. We studied this
problem for the small clusters in [11], larger clusters require further
research.

An example application for which our approach could be used
is the classification of text documents spread over the web. Agents
could each represent one document, with initial links created by
references within the documents, or the storage location of the doc-
uments on web servers. Agents could choose matches for their
documents based on the number of words they have in common, or
on important keywords. These matches could then be presented to
clusters along with normalized values indicating the agent’s belief
in the similarity of the documents. Clusters themselves would then
represent queries to find documents similar to one of their mem-
bers, and could be limited in size based on a suitable number of hits
for such a query to return. In a more complex application agents
could represent people, links acquaintances, matches how much
time two people spend together, and clusters cliques of friends. For
now, however, we shall limit ourselves to the more mundane world
of 2D spatial data points.

3.2 Simulation Definition
Our objective is to examine the ability of a multi-agent system

to find clusters in a set of points P = {x1, . . . ,xn}. A set of n agents
A = {a1, . . . ,an} is created. Each agent ai has as its attribute the
point xi in P. The agents are connected by links, forming a graph
G = (V,E) where the nodes are agents and the edges are links. We
stipulate that each node in the graph G has the same degree δ . The
interaction of the agents will change the edges in G, and eventually
yield a new graph G∗ = (V,E∗). Connected components in G∗ will
correspond to clusters of P.

The procedure is as follows. Each agent ai is given a set Wi of
δ objectives, which are points (not necessarily in P) chosen as a
function of xi. Note that in the experiments presented in this paper
we use δ = 5 and all objectives of an agent ai are simply given the
value of the agent’s attribute, xi. To initiate the system we chose
for each objective ωi ∈Wi an objective ω j ∈Wj of a different agent
uniformly at random in such a way that no objective is paired twice.
This pairing of objectives leads to an initial set of unmatched links,
denoted as E−

0 . The initial set of matched links, denoted as E+
0 ,

is set equal to the empty set. The initial set of connected links,
E∗

0 , is also empty, indicating that to begin with each agent forms a
cluster of size 1. From this position we proceed in turns, each turn t
consisting of the following four steps. Some of these steps contain
functions, which will be defined later.

Step 1 (Connecting): Clusters choose some of their matched links
from E+

t to become connected links using a rule rc. Together
with all links from E∗

t this forms the edge set E∗
t+1. Note that

a connected link remains in E+
t .

Step 2 (Mixing): Each cluster Ci has a set of unmatched links ad-
jacent to it, given by

E−
t (Ci)= {(ω,ω ′)∈E−

t : ω is an objective of an agent in Ci}.
Each cluster mixes its objectives that are adjacent to an un-
matched link in E−

t (Ci), using a random permutation. After
each cluster has completed this mixing procedure, a new set
of unmatched links is obtained which is denoted by E−

t+1.

Step 3 (Matching): All agents test their unmatched links
(from E−

t+1) using a turn-dependent matching probability
p+

t (ω,ω ′). More precisely, an unmatched link (ω,ω ′) will
become a matched link with probability p+

t (ω,ω ′) and will
remain unmatched with probability 1− p+

t (ω,ω ′). The new
matched links together with E+

t form E+
t+1, and are taken

out of E−
t+1.

Step 4 (Breaking): Clusters choose some of their matched links
from E+

t+1 to be broken, downgrading them to unmatched
links and adding them to E−

t+1, according to a breaking prob-
ability pb. Each broken link is then removed from the set
E+

t+1. If a link to be broken is also a connected link, it is also
taken out of E∗

t+1.

The connecting, mixing and breaking steps must be done collab-
oratively by a cluster as a whole, while the matching step can be
done separately by each of a cluster’s agents. In our simulations, to
simplify operations within in a cluster, we elect one cluster agent
to perform the collaborative steps. Over many turns the mixing and
matching steps above create a search for matches among the objec-
tives of neighboring clusters. The connecting and breaking steps
result in clusters forming and changing over time.

