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ABSTRACT 
In most of  today's agent systems migration of  agents requires 

homogeneity in the programming language and/or agent platform 
in which an agent has been designed. In this paper an approach is 
presented with which heterogeneity is possible: agents can migrate 
between non.identical platforms, and need not be written in the 
same language. Instead of migrating the "code" (including data 
mud state) of an agent, a blueprint of  an agent's functionality and 
its state is transferred. An agent factcqry generates new code on the 
basis of  this blueprint. This approach of generative mobility not 
only has impfications for interope~abifity but also for security, as 
discussed in this paper. 
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1. INTRODUCTION 
In a global, distributed computer infrastructure, in which the In- 

ternet provides connectivity, mobile agents are seen as a promising 
computational approach to dislributed computing, resource man- 
agement, and security. 

Mobile agents allow for computations to dynamically adapt to 
a changing environment, for example, by migrating from one ma- 
chine to another. The decision to migrate is most oftem taken au- 
tonomonsly by the mobile agent itself. The ability of migration 
provides mobile agents a means to overcome the high latency or 
limited bandwidth problem of  traditional client-server interactions 
by moving the computation to required resources or services. The 
current evolution of intelfigent and active networks in system and 
network management, for example, is based on this technology. A 
similar tendency is observed in the search and filtering of glob- 
ally available information such as in the electronic marketplaces, 
e-commeree, and information retrieval on the World Wide Web [8]. 

To support agent mobility a distributed system needs provisions 
to physically migrate units of computation at runtime. This migra- 
tion includes relocation of an agent's code base and state to another 
platform. Cede and state migration is a complex task with techni- 
cal complications such as binary inenmpatibifity of two heteroge- 
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neous platforms. The current solution to migration of active units 
of  computation is to provide homogeneous platforms, either phys- 
ically such that binary checkpoints can he restarted at another lo- 
cation, or virtually by using virtual machines, e.g., the Java Virtual 
Machine, providing a machine independent platform. The homo- 
geneity requirement, physical or virtual, is a strong requirement: 
mobility is otherwise impossible. 

• Another important issue in mobile agents technology is security. 
In most current systems trust in the owners and in the machines 
on which an agent has previously run, are the basis for a security 
model. Code signing and certificates are the techniques used to this 
purpose. 

This paper presents a completely new approach to agent mobil- 
ity. Not the code migrates, but an agent's blueprint and state. A 
receiving platform regenerates a mobile agent as it migrates to its 
new location. Homogeneity is no longer required: an agent pro- 
grammed in Java can be transformed to, for example, a Python ~m- 
plementafion of the agent with the same functionality. Trust in an 
agent coming from another machine increases considerably if  the 
receiving platform uses its own trusted components to reconfigure 
an agent. 

Section 2 discusses mobility of processes and agents in more 
detail. Section 3 describes the concept of an agent factory. Hetero- 
geneous migration based on this concept is the topic of Section 4. 
Implications of this approach for heterogeneous migration and se- 
curity are discussed at more length Section 5. Section 6 sums up 
the results and proposes future research. 

2. BACKGROUND 
An agent in a mobile agent system is typically associated with a 

unit of computation which resides in the lower layers of a virtual 
machine. A unit of computation is composed of the code describing 
its behaviour, the data associated with it, and its execution state. 
Mobile agent systems allow migration of  the whole unit or a part 
thereof, i.e., one or more of the three constituents mentioned above. 
The most relevant differences among existing systems fie exactly in 
what is moved and how [18]. 

A distinction can be drawn based on whether the execution state 
is migrated along wRh the unit of computation or not. Systems 
providing the former option are said to support strong mobility, 
as opposed to systems that discard the execution state across mi- 
gration, and are hence said to provide weak mobility. In systems 
supporting strong mobility, migration is completely transparent to 
the migrated program, whereas with weak mobility, extra program- 
ruing is required in order to manually save part of the execution 
state. 

