
Agent Factory: Generative Migration of Mobile Agents in
Heterogeneous Environments

F.M.'I'. Brazier, B.J. Overeinder, M. van Steen, and N.J.E. Wijngaards
Department of Computer Science, Vrije Universiteit Amsterdam

De Boelelaan- 1081 a, 1081 HV Amsterdam, The Netherlands
[frances,bjo, steen,niek} @ cs.vu.nl

ABSTRACT
In most of today's agent systems migration of agents requires

homogeneity in the programming language and/or agent platform
in which an agent has been designed. In this paper an approach is
presented with which heterogeneity is possible: agents can migrate
between non.identical platforms, and need not be written in the
same language. Instead of migrating the "code" (including data
mud state) of an agent, a blueprint of an agent's functionality and
its state is transferred. An agent factcqry generates new code on the
basis of this blueprint. This approach of generative mobility not
only has impfications for interope~abifity but also for security, as
discussed in this paper.

Keywords
mobile agents, process migration, compositional design

1. INTRODUCTION
In a global, distributed computer infrastructure, in which the In-

ternet provides connectivity, mobile agents are seen as a promising
computational approach to dislributed computing, resource man-
agement, and security.

Mobile agents allow for computations to dynamically adapt to
a changing environment, for example, by migrating from one ma-
chine to another. The decision to migrate is most oftem taken au-
tonomonsly by the mobile agent itself. The ability of migration
provides mobile agents a means to overcome the high latency or
limited bandwidth problem of traditional client-server interactions
by moving the computation to required resources or services. The
current evolution of intelfigent and active networks in system and
network management, for example, is based on this technology. A
similar tendency is observed in the search and filtering of glob-
ally available information such as in the electronic marketplaces,
e-commeree, and information retrieval on the World Wide Web [8].

To support agent mobility a distributed system needs provisions
to physically migrate units of computation at runtime. This migra-
tion includes relocation of an agent's code base and state to another
platform. Cede and state migration is a complex task with techni-
cal complications such as binary inenmpatibifity of two heteroge-

Permission to make digital or bard copies of all or part of this work for
pe~onal or classroom use is granted without fee provided that copies ate
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a f¢¢.
y~tc 20o2, Madrid, Spain
Copyright 2002 ACM 1-58113-~43-2/02/03...$5.00.

neous platforms. The current solution to migration of active units
of computation is to provide homogeneous platforms, either phys-
ically such that binary checkpoints can he restarted at another lo-
cation, or virtually by using virtual machines, e.g., the Java Virtual
Machine, providing a machine independent platform. The homo-
geneity requirement, physical or virtual, is a strong requirement:
mobility is otherwise impossible.

• Another important issue in mobile agents technology is security.
In most current systems trust in the owners and in the machines
on which an agent has previously run, are the basis for a security
model. Code signing and certificates are the techniques used to this
purpose.

This paper presents a completely new approach to agent mobil-
ity. Not the code migrates, but an agent's blueprint and state. A
receiving platform regenerates a mobile agent as it migrates to its
new location. Homogeneity is no longer required: an agent pro-
grammed in Java can be transformed to, for example, a Python ~m-
plementafion of the agent with the same functionality. Trust in an
agent coming from another machine increases considerably if the
receiving platform uses its own trusted components to reconfigure
an agent.

Section 2 discusses mobility of processes and agents in more
detail. Section 3 describes the concept of an agent factory. Hetero-
geneous migration based on this concept is the topic of Section 4.
Implications of this approach for heterogeneous migration and se-
curity are discussed at more length Section 5. Section 6 sums up
the results and proposes future research.

2. BACKGROUND
An agent in a mobile agent system is typically associated with a

unit of computation which resides in the lower layers of a virtual
machine. A unit of computation is composed of the code describing
its behaviour, the data associated with it, and its execution state.
Mobile agent systems allow migration of the whole unit or a part
thereof, i.e., one or more of the three constituents mentioned above.
The most relevant differences among existing systems fie exactly in
what is moved and how [18].