To determine p+
t (ω,ω ′) each agent maintains a range, which

it continuously adjusts as follows. Let Ri
t denote the range of ai

792

for turn t. The agent ai considers M distances between objectives
ω ∈ Wi and ω ′ ∈ Wj presented to it in the matching step. This
might take several turns. After the M distances have been observed
let σ be the smallest observed value. If Ri

t ≥ σ , the agent forgets
its distances and starts collecting M new distances. Meanwhile Ri

t
stays the same. On the other hand, if Ri

t < σ , the range is gradu-
ally increased in the next M turns by a fixed fraction (σ −Ri

t)/M.
However, if after say m turns, the agent is presented with a distance
σ ′ smaller than the current σ , it repeats the test Rt

i ≥ σ ′ and follow
the above procedure from that point on. The above procedure in-
creases the range of the agent ai. To decrease it, when a match is
made the range is set to the distance of this match. In our experi-
ments, M = 100.

For each turn t, we now let p+
t (ω,ω ′) = 1−d(ω,ω ′)/Rt . Here,

d(ω,ω ′) denotes the Euclidean distance between ω and ω ′, and
Rt = max{Ri

t ,R
j
t }, if ω ∈Wi and ω ′ ∈Wj .

The rule rc is defined as follows. Let the strength of a matched
link (ω,ω ′) be defined as 1/d(ω,ω ′). All current matched links
in the cluster, that are not connected, are first ordered according to
their strength. We then proceed to create connections, starting with
the strongest. A connection is created if the resulting cluster is not
larger than a size limit L. Once a connection cannot be formed
because of this size limit no more connections are formed. In the
experiments in this paper L = 150.

To define the breaking probability we need a speed parameter λ .
Consider a cluster C consisting of NC agents. Each turn the cluster
has a probability of breaking one of its links given by: pb(C) =
λNC/L. The cluster chooses which link to break out of its set of
matched links, E+(C), according to the following formula. Let
s(l) denote the strength of the link l, and let sC

max be the maximal
strength of a matched link in C. The weight of a link is defined as:

w(l) = (
1

s(l)
− 1

sC
max

)2.

The probability of the cluster choosing a link l is then given by:

pb(l) =
w(l)

∑l′∈E+(C) w(l′)
.

4. EXPERIMENTAL RESULTS

4.1 Experimental Methodology
The following experiments cluster data sets of varying numbers

of points. These data sets are generated according to the proce-
dure described in [16]. Each data set consists of K clusters of 2-
dimensional data points. A cluster is characterized by the number
of points per cluster (nlow = nhigh = 100) and the cluster radius
(rlow = rhigh =

√
2). The grid pattern is used, which places the

cluster centers on a
√

K×√
K grid. The distance between the clus-

ters is controlled by kg, which is set to 8. The noise parameter is
set to 0. This creates a grid of well separated, circular, 2D clusters
with 100 points each and equal density.

Four data sets are generated with 25, 100, 400 and 1600 clus-
ters labelled 5× 5, 10× 10, 20× 20, and 40× 40 respectively. A
corner of the 20×20 data set is shown in Fig. 3. We compare the
quality of clusters found by our method to the generated clusters
(perfect case), a set of clusters of the correct size but with ran-
domly assigned points (random case) and the clusters generated by
the Forgy k-means algorithm as described in [5], given the correct
value of k, initial centers picked uniformly at random from all the
points, and run until no further improvement in clustering is found.

Several measures of cluster quality are compared. First, the total
square error metric, E2, which is used by the k-means algorithm.

Given k clusters C1, . . . ,Ck, where Ci has a mean value mi for 1 ≤
i ≤ k,

E2 =
k

∑
i=1

∑
x∈Ci

‖x−mi‖2.

Total square error gives an easily computed measure of the com-
pactness of clusters, but in doing so favors small clusters. In fact,
clusters with a single point have a square error of zero and thus
the total square error alone cannot be used to compare clusterings
of a data set with different numbers of clusters. Total square error
also cannot be used to compare data sets of different sizes. The
more points there are in a data set and the larger the range over
which the data set is spread, the larger the total square error. The
weighted average cluster diameter used by Zhang et al. [16], gives
an alternative measure of the compactness of clusters. The aver-
age pairwise distance for a cluster C with points P = {x1, . . . ,xn}
is given by:

D =
∑n

i=1 ∑n
j=i d(xi,x j)

n(n−1)/2
,

where d(xi,x j) is the Euclidean distance between xi and x j . The
weighted average cluster diameter for k clusters is then give by:

D =
∑k

i=1 ni(ni −1)Di

∑k
i=1 ni(ni −1)

.