Strong mobility as found in NOMADS [22], Ara [16], and 
D'Agents  [7], requires that the entire state of the agent, includ- 
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ing its execution stack and program counter,  is saved before the 
agent is migrated to its new location. This  process of  saving the 
entire state of  an executing process is called ched~ointing. A n  im- 
portant  quality of  strong mobi l i ty  is t ransparent  migrat ion of  the 
running process. Tha t  is, the agent  is not  aware of  the migrat ion 
and bindings to othex agents and objects are Ixanspmently resolved, 
i.e., references to agents and objects arc location independent.  The  
check-point/migration facility can be  ei ther  implemented  at the op- 
erating system level [10, 15, 9] or  can  be  incorporated within the 
virtual machine  of  all interpreted language (e.g., within the Java 
Afirtual Mach ine  [22])~ 

Despi te  the advantages of  strong mobility, many agent systems 
support  weak mobil i ty (l ike Ajan ta  [23] and Aglets [11]). Mos t  of  
the agent  systems m'e implemented  on  top of  the Java NFtrtual Ma-  
chine (JVM), which  provides wi th  object  serialization basic mech-  
anisms to implement  weak  mobili ty.  The  J V M  does not  provide 
mechanisms to deal wi th  the execut ion state. 

Agen t  mobil i ty is. in  general, mos t  easily real ized in homoge-  
neous environments .  For  s trong mobi l i ty  with  cbeckpoint /migra-  
lion incorporated at  the operat ing sys tem level, agent  mobil i ty is 
l imited to identical  compu tm architectures running  the same oper- 
ating system. Agent  mobil i ty  facilit ies implemented  at the virtual  
machine  level makes  the migra t ion of  agents machine  independent,  
but  is still homogeneous  in language,  i.e., only migrat ion of  agents 
f rom Java to Java platforms.  

Migrat ion o f  mobi le  agents does not  need  to be  constrained by  
homogenei ty  of  code bases  and platforms.  Agents  can be migrated 
across heterogenenus code bases and  platforms by reconfigurat ion 
of  the agents upon  arrival at a new location. Blueprints  o f  the func-  
tionality of  an agent  m'e the basis of  the migration.  At  a new loca- 
tion, the agent  is regenerated according to this blueprint  using com-  
ponents '  specific to the local agent  platform. The  funct ional  com-  
ponents  can be f rom anothar  code base  thnn the originat ing agent, 
but also the agent  pla t form can differ,, hence  interopesabili ty be- 
tween agent  platforms c , -  be  realized.  The  next  sect ion describes 
the means wi th  which  this can b e  achieved: an agent factory. 

3. A G E N T  F A C T O R Y  A P P R O A C H  
Assuming  agents have  a composi t ional  structure described by 

their blueprints, building a ,  agent  is, in  fact, a configuration task: 
a. task that can be automated.  Au tomated  (re-)design of  agents is 
the task of  an agent  factory [3]. This  sect ion describes an existing 
agent  factory, one  o f  the services o f  the AgentScape  framework. 

Section 3.1 defines the concept  of  blueprints  in more  detail. 
Section 3.2 discusses characterist ics o f  an agent  factory, and Sec- 
tion 3.3 describes a current  prototype of  this agent  factory. 

3.1 B l u e p r i n t s  
In the fol lowing discussion,  i t  is assumed that agents are de- 

signed to have a composi t ional  structure. A blueprint  is a h igh  
level specification of  the functionali ty and operational  semantics  of  
an agent. The  specification describes the behav iour  of  an agent in 
terms of  its basic bui lding blocks: components ,  control  flow and 
data flow. The  result ing b l u c p ~ t  is expressed in a h igh  level spec- 
ification language: the bluepr int  language.  (The bluepr int  speci- 
f ication-language is somewhat  s imilar  to, for example, Very High  
Design Language  (VI-IDL) used in VLSI  design.)  

Agent  factories i n ~ p r e t  the agent  b luepr int  and generate exe- 
cutable code from, for example,  Java, Python,  or C components .  
By interpreting the bluepr int  language a , d  genexating executable  
code, agent  factories conceptual ly provide a h igh  level virtual ma-  
chine for the blueprint  agents. The  operat ion of  agent  factories can 
to some extent be  compared  with Java  to nat ive machine  code corn- 

pilers. For  example,  at mxival at a host, a mobi le  Java agent  can  be  
compi led  to native machine  code using the Java class implementa -  
tions f rom the local repository. An  agent  fac tmy is more  flexible 
than a "s tandard"  interpreter, as the agent  factory is able to generate  
new blueprints  for new agents, using knowledge bases.  