A distinction can be drawn based on whether the execution state
is migrated along wRh the unit of computation or not. Systems
providing the former option are said to support strong mobility,
as opposed to systems that discard the execution state across mi-
gration, and are hence said to provide weak mobility. In systems
supporting strong mobility, migration is completely transparent to
the migrated program, whereas with weak mobility, extra program-
ruing is required in order to manually save part of the execution
state.

Strong mobility as found in NOMADS [22], Ara [16], and
D'Agents [7], requires that the entire state of the agent, includ-

101

ing its execution stack and program counter, is saved before the
agent is migrated to its new location. This process of saving the
entire state of an executing process is called ched~ointing. A n im-
portant quality of strong mobi l i ty is t ransparent migrat ion of the
running process. Tha t is, the agent is not aware of the migrat ion
and bindings to othex agents and objects are Ixanspmently resolved,
i.e., references to agents and objects arc location independent. The
check-point/migration facility can be ei ther implemented at the op-
erating system level [10, 15, 9] or can be incorporated within the
virtual machine of all interpreted language (e.g., within the Java
Afirtual Mach ine [22])~

Despi te the advantages of strong mobility, many agent systems
support weak mobil i ty (l ike Ajan ta [23] and Aglets [11]). Mos t of
the agent systems m'e implemented on top of the Java NFtrtual Ma-
chine (JVM), which provides wi th object serialization basic mech-
anisms to implement weak mobili ty. The J V M does not provide
mechanisms to deal wi th the execut ion state.

Agen t mobil i ty is. in general, mos t easily real ized in homoge-
neous environments . For s trong mobi l i ty with cbeckpoint /migra-
lion incorporated at the operat ing sys tem level, agent mobil i ty is
l imited to identical compu tm architectures running the same oper-
ating system. Agent mobil i ty facilit ies implemented at the virtual
machine level makes the migra t ion of agents machine independent,
but is still homogeneous in language, i.e., only migrat ion of agents
f rom Java to Java platforms.

Migrat ion o f mobi le agents does not need to be constrained by
homogenei ty of code bases and platforms. Agents can be migrated
across heterogenenus code bases and platforms by reconfigurat ion
of the agents upon arrival at a new location. Blueprints o f the func-
tionality of an agent m'e the basis of the migration. At a new loca-
tion, the agent is regenerated according to this blueprint using com-
ponents ' specific to the local agent platform. The funct ional com-
ponents can be f rom anothar code base thnn the originat ing agent,
but also the agent pla t form can differ,, hence interopesabili ty be-
tween agent platforms c , - be realized. The next sect ion describes
the means wi th which this can b e achieved: an agent factory.

3. A G E N T F A C T O R Y A P P R O A C H
Assuming agents have a composi t ional structure described by

their blueprints, building a , agent is, in fact, a configuration task:
a. task that can be automated. Au tomated (re-)design of agents is
the task of an agent factory [3]. This sect ion describes an existing
agent factory, one o f the services o f the AgentScape framework.

Section 3.1 defines the concept of blueprints in more detail.
Section 3.2 discusses characterist ics o f an agent factory, and Sec-
tion 3.3 describes a current prototype of this agent factory.

3.1 B l u e p r i n t s
In the fol lowing discussion, i t is assumed that agents are de-

signed to have a composi t ional structure. A blueprint is a h igh
level specification of the functionali ty and operational semantics of
an agent. The specification describes the behav iour of an agent in
terms of its basic bui lding blocks: components , control flow and
data flow. The result ing b l u c p ~ t is expressed in a h igh level spec-
ification language: the bluepr int language. (The bluepr int speci-
f ication-language is somewhat s imilar to, for example, Very High
Design Language (VI-IDL) used in VLSI design.)