While this measures scales with the number of data points and
the number of clusters it also favors smaller clusters and does not
account for singleton clusters.

Jain and Dubbes [5] describe several measures for comparing
two clusterings of the same data by creating a contingency ma-
trix which lists the number of points in common between each pair
of clusters, between the two clusterings. These measures consider
cluster membership, rather than the distance over which clusters are
spread. We use this method to compare our experimental cluster-
ings to the perfect clusterings produced by the generator. The Rand
statistic [5] sums the number of pairs of points that are correctly
placed in the same cluster and the number of pairs of points that
are correctly placed in different clusters and normalizes by the total
number of possible pairs. However, for our data sets which have
many small clusters, the number of pairs correctly placed in differ-
ent clusters dominates. Thus we also use the contingency matrix
to calculate the number of points incorrectly placed by associat-
ing with each real cluster the found cluster with which it has the
most points in common. We sum the number of common points
over all real clusters and subtract from the total number of points
to get the points that are out of place. This gives a clearer distinc-
tion between clusterings that are close to, but not quite, correct. On
the other hand it does not distinguish clusters that are incorrectly
grouped into a single cluster. It also can count up to half of the
points in a real cluster as incorrectly placed if that cluster is simply
split in two.

4.2 Types of Clusters Found
Figure 3(a) shows the clusters found by our agent procedure in a

sample run, for a section of the 10× 10 cluster grid. Figure 3(b)
shows, for comparison, the clusters found by an example k-means
run. Both methods were given the correct input parameters. The
agent-based procedure used a maximum cluster size, L, of 150 and
λ = 0.3 The k-means algorithm was run with k = 100. Overall
both methods found the correct number of clusters, meaning that
k-means did not loose any, which is possible, and that our agents
adjusted to the correct cluster size of 100 instead of staying at the
maximum size of 150. Total square error for the k-means run was
126,889 versus 20,372 for the agent-based method.

793

(a) Clusters produced by the agent-based procedure. (b) Clusters produced by the k-means algorithm.

Figure 3: Agent-based and k-means clustering results.

Figure 4: Clusters containing the point X (shown in turn 1000) over time.

The graphs in Figure 3 show the typical mistakes made by each
method. At point A our method has associated a point with a neigh-
boring cluster instead of with the correct cluster. This can happen
when a point has joined the correct cluster, but has been broken
off again due to the randomness of the breaking function. Gener-
ally these points reattach, though they can spend some time as a
member of a neighboring cluster. Thus at any point in time after
clusters have been found, several such mistakes are likely to exist.
This type of mistake can also occur when a point simply does not
find its correct cluster. This results in clusters with one or a small
number of agents that can take a long time to discover their cor-
rect group. This problem is related to the speed factor, λ , in the
breaking function, as discussed in Section 4.3. We see in Figure 3a
that the k-means algorithm, by contrast, makes very different types
of mistakes. At label B it has incorrectly joined two clusters into
one, and at label C it has incorrectly split a cluster in two. This can
occur when two initial centroids are chosen from the same cluster.
This cluster then becomes split, but somewhere else two clusters
need to be joined to maintain k. When there are large numbers of
clusters it is likely that two initial centroids will be chosen from the
same cluster. There are heuristic methods of choosing better initial
centriods, however a perfect choice would amount to knowing the
correct clustering a-priori.

Figure 4 shows how the cluster containing the point X develops
over time for the 20 × 20 cluster data set. Notice how the clus-
ter is initially wide spread and contracts over time. Also notice
that the cluster when expanded stays near its maximum size of 150
agents but that once it has contracted it adjusts to the correct size of
100 agents. In other experiments we found that agent clusters will
adjust to the largest real cluster size under their maximum size.
Thus when L=199 points, agents can correctly find clusters of 100
points but a size limit of 200 points will result in the combination
of neighboring real clusters to create 200 point agent clusters. If the
maximum cluster size is too small, data clusters become split into

two or more neighboring areas, in much the same way as clusters
are accidentally split in the k-means algorithm.