T h e  concept  o f  a building block is used to descr ibe the compo-  
nents  within an agent 's  blueprint  at two levels o f  abstraction:  con-  
ceptual  and detailed/operationaL At  each  level of  a b s t n c b o n  the 
behaviour  o f  the agent  is described. Some  bui lding b l o c h  contain 
open  slots, others are fully specified and operational .  Bo th  define 
their funct ional i ty on  the basis of  t l~i r  i n t e r f a~s .  Open  slots define 
the interfaces o f  the building blocks to be  inserted. 

Depending on availability and d£tmaiu of  application librm'ies 
of  bui lding blocks may  include: partial agent  designs ( d .  Keueric 
modeis /des ign patterns [5, 17, 19]), knowledge-based models  (e.g., 
p rob lem-so lv ing  models  [21] or genet ic  task models  [2]), agent-  
wrappm-s (providing cross p la t form intmfaces)  (e.g., AgentScape,  
Zeus  [13], massage  parsing Ajanta  [23]), ©t cetera. Bui ld ing  blocks 
may  be  writ ten in, e.g., UML,  Python,  C++, CommonKads ,  etc. 

3.2 C h a r a c t e r i s t i c s  o f  a n  a g e n t  f a c t o r y  
Whethe r  the need  for ~ - ~ o u  is identified by  an agent  itself, 

or by another  agent,  is irrelevant in  the context  o f  thiJ paper. An  
agent  factory s imply conslructs  new agents and/or  modifies exist ing 
agents [3]. The  (re-)design of  agents is fully n n t c ~ , t ~ 4  wi th  very 
limited integaction with Ontsigle par t i~ .  Yhc coRc~pt o f  an agent  
factory requires (i) agents to have a composi t ional  strm:ture, (it) one  
or  more  libraries o f  re-usable  agent  components ,  mad (ili) one  of  
more  ways to describe the functionali ty of  these agent  components .  

In the agent  factory discussed in this section three Addigional as- 
sumptious hold:  (i) two levels o f  descr ipbon if  an agent ' s  behav iour  
are dist inguished:  o0nceptual  and detailed, (it) no  commiUncats  m'e 
made  to specific p rogramming  languages and/or  ontologies,  m d  
Oil) a shared  bluepr in t  language can  be  defined. 

3.3 A g e n t  f a c t o r y  p r o t o t y p e  
A first prototype o f  the agent factory antomaticel ly (re-)dealgns 

an informat ion retrieval agent, its b luepr int  and entecutable code.  
The  informat ion  retrieval agent is based  on  an agent  m'chitecture, 
shown in Fig.  1. 

~/nformaeon 

F i g u r e  1: Arch i t e cbsze  of  a s imp le  i n f o r m a t i o n  r e t r i e v a l  agenL 

In this prototype, conceptual  components  are specified in the DE- 
SiRE framework [1, 2]. The  composi t ional  nature o f  DESIRE mod-  
els, and the sepmration be tween  processes and knowledge  makes  
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Figure 2: Building block conllm]ration of a abnple information retrieval agent. 

it possible to specify knowledge intensive systems from reusable 
components. A structure-preserving mapping exists between the 
configuration of building blocks at the conceptual level of abstrac- 
tion and the configuration of building blocks at the detailed level of  
abstraction. The detailed components are in Java. i 

This prototype agent factory itself is written in Java, and contains 
enough knowledge to be able to (re-)design simple information re- 
trieval agents. Figure 2 illuslrates a building block-configuration 
in which two levels of building blocks were required: each open 
slot required a building block that itself contained other open slots. 
Note that the lower level building blocks make a distinction be- 
tween open slots for data, and open slots for processes. 

4. M I G R A T I O N  U S I N G  T H E  A G E N T  FAC- 
T O R Y  SERVICE 

One of the strengths of the agent factory concept is that it pro- 
vides a means to support migration of agents in heterogeneous envi- 
runments that require a high level of security. Section 4.1 discusses 
pre-conditions for successful migration of agents. Section 4.2 de- 
scribes the approach in agent-factory-enhanced migration. 

4.1 Migration pre-conditions 
To facilitate the description of migration of an agent, it is as- 

sumed that an agent consists of executable code and state. Exe- 
cutable code may contain "'code and data;' if these can be distin- 
guished, or may be inseparable (as with Prolog). When an agent 
migrates, it needs to retain sufficient information from its state to 
resume execution at its destination. Note that this description leans 
towards weak-mobility: it may not be necessary to Iransport the 
entire state of an agent. 