Agent factories i n ~ p r e t the agent b luepr int and generate exe-
cutable code from, for example, Java, Python, or C components .
By interpreting the bluepr int language a , d genexating executable
code, agent factories conceptual ly provide a h igh level virtual ma-
chine for the blueprint agents. The operat ion of agent factories can
to some extent be compared with Java to nat ive machine code corn-

pilers. For example, at mxival at a host, a mobi le Java agent can be
compi led to native machine code using the Java class implementa -
tions f rom the local repository. An agent fac tmy is more flexible
than a "s tandard" interpreter, as the agent factory is able to generate
new blueprints for new agents, using knowledge bases.

T h e concept o f a building block is used to descr ibe the compo-
nents within an agent 's blueprint at two levels o f abstraction: con-
ceptual and detailed/operationaL At each level of a b s t n c b o n the
behaviour o f the agent is described. Some bui lding b l o c h contain
open slots, others are fully specified and operational . Bo th define
their funct ional i ty on the basis of t l~i r i n t e r f a~s . Open slots define
the interfaces o f the building blocks to be inserted.

Depending on availability and d£tmaiu of application librm'ies
of bui lding blocks may include: partial agent designs (d . Keueric
modeis /des ign patterns [5, 17, 19]), knowledge-based models (e.g.,
p rob lem-so lv ing models [21] or genet ic task models [2]), agent-
wrappm-s (providing cross p la t form intmfaces) (e.g., AgentScape,
Zeus [13], massage parsing Ajanta [23]), ©t cetera. Bui ld ing blocks
may be writ ten in, e.g., UML, Python, C++, CommonKads , etc.

3.2 C h a r a c t e r i s t i c s o f a n a g e n t f a c t o r y
Whethe r the need for ~ - ~ o u is identified by an agent itself,

or by another agent, is irrelevant in the context o f thiJ paper. An
agent factory s imply conslructs new agents and/or modifies exist ing
agents [3]. The (re-)design of agents is fully n n t c ~ , t ~ 4 wi th very
limited integaction with Ontsigle par t i~ . Yhc coRc~pt o f an agent
factory requires (i) agents to have a composi t ional strm:ture, (it) one
or more libraries o f re-usable agent components , mad (ili) one of
more ways to describe the functionali ty of these agent components .

In the agent factory discussed in this section three Addigional as-
sumptious hold: (i) two levels o f descr ipbon if an agent ' s behav iour
are dist inguished: o0nceptual and detailed, (it) no commiUncats m'e
made to specific p rogramming languages and/or ontologies, m d
Oil) a shared bluepr in t language can be defined.

3.3 A g e n t f a c t o r y p r o t o t y p e
A first prototype o f the agent factory antomaticel ly (re-)dealgns

an informat ion retrieval agent, its b luepr int and entecutable code.
The informat ion retrieval agent is based on an agent m'chitecture,
shown in Fig. 1.

~/nformaeon

F i g u r e 1: Arch i t e cbsze of a s imp le i n f o r m a t i o n r e t r i e v a l agenL

In this prototype, conceptual components are specified in the DE-
SiRE framework [1, 2]. The composi t ional nature o f DESIRE mod-
els, and the sepmration be tween processes and knowledge makes

102

BB/kb: aganl i(:lmnlily clmrmlnalian
BB I . . .

~- - informaliOnrelrlm/aj I T i~11~ . . . ~ BE.lkb: kb combo ~ BB/kb: world interne,off preferences delerrninanon
agenl BB/com-: ~ slrat ~ BB/kb: wodd interelclion co-ordlnaUon

slraleg ~:1" / alo,
choice o u [~ comp-I ~ BE~comp: hnp wodd inlemcUon

2 o~m. / slot
I - - comp-2._~_ BB/comp: hiE) wodd inler~tion

Mol
ml clot '--0-- BB~b: kb combo - - [~ ~ b l simple htlp in,o search

simple lip info search

Figure 2: Building block conllm]ration of a abnple information retrieval agent.