4.3 Rate of Finding Clusters
Figure 5 shows the total square error as a function of time for

several example runs on the 10× 10 data set. Time is measured
in turns as defined in Section 3.2. The total square error, E2, be-
gins high when clusters are spread out, (though it is initially 0 as
all clusters begin at size 1) but rapidly converges to near its opti-
mal value. This convergence is followed by a tail behavior where
clusters improve slowly until an equilibrium is reached. Note that
E2 does not precisely correspond to the quality of clusters. A bet-
ter clustering can have a higher E2 than a worse one, and during
the tail there is a period where E2 remains approximately constant
while the clustering is actually improving slowly.

Figure 5 depicts the convergence for several values of the speed
parameter, λ , used in the breaking function. Figure 5(a) shows that
increasing λ increases the rate of convergence. However Fig. 5(b)
shows that λ also effects the stability of the equilibrium found in
the tail. A slower speed results in more stability. λ = 1.5 results
in the lowest E2 value, but this is because many small clusters are
created. The run with the most stable equilibrium, λ = 0.15, is also
the one with the best clustering. This can be seen by comparing the
distribution of cluster sizes for λ = 1.5 and λ = 0.15 in Fig. 6.

From Fig. 6, which shows the distribution of cluster sizes at turn
5000 for two sample runs, it is apparent that the solution found
when λ = 1.5 has a large number of very small clusters. This oc-
curs when initial clusters contract too quickly. It is then possible for
small sets of agents to become isolated. Since these sets of agents
are quickly broken off of any neighboring cluster they join, they
never gets the benefit of the wider view available in a large cluster.
Thus, they can take a very long time to find their parent clusters.
For the remainder of our experiments we use λ = 0.3 as it repre-
sents a good balance between rapid convergence and quality of the
end solution.

794

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

1.6e+07

1.8e+07

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

E
2

turn

λ = 1.5
λ = 0.6
λ = 0.3

λ = 0.15
λ = 0.015

(a) Square error over time.

16000

17000

18000

19000

20000

21000

22000

23000

24000

4000 4100 4200 4300 4400 4500 4600 4700 4800 4900 5000

E
2

turn

λ = 1.5
λ = 0.6
λ = 0.3

λ = 0.15
perfect clustering

(b) Tail of Fig 5(a).
Figure 5: Square error over time for different speeds (λ).

0

20

40

60

80

100

0 20 40 60 80 100 120 140 160

nu
m

be
r

of
 c

lu
st

er
s

cluster size

λ = 1.5

0

20

40

60

80

100

0 20 40 60 80 100 120 140 160

nu
m

be
r

of
 c

lu
st

er
s

cluster size

λ = 0.15

Figure 6: Distribution of cluster sizes: λ = 1.5 and λ = 0.15 .

4.4 Increasing System Size
Figure 7 shows how the speed of convergence changes as sys-

tem size increases. In this figure we plot, per time, square error
normalized by the number of data points, N, and the area, A over
which those data points are spread. Each data set represents an
averaged value over 50 trials. The different test data sets are gen-
erated with 5×5, 10×10, 20×20, and 40×40 clusters, and thus
with 2,500, 10,000, 40,000 and 160,000 points. We consider the
smallest data set, 5×5, to have and area of 1. The larger data sets,
10× 10, 20× 20, and 40× 40, thus have an A = 4, 16, and 32 re-
spectively. The number of points in a cluster is kept constant when
increasing system size. Preliminary experimentation suggests that
agent-based clustering of systems with the same number of points
but different numbers of clusters, possibly produces different be-
havior. A few large clusters are much easier to find than a large
number of small clusters.

Figure 7 shows that while larger systems continue to converge
rapidly, their improvement phase becomes more drawn out. Fig-
ure 8 shows the tail behavior of the data sets in Figure 7. Here E2

is normalized only by N, hence 〈E2〉 = E2/N, since in all of the
data sets real clusters are equally far apart and thus 〈E2〉 for the
perfect clusters is about the same. In Fig. 8, the average square er-
ror, 〈E2〉, arrived at its equilibrium value for the 2,500, 10,000, and
40,000 agent data sets, while for the 160,000 agent data set 〈E2〉 is
still slowly improving. There is a small increase in the equilibrium
value of 〈E2〉 for larger data sets.