Although it is not necessary for the source and destination host 
to both have access to an agent factory, it greatly simplifies descrip- 
tions of the migration process. An agent needs to be able to store 
and restore information on its state; this is a requirement for inter- 
operability. Possibly an implementation-independent format such 
as XML, RDF or OIL may be used. 

The agent factories on the hosts need to share some building 
blocks. E.g., each agent factory may have the sam," libraries of 
building blocks at the conceptual level of abslraction, but may have 
different libraries of building blocks at the detailed level. For ex- 
ample, an agent factory may have a mapping from a conceptual 
agent architecture building block to a detailed building block writ- 
ten in Java; while another agent factory may have a detailed build- 
ing block written in C++. 

1Automated prototype generation within the DESIRE I'rall~work on the ba- 
sis of detailed formal specifications facilitates verification and validation 
of knowledge intensive systems; this feature is not used within the current 
prototype of the agent factory. 

4.2 Approach to migration 
In essence, migration entails moving an agent from one machine 

to another. This usually involves pre-pankaging an agent before its 
move, such that it its executable code and state may be restored 
at the destination host. Migration using an agent factory diverges 
from standard mobility of agents in that executable code with state 
is n o t  migrated, but the agent's blueprint together with (parts of) 
the agent's state. This might seem to be similar to Java agents and 
their interaction with class loader objects. A class loader object 
allows specific implementations of Java classes to be loaded. How- 
ever, the approach described here is to migrate a specification of an 
agent that can be targeted to an implementation language like Java, 
Python, or Prolog. 

Consider the following scenario for heterogeneous mobility, de- 
picted in Fig. 3. An information relrieval agent A currently resides 
on a host machine HI. This host runs the Ajanta [23] agent plat- 
form, and, as such, supports Java agents. The agent wishes to move 
to another host: host H2. The host ]-[2 runs the DESIRE platform, 
and its agents run code generated by the DESIRE platform. 

In the process of  migrating the agent A from host HI to host H2, 
the agent first needs to oflload information on its state. Then the 
agent factory on host HI sends the blueprint of  the agent, together 
with the stale information of the agent to host H2. 

JBt~ Qea/re 

Figure 3: Example  migrat ion scenario in which agent  A on host  
1 (writ ten in Java, rnnnin  s on Ajalala) lnigrBtes to host  2 (where 
it wtll be speeified in DESIRE and running  on DESIRE). 

Host H2's local agent factory receives the blueprint of the agent 
and state information. This agent factory designs a DESIRE agent 
A on the basis of the blueprint of agent A. This DESIRE agent A 
(i.e., a functionally equivalent incarnation of the Java agent A) runs 
on DESIRE'S virtual machine (the DESIRE-interpreter), and is able 
to incorporate information on its state. 

The agent factory on the receiving side regenerates the agent, 
possible in a different implementation language and in a different 
environment. The agent may need to acquire information about its 
new environment and react to changes. 
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5. ISSUES 
Heterogeneous migration of  agents, possibly across agent plat- 

forms, raises a number of  issues with respect to interoperability 
(Section 5.1) and security (Section 5.2). 

5.1 Heterogene i ty  & interoperability 
Migration using an agent factory makes it possible to migrate 

agents not only in a homogeneous environment, but also in hetero- 
geneous environments. The executable code of  an agent usually 
contains a part that provides the interfaces between the agent and 
the agent platform on which the agent "lives P" Taking this inter- 
face into account, the following migration scenarios can be distin- 
guished. 

Homogeneous  mig ra t ion  An agent migrates to another host with- 
out any changes to the format of  its executable code or the 
interfaces to the agent platform. This form of  migration re- 
quires that source and destination platform offer the same 
interfaces, but also that the (virtual) machine that executes 
the agent is the same at both sides. In practice, this form of  
migration is most common. 

Cross -p la t fo rm migra t ion  An agent is migrated to another host 
with a different agent platform, but that offers the same (vir- 
tual) machine architecture. This generally entails changes 
to the interface to the agent platform, but not necessarily 
changes to the format of  its executable code. This form of  
migration may occur when, e.g., a Java-agent migrates from 
a Ajanta platform to a Zeus platform. One commonly ap- 
plied sohition is to offer wrapper interfaces that hide the dif- 
ferences between source and target platform. Another ap- 
proach, followed in M A F  [14] or FIPA, is to enforce plat- 
forms m implement a standard interface for interoperability. 