it possible to specify knowledge intensive systems from reusable
components. A structure-preserving mapping exists between the
configuration of building blocks at the conceptual level of abstrac-
tion and the configuration of building blocks at the detailed level of
abstraction. The detailed components are in Java. i

This prototype agent factory itself is written in Java, and contains
enough knowledge to be able to (re-)design simple information re-
trieval agents. Figure 2 illuslrates a building block-configuration
in which two levels of building blocks were required: each open
slot required a building block that itself contained other open slots.
Note that the lower level building blocks make a distinction be-
tween open slots for data, and open slots for processes.

4. M I G R A T I O N U S I N G T H E A G E N T FAC-
T O R Y SERVICE

One of the strengths of the agent factory concept is that it pro-
vides a means to support migration of agents in heterogeneous envi-
runments that require a high level of security. Section 4.1 discusses
pre-conditions for successful migration of agents. Section 4.2 de-
scribes the approach in agent-factory-enhanced migration.

4.1 Migration pre-conditions
To facilitate the description of migration of an agent, it is as-

sumed that an agent consists of executable code and state. Exe-
cutable code may contain "'code and data;' if these can be distin-
guished, or may be inseparable (as with Prolog). When an agent
migrates, it needs to retain sufficient information from its state to
resume execution at its destination. Note that this description leans
towards weak-mobility: it may not be necessary to Iransport the
entire state of an agent.

Although it is not necessary for the source and destination host
to both have access to an agent factory, it greatly simplifies descrip-
tions of the migration process. An agent needs to be able to store
and restore information on its state; this is a requirement for inter-
operability. Possibly an implementation-independent format such
as XML, RDF or OIL may be used.

The agent factories on the hosts need to share some building
blocks. E.g., each agent factory may have the sam," libraries of
building blocks at the conceptual level of abslraction, but may have
different libraries of building blocks at the detailed level. For ex-
ample, an agent factory may have a mapping from a conceptual
agent architecture building block to a detailed building block writ-
ten in Java; while another agent factory may have a detailed build-
ing block written in C++.

1Automated prototype generation within the DESIRE I'rall~work on the ba-
sis of detailed formal specifications facilitates verification and validation
of knowledge intensive systems; this feature is not used within the current
prototype of the agent factory.

4.2 Approach to migration
In essence, migration entails moving an agent from one machine

to another. This usually involves pre-pankaging an agent before its
move, such that it its executable code and state may be restored
at the destination host. Migration using an agent factory diverges
from standard mobility of agents in that executable code with state
is n o t migrated, but the agent's blueprint together with (parts of)
the agent's state. This might seem to be similar to Java agents and
their interaction with class loader objects. A class loader object
allows specific implementations of Java classes to be loaded. How-
ever, the approach described here is to migrate a specification of an
agent that can be targeted to an implementation language like Java,
Python, or Prolog.

Consider the following scenario for heterogeneous mobility, de-
picted in Fig. 3. An information relrieval agent A currently resides
on a host machine HI. This host runs the Ajanta [23] agent plat-
form, and, as such, supports Java agents. The agent wishes to move
to another host: host H2. The host]-[2 runs the DESIRE platform,
and its agents run code generated by the DESIRE platform.

In the process of migrating the agent A from host HI to host H2,
the agent first needs to oflload information on its state. Then the
agent factory on host HI sends the blueprint of the agent, together
with the stale information of the agent to host H2.

JBt~ Qea/re

Figure 3: Example migrat ion scenario in which agent A on host
1 (writ ten in Java, rnnnin s on Ajalala) lnigrBtes to host 2 (where
it wtll be speeified in DESIRE and running on DESIRE).

Host H2's local agent factory receives the blueprint of the agent
and state information. This agent factory designs a DESIRE agent
A on the basis of the blueprint of agent A. This DESIRE agent A
(i.e., a functionally equivalent incarnation of the Java agent A) runs
on DESIRE'S virtual machine (the DESIRE-interpreter), and is able
to incorporate information on its state.