Figure 9 graphs the time it takes to reach certain values of 〈E2〉,
again averaging 〈E2〉 over 50 trials for each point. This shows more

clearly that better quality solutions take increasingly more time to
find as the number of points increases. In general, however, the cost
of reaching a particular solution quality grows less than linearly
with system size. This is an improvement on the linear costs of the
k-means algorithm. Table 1 lists all the statistics for the different
system sizes, run for 5000 turns with 50 trials for each data set,
compared to the k-means algorithm run 100 times for each data
set, the values for perfect clusterings, and the values for random
clusterings. While the agent-based clustering system usually does
not find the perfect clusterings, it consistently improves upon the
clusters found by the k-means algorithm. For smaller systems it
places more than 99% of the points correctly and for the larger
system, which was still improving, it places at least 95% of points
correctly.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

<
E

2 >
/A

turn

5x5
10x10
20x20
40x40

Figure 7: 〈E2〉/A for different system sizes.

 0

 2

 4

 6

 8

 10

 4000 4100 4200 4300 4400 4500 4600 4700 4800 4900 5000

<
E

2 >

turn

5x5
10x10
20x20
40x40

Figure 8: 〈E2〉 for the tail of Figure 7.

5. CONCLUSION AND FUTURE WORK
The experiments reported in this paper indicate that decentral-

ized agent systems can indeed be used to find clusterings of large
data sets in a reasonable amount of time, and with surprisingly
good quality. Our method contains two parameters, the maximum

795

number of clusters E2 〈E2〉 D Rand points out of place % total
number of points (agents) min avg max min avg max avg min avg max avg min avg max avg

PERFECT CLUSTERINGS

2,500 25 5044.03 2.02 1.79 1 0 0
10,000 100 19662.99 1.97 1.77 1 0 0
40,000 400 79350.99 1.98 1.77 1 0 0

160,000 1600 315993.13 1.97 1.77 1 0 0
RANDOM CLUSTERINGS

2,500 25 25 25 1.27E+06 1.27E+06 1.28E+06 509.64 28.86 28.96 29.06 0.92354 2272 2289.61 2304 91.58
10,000 100 100 100 2.09E+07 2.09E+07 2.09E+07 2090.38 58.58 58.69 58.78 0.98030 9560 9576.37 9590 95.76
40,000 400 400 400 3.37E+08 3.37E+08 3.38E+08 8429.88 117.76 117.86 117.97 0.99504 38920 38943.87 38978 97.36

160,000 1600 1600 1600 5.40E+09 5.40E+09 5.41E+09 33773.95 235.79 235.90 236.01 0.99876 156744 156772.57 156811 97.98
KMEANS: k=100

2,500 23 24.87 25 17465.77 29131.18 43853.31 11.65 3.14 4.13 5.75 0.98508 57 146.30 235 5.85
10,000 97 99.22 100 88574.80 119873.85 162271.79 11.99 3.55 4.20 5.13 0.99617 368 576.88 857 5.77
40,000 392 396.78 400 412300.88 485795.34 564576.17 12.14 3.87 4.25 4.66 0.99903 1939 2327.25 2730 5.82

160,000 1580 1588.54 1598 1778912.79 1923502.03 2083301.02 12.02 4.02 4.22 4.43 0.99976 31369 34398.64 37667 21.50
AGENTS: L = 150, λ =0.3

2,500 25 25.04 26 5044.03 5204.59 5553.44 2.08 1.79 1.80 1.82 0.99987 0 2.02 7 0.08
10,000 100 100.02 101 20214.65 21204.09 23030.86 2.12 1.78 1.79 1.81 0.99995 6 12.42 24 0.12
40,000 399 400.3396226 407 87979.07 98732.89 172885.77 2.47 1.80 1.83 1.95 0.99998 46 104.13 216 0.26

160,000 1610 1625.613636 1647 1057818.08 1172274.08 1368215.61 7.33 2.59 2.70 2.82 0.99990 6320 7123.93 7996 4.45

Table 1: Experimental data summary.