Agen t - regenera t ion  migra t ion  An agent migrates to a host run- 
ning a different (virtual) machine requiring that the agent 
is regenerated, resulting in different executable code. Note 
that the target agent platform may be the same as that of the 
source, which may simplify regeneration. To regenerate an 
agent, it is necessary that the target has a blueprint of  the 
agent. We are not aware of  agent systems that support this 
approach. 

Hete rogeneous  migra t ion  An agent migrates to another host with 
a different agent platform and offering a different (virtual) 
machine. In this case, regeneration of  the agent is necessary. 
Because the underlying agent platform is also different the 
agent's blueprint must be platform independent, which may 
complicate matters. 

This paper advocates heterogeneous migration as it offers most 
flexibility. As distributed systems are gradually required to scale 
worldwide across different administrative organizations, and to sup- 
port a myriad of  platforms, solutions axe needed that anticipate het- 
erugeneity and adaptability. Regeneration of  agents for different 
underlying platforms is a step towards meeting such requirements. 

The approach described in this paper combines heterogeneous 
migration with weak migration. The term proposed for our ap- 
proach is generative migration. Generative migration for agents 
may open the world of  distributed sys terns to agent-developers. The 
adage "'write once, run everywhere" is achieved while retaining het- 
erogeneity and tackling the problem of  interoperability. 

Generative migration requires that a target host  has access to an 
agent factory capable of  generating an agent for that target. Ideally, 

this factory is placed on the target host, or otherwise available on 
the same local-area network. An important issue is that the factory 
is trusted to generate an agent that the target can IJrust. Security and 
trust are briefly discussed below. 

Our approach has the additional benefit that various optimiza- 
tions become possible. For example, the agent generated by a fac- 
tory may be optimized with respect to the target's machine archi- 
tecture, or the way that local resources such as databases are ac- 
cessed. In addition, it is to be expected that transmission of  an 
agent 's blueprint and information on its current state will generally 
require less network resources than migrating an agent using more 
traditional approaches. On the downside, the agent-generation pro- 
cess may affect overall performance in the case of  often-migrating 
agents. 

5.2  Security 
Migration of  an agent involves security from a number  of  per- 

spectives. Security issues related to authenticating an agent, and 
deciding whether an agent is allowed to migrate to its destination, 
are not discussed in this paper. What remains are how to protect an 
agent against attacks during and after its migration, and how to pro- 
t e c t a  target against attacks from a malicious agent. Considerable 
research has already been conducted with respect to both issues and 
which can be applied to our approach. In the following, the role of  
security is briefly considered. It should be noted, however, that 
security in our approach is subject to further research. 

5.2.1 Protect ing an agent  
A mobile agent may be preyed upon in transit, or while running 

on a malicious host. It is impossible to protect an agent against 
modifications during its transfer or execution in an untrusted ©n- 
vironment [4]. At best, it can check whether an agent has been 
maliciously modified and take appropriate measures after the fact. 
Our approach to migration can help here. 

It is important to realize that an agent's blueprint does not change 
during its lifetime. (Except for reconfiguration at an agent factory.) 
Consequently, by adding an integrity check to a blueprint using 
standard techniques for digital signatures [20], it is easy to detect 
whether a blueprint has been changed. When a factory notices that 
a blueprint has been changed, it can either discard the agent or gen- 
e.rate it from the original blueprint. The latter is possible only if  
that blueprint is locally available, or if it can be retrieved in a se- 
cure way. Securely retrieving a blueprint requires that a factory can 
set up a secure channel to a blueprint repository, that is, a channel 
that provides authentication and transmission integrity. 

Of  course, it should be possible to support evolutionary agents 
for which new blueprints are generated. However, blueprint genera- 
tion should be done only by trusted factories and never as a solution 
to migration. As such, it fails outside the scope o f  this paper. 

5.2.2 Protec t ing  a hos t  
A host that admits foreign mobile agents to its resources takes 

a risk: some of  the agents may be malicious, and may try to sub- 
vert (parts of) the host. The problem with Iraditional approaches to 
agent migration is that it is impossible to check in advance whether 
or not imported code does only what it promises. The solution is 
to construct what are known as sandboxes [24]: a restricted en- 
vironment in which, effectively, each insu'uction is monitored and 
checked before being executed. If access to resources is violated, 
execution halts. The sandbox model is quite restrictive, and has 
been extended since its initial inlroduction (see, for example, [6, 
121). 