The agent factory on the receiving side regenerates the agent,
possible in a different implementation language and in a different
environment. The agent may need to acquire information about its
new environment and react to changes.

103

5. ISSUES
Heterogeneous migration of agents, possibly across agent plat-

forms, raises a number of issues with respect to interoperability
(Section 5.1) and security (Section 5.2).

5.1 Heterogene i ty & interoperability
Migration using an agent factory makes it possible to migrate

agents not only in a homogeneous environment, but also in hetero-
geneous environments. The executable code of an agent usually
contains a part that provides the interfaces between the agent and
the agent platform on which the agent "lives P" Taking this inter-
face into account, the following migration scenarios can be distin-
guished.

Homogeneous mig ra t ion An agent migrates to another host with-
out any changes to the format of its executable code or the
interfaces to the agent platform. This form of migration re-
quires that source and destination platform offer the same
interfaces, but also that the (virtual) machine that executes
the agent is the same at both sides. In practice, this form of
migration is most common.

Cross -p la t fo rm migra t ion An agent is migrated to another host
with a different agent platform, but that offers the same (vir-
tual) machine architecture. This generally entails changes
to the interface to the agent platform, but not necessarily
changes to the format of its executable code. This form of
migration may occur when, e.g., a Java-agent migrates from
a Ajanta platform to a Zeus platform. One commonly ap-
plied sohition is to offer wrapper interfaces that hide the dif-
ferences between source and target platform. Another ap-
proach, followed in M A F [14] or FIPA, is to enforce plat-
forms m implement a standard interface for interoperability.

Agen t - regenera t ion migra t ion An agent migrates to a host run-
ning a different (virtual) machine requiring that the agent
is regenerated, resulting in different executable code. Note
that the target agent platform may be the same as that of the
source, which may simplify regeneration. To regenerate an
agent, it is necessary that the target has a blueprint of the
agent. We are not aware of agent systems that support this
approach.

Hete rogeneous migra t ion An agent migrates to another host with
a different agent platform and offering a different (virtual)
machine. In this case, regeneration of the agent is necessary.
Because the underlying agent platform is also different the
agent's blueprint must be platform independent, which may
complicate matters.

This paper advocates heterogeneous migration as it offers most
flexibility. As distributed systems are gradually required to scale
worldwide across different administrative organizations, and to sup-
port a myriad of platforms, solutions axe needed that anticipate het-
erugeneity and adaptability. Regeneration of agents for different
underlying platforms is a step towards meeting such requirements.

The approach described in this paper combines heterogeneous
migration with weak migration. The term proposed for our ap-
proach is generative migration. Generative migration for agents
may open the world of distributed sys terns to agent-developers. The
adage "'write once, run everywhere" is achieved while retaining het-
erogeneity and tackling the problem of interoperability.

Generative migration requires that a target host has access to an
agent factory capable of generating an agent for that target. Ideally,

this factory is placed on the target host, or otherwise available on
the same local-area network. An important issue is that the factory
is trusted to generate an agent that the target can IJrust. Security and
trust are briefly discussed below.

Our approach has the additional benefit that various optimiza-
tions become possible. For example, the agent generated by a fac-
tory may be optimized with respect to the target's machine archi-
tecture, or the way that local resources such as databases are ac-
cessed. In addition, it is to be expected that transmission of an
agent 's blueprint and information on its current state will generally
require less network resources than migrating an agent using more
traditional approaches. On the downside, the agent-generation pro-
cess may affect overall performance in the case of often-migrating
agents.