0

500

1000

1500

2000

2500

3000

3500

4000

0 20000 40000 60000 80000 100000 120000 140000 160000

tu
rn

s

N

<E2> < 2.5
<E2> < 5
<E2> < 10
<E2> < 100

Figure 9: Time to reach various 〈E2〉 values with increasing
systems size N.

cluster size and the speed at which clusters break, that can be ad-
justed to trade off knowledge of the data set and time for cluster
quality. Agent clusters show an ability to adjust their size to the
size of underlying data clusters, and to learn the appropriate range
for matching. This demonstrates how using rational autonomous
agents, which can modify their decision making criteria over time,
can be advantageous in the clustering problem. It might also be
possible to program agents to learn appropriate cluster sizes by
watching the series of links they make and break, or to adjust the
rate at which clusters change over time based on the current clus-
ter quality. In this manner, agents might be able to find clusters of
varying size, shape and density, thus tackling the issues addressed
in more advance clustering algorithms.

The agents studied are extremely simple and clustered straight-
forward data sets. However, they demonstrate the basic dynamics
of forming clusters based on similarities between agent attributes.
For more complex data types, such as text or agent personalities
we need only replace the matching function. Exact distance func-
tions may not exist in these cases, however the probabilistic nature
of the agents’ behavior should tolerate a less precise definition of a
“match”. How well this works in practice must be determined by
future research. However, some such form of decentralized agent
grouping may in the future provide the basis for peer-to-peer direc-
tory services.

Acknowledgments
This research is supported by NLnet Foundation, http://www.nlnet.nl.

6. REFERENCES
[1] Decker, K., Sycara, K., and Williamson, M.: Middle-Agents

for the Internet. Proceedings of the 15th International Joint
Conference on Artificial Intelligence (1997). 578-583

[2] Ester, M., Kriegel, H., Sander, J., and Xu, X.: A
Density-Based Algorithm for Discovering Clusters in Large
Spatial Databases with Nose. Second International
Conference on Knowledge Discovery and Data Mining
(1996) 226–231

[3] Forner, L.: Yenta: A Multi-Agent, Referral-Based
Matchmaking System. The First International Conference on
Autonomous Agents (1997) 301-307

[4] Guha, S., Rastogi, R., and Shim, K.: CURE: An efficient
clustering algorithm for large databases. Information System
Journal, Vol 26, No. 1, (2001) 35-58

[5] Jain, A., and Dubes, R.: Algorithms for Clustering Data.
Pentice-Hall advanced reference series. Prentice-Hall, (1988)

[6] Jain, A., Murty M., Flynn, P.: Data Clustering: A Review.
ACM Computing Surveys, Vol 31, No. 3, September (1999).
264-322

[7] Judd, D., McKinley, P., and Jain A.: Large-Scale Parallel
Data Clustering. IEEE Transactions on Pattern Analysis and
Machine Intelligence. Vol 20, No. 8. August (1998). 871-876

[8] Kaufman, L. and Rousseeuw, P.: Finding Groups in Data: an
Introduction to Cluster Analysis, John Wiley and Sons
(1990)

[9] Klusch, M. and Gerber, A.: Dynamic Coalition Formation
Among Rational Agents. IEEE Intelligent Systems. Vol 17,
No. 3 (2002) 42-47

[10] Ng, R., and Han, J.: Efficient and Effective Clustering
Methods for Spatial Data Mining. Proceedings of the 20th
VLDB Conference, (1994) 144-155

[11] Ogston, E.,Vassiliadis, S.: A Peer-to-peer agent auction. First
Int. Joint Conference on Autonomous Agents and
Multi-Agent Systems (2002) 151-159

[12] Ogston, E.,Vassiliadis, S.: Matchmaking Among Minimal
Agents Without a Facilitator. Proc. of the 5th Int. Conference
on Autonomous Agents.(2001) 608–615

[13] Olson, C.: Parallel Algorithms for Hierarchical Clustering.
Parallel Computing 21, (1995) 1313-1325

[14] Sandholm, T. and Lesser, V.: Coalition Formation among
Bounded Rational Agents. 14th International Joint
Conference on Articial Intelligence (1995) 662-669

[15] Shehory, O. and Kraus, S.: Task Allocation via Coalition
Formation among Autonomous Agents. Proceedings of the
Fourteenth International Joint Conference on Artificial
Intelligence (1995) 655-661

[16] Zhang, T., Ramakrishnan, R., Livny, M.: BIRCH:A New
Data Clustering Algorithm and Its Applications. Data
Mining and Knowledge Discovery, 1(2) (1997) 141–182

796