Regenerating agents from blueprints may considerably help in 
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protecting a host against malicious code. Normally, blueprints do 
not contain code descriptions, but refer only to interfaces and com- 
ponents that should be locally available to an agent factory. The 
code contained in these components may have been verified by the 
owner of  the factory, or have been obtained from trusted sources. 
Of course, protection will fail if verification has not been done 
properly. In effect, a requirement is that Irusted code is available 
before an agent migrates to a target, or that can be retrieved from a 
trusted repository through a secure channel. 

In those eases that blueprints require execution of untrusted code, 
traditional approaches based on sandboxing techniques or protec- 
lion domains need to be implemented as part of  the target platform. 

A mobile agent arriving at the host is regenerated on the basis 
of  its blueprint, using only detailed betiding blocks which the host 
approves of. Although the specific configuration of  building blocks 
may be new to the host, a number of security risks can be removed. 
The mobile agent may still be unlrnstworthy, but is prevented from 
executing eeffJ~ calls on the hosL 

As an example, consider a bank that wishes m use mobile agents 
which may Iransact money from one account to another. The bank 
offers libraries of building blocks written in Java to its clients. 
These clients may build mobile agents that can perform transac- 
lions at the bank. The bank admits only those mobile agents that 
can be regenerated on the basis of their blueprint using building 
blocks written in Cobol. This may give more confidence to the 
bank that the mobile agents will not be able to tamper with their 
system. Note that cheating, using other people's passwords and 
certificates is not necessarily stopped by this approach. 

6. D I S C U S S I O N  AND FUTURE WORK 
Agents, and in particular mobile agents, offer a means for ap- 

plication developers to build distributed applications. Mobility of  
agents is often required for various reasons, notably performance. 
Current agent platforms offer a wide range of services to agent de- 
velopers, including mobifity. However, mobility of agents is usu- 
ally limited to hosts rnnning the same agent platform and that have 
the same (virtual) machine architecture. In other words, it is often 
reslreined to a homogeneous environment. 

The approach described in this paper transcends this homogene- 
ity and proposes generative mobility. In generative mobility, a 
blueprint of an agent's functionality is transported, together with 
information on the agent's state. At  its destination, an agent fac- 
tory regenerates the executable code of the agent on the basis of its 
blueprint. An agent may then restore its state and resume execu- 
tion. 

With generative mobility an agent may Iravel to locations that 
offer a different platform and that require it to adopt a different 
(virtual) machine architecture. In other words, generative mobility 
supports true heterogeneous mobility, offering an agent maximum 
flexibility with respect to where it wants to go. In addition, an 
agent's executable code can be optimized for its destination, while 
retnining its required agent-level functionality. In their own way, 
agent factories and blueprints offer a language and agent platform 
independent virtual machine that allows for heterogeneous migra- 
tion. 

Agent factories play an important role in generative mobility as 
they offer the services needed to generate executable code on the 
basis of blueprints. Agent factories rely on libraries of  building 
blocks from which agents can be configured. As a consequence, 
agent factories need to share these (conceptual) building blocks to 
understand an agent's blueprint and be able to generate its asso- 
ciated executable code. Homogeneity in agent architectures is a 
likely consequence of this approach. 

Research on generative mobility is clearly not finished. In par- 
ticular, the use of blueprints needs to be investigated to determine 
to what extent blueprints are flexible enough to describe agents, 
and how security can be adequately dealt with. Agent factories 
form an important component within our worldwide distributed 
AgentScape system that allows agents to be automatically (re-)- 
designed. Currently a prototype of the agent factory (namely the 
libraries of componenls) is being built that supports generative mo- 
bil/ty. 

The use of  generative mobility for relatively closed environ- 
ments, such as hospitals, is currently being studied. Generative 
mobility with trusted code libraries on the hospital side may pos- 
sibly provide a solution to controlled access to medical dossiers. 
Insurance companies, for example, axe allowed limited access to 
specific types of information and processing. Coul3"ol over the exe- 
cutable code of an insurance company's agent provides a means for 
a hospital to control the calls and data an agent may execute inside 
the hospital  
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