5.2 Security
Migration of an agent involves security from a number of per-

spectives. Security issues related to authenticating an agent, and
deciding whether an agent is allowed to migrate to its destination,
are not discussed in this paper. What remains are how to protect an
agent against attacks during and after its migration, and how to pro-
t e c t a target against attacks from a malicious agent. Considerable
research has already been conducted with respect to both issues and
which can be applied to our approach. In the following, the role of
security is briefly considered. It should be noted, however, that
security in our approach is subject to further research.

5.2.1 Protect ing an agent
A mobile agent may be preyed upon in transit, or while running

on a malicious host. It is impossible to protect an agent against
modifications during its transfer or execution in an untrusted ©n-
vironment [4]. At best, it can check whether an agent has been
maliciously modified and take appropriate measures after the fact.
Our approach to migration can help here.

It is important to realize that an agent's blueprint does not change
during its lifetime. (Except for reconfiguration at an agent factory.)
Consequently, by adding an integrity check to a blueprint using
standard techniques for digital signatures [20], it is easy to detect
whether a blueprint has been changed. When a factory notices that
a blueprint has been changed, it can either discard the agent or gen-
e.rate it from the original blueprint. The latter is possible only if
that blueprint is locally available, or if it can be retrieved in a se-
cure way. Securely retrieving a blueprint requires that a factory can
set up a secure channel to a blueprint repository, that is, a channel
that provides authentication and transmission integrity.

Of course, it should be possible to support evolutionary agents
for which new blueprints are generated. However, blueprint genera-
tion should be done only by trusted factories and never as a solution
to migration. As such, it fails outside the scope o f this paper.

5.2.2 Protec t ing a hos t
A host that admits foreign mobile agents to its resources takes

a risk: some of the agents may be malicious, and may try to sub-
vert (parts of) the host. The problem with Iraditional approaches to
agent migration is that it is impossible to check in advance whether
or not imported code does only what it promises. The solution is
to construct what are known as sandboxes [24]: a restricted en-
vironment in which, effectively, each insu'uction is monitored and
checked before being executed. If access to resources is violated,
execution halts. The sandbox model is quite restrictive, and has
been extended since its initial inlroduction (see, for example, [6,
121).

Regenerating agents from blueprints may considerably help in

104

protecting a host against malicious code. Normally, blueprints do
not contain code descriptions, but refer only to interfaces and com-
ponents that should be locally available to an agent factory. The
code contained in these components may have been verified by the
owner of the factory, or have been obtained from trusted sources.
Of course, protection will fail if verification has not been done
properly. In effect, a requirement is that Irusted code is available
before an agent migrates to a target, or that can be retrieved from a
trusted repository through a secure channel.

In those eases that blueprints require execution of untrusted code,
traditional approaches based on sandboxing techniques or protec-
lion domains need to be implemented as part of the target platform.

A mobile agent arriving at the host is regenerated on the basis
of its blueprint, using only detailed betiding blocks which the host
approves of. Although the specific configuration of building blocks
may be new to the host, a number of security risks can be removed.
The mobile agent may still be unlrnstworthy, but is prevented from
executing eeffJ~ calls on the hosL

As an example, consider a bank that wishes m use mobile agents
which may Iransact money from one account to another. The bank
offers libraries of building blocks written in Java to its clients.
These clients may build mobile agents that can perform transac-
lions at the bank. The bank admits only those mobile agents that
can be regenerated on the basis of their blueprint using building
blocks written in Cobol. This may give more confidence to the
bank that the mobile agents will not be able to tamper with their
system. Note that cheating, using other people's passwords and
certificates is not necessarily stopped by this approach.

6. D I S C U S S I O N AND FUTURE WORK
Agents, and in particular mobile agents, offer a means for ap-

plication developers to build distributed applications. Mobility of
agents is often required for various reasons, notably performance.
Current agent platforms offer a wide range of services to agent de-
velopers, including mobifity. However, mobility of agents is usu-
ally limited to hosts rnnning the same agent platform and that have
the same (virtual) machine architecture. In other words, it is often
reslreined to a homogeneous environment.

The approach described in this paper transcends this homogene-
ity and proposes generative mobility. In generative mobility, a
blueprint of an agent's functionality is transported, together with
information on the agent's state. At its destination, an agent fac-
tory regenerates the executable code of the agent on the basis of its
blueprint. An agent may then restore its state and resume execu-
tion.

With generative mobility an agent may Iravel to locations that
offer a different platform and that require it to adopt a different
(virtual) machine architecture. In other words, generative mobility
supports true heterogeneous mobility, offering an agent maximum
flexibility with respect to where it wants to go. In addition, an
agent's executable code can be optimized for its destination, while
retnining its required agent-level functionality. In their own way,
agent factories and blueprints offer a language and agent platform
independent virtual machine that allows for heterogeneous migra-
tion.

Agent factories play an important role in generative mobility as
they offer the services needed to generate executable code on the
basis of blueprints. Agent factories rely on libraries of building
blocks from which agents can be configured. As a consequence,
agent factories need to share these (conceptual) building blocks to
understand an agent's blueprint and be able to generate its asso-
ciated executable code. Homogeneity in agent architectures is a
likely consequence of this approach.

Research on generative mobility is clearly not finished. In par-
ticular, the use of blueprints needs to be investigated to determine
to what extent blueprints are flexible enough to describe agents,
and how security can be adequately dealt with. Agent factories
form an important component within our worldwide distributed
AgentScape system that allows agents to be automatically (re-)-
designed. Currently a prototype of the agent factory (namely the
libraries of componenls) is being built that supports generative mo-
bil/ty.

The use of generative mobility for relatively closed environ-
ments, such as hospitals, is currently being studied. Generative
mobility with trusted code libraries on the hospital side may pos-
sibly provide a solution to controlled access to medical dossiers.
Insurance companies, for example, axe allowed limited access to
specific types of information and processing. Coul3"ol over the exe-
cutable code of an insurance company's agent provides a means for
a hospital to control the calls and data an agent may execute inside
the hospital

Acknowledgments
This research is supported by NLnet Foundation,

http://www.ninet.nl. The authors wish to acknowledge the
contributions made by I-fidde Boonstra, David Mobach, Oscar
Scholten and Sander van Splunter.

7. REFERENCES
[1] EM.T. Brazier, B.M. Dunin-Keplicz, N.R. Jennings, and

J. Treur. Formal specification of multi-agent systems; A
real-world case. InternarhTnal Journal of Co-operative
Information Systems, 6:67-94, 1997. Special Issue on
Formal Methods in Co-operadve Information Systems:
Multi-Agent Systems.

[2] EM.T. Brazier, C.M. Ionker, and J. Treur. Principles of
component-basad design of intelligent agents. Data and
Knowledge Engineering, 2002. In press.

[3] F.M.T. Brazier and NJ.E. Wijngaards. Automated servicing
of agents. In Proceedings of the AISB-OI Symposium on
Adaptive Agents and Multi-Agent Systems, pages 54--64,
March 2001.

[4] W.M- Farmer, J.D. Gutlman, and 3/. Swamp. Security for
mobile agents: Issues and requirements. In Proceedings of
the 19th National Information Systems Security Conference,
pages 591--597, Baltimore, MD, October 1996.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vliasides. Design
Patterns: Elements of Reu.cable Object-Oriented Software.
Addison-Wesley, Reading, MA, 1994.

[6] L. Gong and R. Schemers. Implementing protection domains
in the Java Development Kit 1.2. In Proceedings of the
Symposium on Network and Distributed System Security,
pages 125-134, San Diego, CA, March 1998.

[7] R.S. Gray, G- Cybenko, D. Kotz, R.A. Peterson, and D. Rus.
D'Agents: Applications and performance of a mobile-agent
system. Software: Practice and Experience, 2001. In press.

[g] V.N. Gndivada, V.V. Raghavan, W.I. Grosky, and
R. Kasanagottu. Information relrieval on the World Wide
Web. IEEE lnternet Computing, 1(5):58--68,
September/October 1997.

[9] K.A. Iskra, E van der Linden, Z.W. Hendrikse,
B.J. Overeinder, G.D. van Albada, and P.M.A. Sloot. The
implementation of Dynamite: An environment for migrating
PVM tasks. Operating Systems Review, 34(3):40-55, July
2000.

105

[10] D. Johansen, R. van Renesse, and F.B. Schneider. Operating
system support for mobile agents. In Proceedings of the Fifth
Workshop on Hot Topics in Operating Systems (HotOS-V),
pages 42--45, Orcas Island, WA, May 1995.

[11] D.B. Lange. M. Oshima, G. Karjoth, and K. Kosaka. Aglets:
Programming mobile agents in Java. In Worldwide
Computing and Its Applications, volume i 274 of Lecture
Notes in Computer Science, pages 253-266. Springer-Verlag,
Berlin, Germany, 1997.

[12] D. Malkhi and M. Reiter. Secure execution of Java applets
using a remote playground. IEEE Transactions on Software
Engineering, 26(12):1197-1209. December 2000.

[13] H. Nwana, D. Ndumu, L. Lee, and J. Collis. ZEUS: A
tool-kit for building distributed multi-agent systems. Applied
Artifwal Intelligence Journal, 13(1):129-186. 1999.

[I4] OMG. Mobile agent facility specification. OM G Document
formal/00-01-02, Object Management Group, Framingham,
MA, January 2000.

[15] B.J. Overeinder, P.M.A. Sloot, R.N. Heederik, and
L.O. Hez12berger. A dynamic load balancing system for
parallel cluster computing. Future Generation Computer
Systems, 12(1):101-115, May 1996.

[16] H. Peine and T- Stolpmann. The architecture of the Ara
platform for mobile agents. In Proceedings of the First
International Workshop on Mobile Agents (MA "97), volume
1219 of Lecture Notes in Computer Science, pages 50-61,
Berlin, Germany, April 1997. Springer-Verlag.

[17] F. Pefla-Mora and S. Vaclhavkar. Design rationale and design
patterns in reusable software design. In Artificial Intelligence
in Design (AID'96), pages 251-268, Dordrecht, 1996.
Kluwer Academic Publishers.

[18] O.P. Picco. Mobile agents: An inlxoduction.
Microprocessors and Microxystems. 25(2):65-74, April
2001.

[19] AJ . Riel. Object-Oriented Design Heuristics.
Addison-Wesley. Reading, MA, 1996.

[20] B. Schneier. Applied Cryptography. lohn Wiley, New York.
NY, 2nd edition, 1996.

[21] G. Schreiber. H. Akkermans. A. Anjewierden, R. de Hoog,
N. Shadbolt, W. Van de Velde, and B. Wielinga. Knowledge
Engineering and Management, the CommonKADS
Methodology. MIT Press, 1999.

[22] N. Suri, J. Bradshaw, M.R. Breedy, P.T. Groth, G.A. Hill, and
R. Jeffers. Slrong mobifity and fine-grained resource conlarol
in NOMADS. In Proceedings o f the Joint Symposium on
Agent Systems and Applications/Mobile Agents (ASA/MA
2000), pages 2-15, Zurich, Switzerland, September 2000.

[23] A. Tripathi, N. Karnik, M. Vora, T. Ahmed, and R. Singh,
Mobile agent programming in Ajanta. In Proceedings of the
19th laternational Conference on Distributed Computing
Systems (ICDCS'99), pages 190-197, Austin. TX, May
1999.

[24] D.S. Wallach, D. Baifanz, D. Dean. and E.W. Felten.
Extensible security architectures for Java. In Proceedings of
the 16th Symposium on Operating System Principles, pages
116-128, St. Malo, France, October 1997. ACM.

106

